Volume 75, 2024, Pages 23-31
Available at http://scientificadvances.co.in
DOI: http://dx.doi.org/10.18642/jmsaa_7100122299

SIMPLE CRITERIA FOR ALL n-TH ROOTS OF A NATURAL NUMBER BEING IRRATIONAL

BERND E. WOLFINGER

Department of Computer Science
University of Hamburg
Hamburg
Germany
e-mail: bernd.wolfinger@uni-hamburg.de

Abstract

This paper introduces a simple and straight-forward approach to determine for a given natural number $x, x \geq 2$, whether $\sqrt[n]{x} \notin \mathbf{Q}, \forall n \in \mathbf{N}, n \geq 2$. Unlike earlier solutions, our approach does no longer rely on the knowledge of the prime factorization of x. If we just consider the value of the two last digits and the sum of digits of x, we are able to identify correctly more than 50% of all natural numbers, whose n-th roots are irrational $\forall n \in \mathbf{N}, n \geq 2$.

2020 Mathematics Subject Classification: 11Axx.
Keywords and phrases: number theory, n-th roots of natural numbers, irrational n-th roots: simple tests.
Received March 4, 2024

$$
\text { © } 2024 \text { Scientific Advances Publishers }
$$

This work is licensed under the Creative Commons Attribution International License (CC BY 3.0).
http://creativecommons.org/licenses/by/3.0/deed.en US
Open Access

1. Introduction

Already since ancient times, mathematicians have investigated the question whether the root of a given natural number x yields to a rational or irrational value, i.e., $\sqrt[n]{x} \in \mathbf{Q}$ or $\sqrt[n]{x} \notin \mathbf{Q}$?". So, e.g., Euklidalready more than 2000 years ago - has proven that $\sqrt{2} \notin \mathbf{Q}$ [1]. In [2], we have answered the question stated above in a much more general form, namely we completely solved the question $\sqrt[n]{x} \in \mathbf{Q}$ or $\sqrt[n]{x} \notin \mathbf{Q}$?" for all $x \in \mathbf{R}^{+}, n \in \mathbf{N}, n \geq 2$, where $\mathbf{R}^{+}:=\{x \in \mathbf{R} \mid x>0\}$. Moreover, in [3], we have presented very simple tests which allow one to obtain an immediate answer for the cases that x is a natural number. In addition, we have also presented a very simple method to calculate the value of $\sqrt[n]{x}, n \in \mathbf{N}, n \geq 2, x \in \mathbf{N}, x \geq 2$, for cases in which $\sqrt[n]{x} \in \mathbf{Q}$. However, an important precondition of the results of [3] is that the prime factorization of the natural number x considered is available.

In this contribution, we do no longer assume that the prime factorization [4] is available to us, because for extremely large values of x it is well-known that prime factorization might be practically infeasible. In particular, we will demonstrate that already by means of combining three extremely simple tests it is possible to determine more than 50% of the natural numbers x of an interval $\left[x_{1}, x_{2}\right]$ for which $\sqrt[n]{x} \notin \mathbf{Q}$ holds $\forall n \in \mathbf{N}, n \geq 2$. If, in addition, the prime numbers within $\left[x_{1}, x_{2}\right]$ are known to us, the probability of successful prediction of numbers with irrational roots only, can be increased to up to about 85% (as, e.g., our example in Section 4 demonstrates).

Our paper is structured as follows: Section 2 presents the three simple tests which allow one to determine natural numbers in an interval $\left[x_{1}, x_{2}\right]$, which satisfy the condition $\quad \sqrt[n]{x} \notin \mathbf{Q}, x \in \mathbf{N}, x \in\left[x_{1}, x_{2}\right]$, $\forall n \in \mathbf{N}, n \geq 2$ ". In Section 3, we shortly discuss how the knowledge of primes within the interval $\left[x_{1}, x_{2}\right]$ allows one to further increase the hit rate of natural numbers within $\left[x_{1}, x_{2}\right]$ the n-th roots of which are irrational for all $n, n \geq 2$. In Section 4, we will apply our results to the interval [2, 100] by way of example. The paper concludes with a short summary and outlook.

2. Simple Tests to Determine Natural Numbers \boldsymbol{x} for which

$$
\sqrt[n]{x} \notin \mathbf{Q}, \forall n \in \mathbf{N}, n \geq 2
$$

To simplify our notation and argumentation throughout this paper let us introduce the following notations and abbreviations:

We denote by:

- $\mathbf{N}_{\geq 2}:=\{x \in \mathbf{N} \mid x \geq 2\}$.
- $\left\{x_{1}, x_{2}\right\}_{\mathbf{N}}:=\left\{x \in \mathbf{N} \mid x_{1} \leq x \leq x_{2}\right\}$.
- $X_{\text {rat_roots }}\left[x_{1}, x_{2}\right]:=\left\{x \in\left[x_{1}, x_{2}\right]_{\mathbf{N}} \mid \exists n \in \mathbf{N}_{\geq 2}, \sqrt[n]{x} \in \mathbf{Q}, x_{1} \geq 2\right\}$.
- $X_{\text {rat_roots }}:=\left\{x \in \mathbf{N}_{\geq 2} \mid \exists n \in \mathbf{N}_{\geq 2}, \quad \sqrt[n]{x} \in \mathbf{Q}\right\}$.
- $X_{\text {irrat_roots }}\left[x_{1}, x_{2}\right]:=\left\{x \in\left[x_{1}, x_{2}\right]_{\mathbf{N}} \mid \sqrt[n]{x} \notin \mathbf{Q}\right.$,

$$
\left.\forall n \in \mathbf{N}_{\geq 2}, x_{1} \geq 2\right\}
$$

- $X_{\text {irrat_roots }}:=\left\{x \in \mathbf{N}_{\geq 2} \mid \sqrt[n]{x} \notin \mathbf{Q}, \forall n \in \mathbf{N}_{\geq 2}\right\}$.

2.1. Test using even natural numbers being no multiples of 4

Let X_{2} denote the set of even numbers being no multiples of 4 , i.e.,

$$
X_{2}:=\{4 \bullet y-2 \mid y \in \mathbf{N}\}
$$

So, $X_{2}=\{2,6,10,14,18, \ldots\}$.
In [3], it has been proven that, if for $x \in \mathbf{N}_{\geq 2}$ the prime factorization of x is given by:

$$
\begin{equation*}
x=p_{1} \bullet p_{2}^{k_{-}} 2 \cdot p_{3}^{k_{-}}{ }^{3} \bullet \bullet p_{m}^{k_{-}} m \tag{1}
\end{equation*}
$$

p_{i} representing prime numbers $\forall i, p_{i} \neq p_{j}, \forall i \neq j, k_{-} i \in \mathbf{N}$ (where $k_{_} i$ to be read as k_{i}), then $x \in X_{\text {irrat_roots }}$.

We observe that for $\forall x \in X_{2}$, prime factorization of x is given by equation (1) if we are setting $p_{1}=2$ and, therefore, $\forall x \in X_{2}: x \in X_{\text {irrat_roots }}$ holds. As X_{2} covers 25% of all elements of $\mathbf{N}_{\geq 2}$, we see that already the elements of X_{2} cover more than $1 / 4$ of all elements of $X_{\text {irrat_roots }}$.

Moreover, the test whether a number $x \in \mathbf{N}_{\geq 2}$ satisfies exactly the properties assumed for the elements of X_{2} is rather trivial because we only have to test that:
(1) x is a multiple of 2 (which is equivalent to: x is an even number);
(2) x is not an (integer) multiple of 4 (which is equivalent to: the last two digits of x are not an (integer) multiple of 4).

To summarize, already the set X_{2} provides a rather dense coverage of $X_{\text {irrat_roots }}$.

2.2. Tests using natural numbers being an (integer) multiple of 3 and no multiples of 9

Let X_{3} denote the set $X_{3}:=\left\{x \in \mathbf{N}_{\geq 2} \mid x\right.$ is an (integer) multiple of 3 and not an (integer) multiple of 9$\}$. So, $X_{3}=\{3,6,12,15,21, \ldots\}$.

Again, X_{3} satisfies the assumptions of Equation (1), here, if we set $p_{1}=3$. And, X_{3} covers roughly $2 / 9$ of c successive natural numbers if c is chosen to be sufficiently large. So, in general, X_{3} covers more than 20% of the elements being part of $X_{\text {irrat_roots }}$.

Again, two (trivial) tests have to be carried out to prove that a number $x \in \mathbf{N}_{\geq 2}$ is an element of X_{3} :
(1) x is a multiple of 3 iff. the sum of the digits of x is a multiple of 3;
(2) x is not an (integer) multiple of 9 iff. the sum of the digits of x is not a multiple of 9 .

2.3. Tests using natural numbers being an (integer) multiple of 5 and no multiples of 25

Let X_{5} denote the set $X_{5}:=\left\{x \in \mathbf{N}_{\geq 2} \mid x\right.$ is an (integer) multiple of 5 and not an (integer) multiple of 25$\}$.

So, $X_{5}=\{5,10,15,20,35, \ldots\}$.
Again, if we now set $p_{1}=5$ then X_{5} satisfies the assumptions of equation (1). And, X_{5} covers roughly 16% of c successive natural numbers if c is chosen to be sufficiently large

The two (trivial) tests that have to be carried out, in this case, to prove that a number $x \in \mathbf{N}_{\geq 2}$ is an element of X_{5} are as follows:
(1) x is a multiple of 5 iff. the last digit of x is 0 or 5 ;
(2) x is not an (integer) multiple of 25 iff. the two last digits of x are different from $00,25,50$ and 75.

If we apply the tests whether an arbitrarily chosen number $x \in[2, c]$ is an element of $X_{2} \cup X_{3} \cup X_{5}$ we observe that $x \in X_{2} \cup X_{3} \cup X_{5}$ in more than 50% of all cases (if c is chosen sufficiently large). Evidently, if $x \in X_{2} \cup X_{3} \cup X_{5}$ then this implies that $x \in X_{\text {irrat_roots }}$. Thus, we can conclude that the combined test - based on X_{2}, X_{3} and X_{5} - namely " $x \in X_{2} \cup X_{3} \cup X_{5}$?" for $x \in[2, c]_{\mathrm{N}}$ allows us to determine more than 50% of the elements being part of $X_{\text {irrat_roots }}[2, c]$, which is a pleasingly high percentage, in particular, if we take into account that all tests applied are extremely simple ones.

3. Improving Tests Regarding Irrational \boldsymbol{n}-th Roots of Natural Numbers \boldsymbol{x} if Additional Prime Number Knowledge is Available

If we are not sufficiently satisfied with the result of Section 2 already allowing us to determine more than 50% of the elements of $X_{\text {irrat_roots }}[2, c]$, we could still improve this value in a straight-forward manner, if some or even all of the prime numbers $P_{[2, c]}$ within $[2, c]_{\mathrm{N}}$ are known. The reason for this simple improvement results from the fact that in [2] it has been proven that all prime numbers are elements of $X_{\text {irrat_roots }}$. As moreover, $\left.P_{[2, ~}\right] \cap\left(X_{2} \cup X_{3} \cup X_{5}\right)=\{2,3,5\}$, if $c \geq 5$, we observe that the elements of $X_{\text {irrat_roots }}[2, c]$, determined by the tests suggested in Section 2, are extended by nearly all the prime numbers being part of $P_{[2, c]}$. We will exemplify this in the next section in which we choose the interval [2,100] by way of example.

Prime numbers can be determined in a relatively efficient manner, e.g., by using extended versions of the Agrawal-Kayal-Saxena algorithm for primality testing (AKS algorithm for short) [5], [6].
4. Example: Determination of Irrational n-th Roots of Natural Numbers $x, x, \in[2,100]$

Let us now illustrate which $x \in X_{\text {irrat_roots }}[2,100]$ we are able to determine if we combine the tests suggested in Section 2 and in Section 3. The following elements of $X_{\text {irrat_roots }}[2,100]$ are determined by X_{2} within $[2,100]_{\mathrm{N}}$:

Result of $X_{2}: 2,6,10,14,18,22,26,30,34,38,42,46,50,54,58,62$, $66,70,74,78,82,86,90,94,98$.

The set of candidates produced by X_{2} are complemented by candidates produced by X_{3} (those ones being different from X_{2} candidates):

- Additional candidates resulting from $X_{3}: 3,12,15,21,24,33,39$, 48, 51, 57, 60, 69, 75, 84, 87, 93, 96.
- Additional candidates resulting from X_{5} (being different from X_{2} and X_{3} candidates): $5,20,35,40,45,55,65,80,85,95$.

The number of all (different) candidates produced by X_{2}, X_{3} and X_{5} is $25+17+10=52$.

The following prime numbers are part of $[2,100]_{\mathrm{N}}$:
$2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79$, 83, 89, 97.

As the prime numbers $2,3,5$ are already part of $X_{2} \cup X_{3} \cup X_{5}$ we obtain 22 prime numbers which extend the elements of $X_{\text {irrat_roots }}[2,100]$ having already been determined by the tests related to X_{2}, X_{3} and X_{5}. So, in total, the tests suggested in Section 2 and Section 3 allow one to determine $52+22=74$ different elements of $X_{\text {irrat_roots }}[2,100]$.

To determine the cardinality of $X_{\text {irrat_roots }}[2,100]$ we consider the set $X_{\text {rat_roots }}[2,100]=\{4,8,9,16,25,27,32,36,49,64,81,100\}$.

Therefore, $\left|X_{\text {irrat_roots }}[2,100]\right|=99-\left|X_{\text {rat_roots }}[2,100]\right|=99-12=87$. (Here, $|S|$ denotes the cardinality of set S).

To summarize, we see that the tests determined $52 / 87 \approx 60 \%$ of all elements of $X_{\text {irrat_roots }}[2,100]$, and this success probability can be improved to $74 / 87 \approx 85 \%$ if the prime numbers within [2, 100] are taken into account, in addition.

5. Summary and Outlook

The primary aim of this paper was to recognize whether, for a natural number $x: \sqrt[n]{x} \notin \mathbf{Q} \forall n \in \mathbf{N}_{\geq 2}$, i.e., $x \in X_{\text {irrat_roots }}$, and taking this decision only by means of looking at the basic properties of x (in particular, at the value of the last two digits and the sum of the digits of x). Very pleasingly, we are able to decide correctly in more than 50% of all cases whether a natural number x, chosen arbitrarily, is an element of $X_{\text {irrat_roots }}$. So, even without the knowledge of the prime factorization of x, extremely simple tests are available which allow us - for the majority of natural numbers - to determine correctly whether $x \in X_{\text {irrat_roots }}$. In addition to the possibilities resulting from the tests suggested in Section 2, the success probability in recognizing the elements of $X_{\text {irrat_roots }}$ in the interval [2, c] can be increased even more if knowledge about the prime numbers is available (e.g., those ones being part of the interval $[2, c])$.

To the best of our knowledge, the tests presented by us are the simplest and most elementary ones published up to now to determine natural numbers the n-th roots of which are irrational numbers $\forall n \in \mathbf{N}_{\geq 2}$.

The reason why it has been unnecessary in this paper to discuss the question "for which $x \in \mathbf{R}^{+} \backslash \mathbf{Q}: \sqrt[n]{x} \notin \mathbf{Q} \forall n \in \mathbf{N}_{\geq 2}$?" results from the fact that: $x \in X_{\text {irrat_roots }}, \forall x \in \mathbf{R}^{+} \backslash \mathbf{Q}$, as it has been proven in [2].

References

[1] B. Wardhaug, Encounters with Euclid, How an Ancient Greek Geometry Text Shaped the World, Princeton University Press, 2021.
[2] B. E. Wolfinger, Simple criteria for $\sqrt[n]{x}(n \in \mathbf{N}, n \geq 2, x \in \mathbf{R})$ being a rational or an irrational number, Journal of Advances in Mathematics and Computer Science 38(9) (2023), 23-30.

DOI: https://doi.org/10.9734/jamcs/2023/v38i91801
[3] B. E. Wolfinger, Simple tests for n-th roots of natural numbers being natural numbers and elementary methods to determine their values, Journal of Advances in Mathematics and Computer Science 39(1) (2024), 29-35.

DOI: https://doi.org/10.9734/jamcs/2024/v39i11860
[4] C. Pomerance, Analysis and comparison of some integer factorization algorithms, in: Discrete Algorithms and Complexity (Editors D. S. Johnson, T. Nishizeki, A. Nozaki and H. S. Wilf), Academic Press (1987), 119-143.
[5] D. M. Bressoud, Factorization and Primality Testing, Springer-Verlag, 1989.
[6] M. Dietzfelbinger, Primality Testing in Polynomial time: From Randomized Algorithms to "PRIMES is in P", Lecture Notes in Computer Science, Volume 3000, Springer-Verlag, 2004.

