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Abstract 

This paper presents a MATLAB simulation to demonstrate the violation of the 
Bell’s inequality in quantum entanglement. While the principle has always 
passed the test of time in laboratories, it may be intuitively useful if we 
demonstrate the case through a MATLAB simulation. 

1. Introduction: The Bell’s Inequality Theorem 

Bell’s inequality theorem ([1]) asserts that, given three sets A, B and 
C, the number of elements in the set A less than its intersection with the 
set B plus the number of elements in the set B less than its intersection 
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with the set C is more than or equal to the number of elements in the set 
A less than its intersection with the set C.  

( ) ( ) ( ).\\\ CANCBNBAN =>+  

As an example, following diagram illustrates the Bell’s inequality: 

 

( )AN  = 10 + 6 + 4 + 8 = 28,  

( )BN  = 15 + 6 + 4 + 7 = 32, 

( )CN  = 12 + 8 + 4 + 7 = 31,  

( )BAN \  = 10 + 8 = 18,  

( )CBN \  = 6 + 15 = 21,  

( )CAN \  = 10 + 6 = 16,  

( ) ( ) ( ),\\\ CANCBNBAN =>+   

18 + 21 > = 16. 

A visual inspection of any such Venn diagram provides sufficient 
proof of the Bell’s inequality. Though the theorem seems to be 
mathematically elementary, it is however an important theorem with 
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profound implication in quantum theory that merits a more formal proof. 
Giving a formal proof of the important Bell's inequality theorem provides 
a more rigorous explanation of the theorem. 

2. A Set Theoretic Proof of the Bell’s Inequality Theorem 

Suppose we have three sets of events A, B and C. We have to prove 
that the number of times that event A occurs less than the number of 
times that events A and B occur together, plus the number of times that 
event B occurs less than the number of times that events B and C occur 
together is more than or equal to the number of times that event A occurs 
less than the number of times that events A and C occur together. In set 
notation, we have to prove the following: 

( ) ( ) ( ).\\\ CANCBNBAN =>+  

We proceed algorithmically as below.  

Step 1: We know the following equalities are true:  

( ) ( ) ( ) ( ) ( ).\ ABNANBANANBAN ∩∩ −=−=  

( ) ( ) ( ) ( ) ( ),\ BCNBNCBNBNCBN ∩∩ −=−=  

( ) ( ) ( ) ( ) ( ).\ ACNANCANANCAN ∩∩ −=−=  

Step 2: Following is also true.  

( ) ( ) ( ) ( ).CBANCBNABNBN ∩∩∩∩ −+=>  

Step 3: Following is also true.  

( ) ( ).CABNCAN ∩∩∩ =>  

Step 4: We can replace ( )CABN ∩∩  with ( )CAN ∩  in the Step 2 

inequality.  

Since ( )CAN ∩  has a bigger or an equal magnitude than 

( )CABN ∩∩  the inequality remains unchanged. Hence:  
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( ) ( ) ( ) ( ).CANCBNABNBN ∩∩∩ −+=>  

Step 5: ( )AN  is added to both sides of the inequality. The inequality 

remains unchanged.  

( ) ( ) ( ) ( ) ( ) ( ).CANCBNABNANBNAN ∩∩∩ −++=>+  

Step 6: The terms ( )ABN ∩  and ( )CBN ∩  are moved to the left 

side of the inequality.  

( ) ( ) ( ) ( ) ( ) ( ).CANANCBNBNABNAN ∩∩∩ −=>−+−  

Step 7: Using the equality equations in Step1 the above inequality is 
modified to the following inequality:  

( ) ( ) ( ).\\\ CANCBNBAN =>+  

Or in probability terms:  

( ) ( ) ( ).\\\ CAPCBPBAP =>+  

The Bell's inequality is hence proved.  

Above indicates that this inequality holds no matter how the 
numbers are assigned in the Venn diagram. However, there is an 
underlying assumption in deploying the Venn diagram, that the relation 
of events A, B and C is local and static. If the relation of the events is not 
local, as in quantum entanglement, one may not be able to depict the 
numbers pertaining to the events and their intersections in the Venn 
diagram to start with, and the Bell's inequality may be violated.  

Bell suggested that violation of this inequality in quantum 
entanglement disputes the presence of hidden variable sand locality and 
hence validates the spooky action at distance as contested by Einstein 
([2]), a suggestion that was proved after he sadly passed away. 
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3. Entanglement and Bell’s Inequality 

Suppose a steam of paired particles, with opposite spins is generated 
at a point. At each generation of paired particles, one particle is sent to 
Alice and the paired one to Bob, far away. Alice measures the spin of 
each particle she receives, in one of the three directions A1, A2 or A3 
randomly with equal probability, with a 120 degrees angle between each 
two directions. Bob, subsequently, after receipt of his particles, measure 
their spin randomly again with equal probability in one of the three 
directions B1, B2 or B3, all having orientations as A1, A2 or A3.  

Let ( )AiP  mean the probability of the direction Ai being observed by 

Alice, i = 1 to 3, ( )BkP  the probability of direction k being observed by 

Bob, 1=k  to 3, and ( )BkAiP ,  the probability of the directions i being 

observed by Alice and k being observed simultaneously by Bob.  

We have the following.  

( ) ,31=AiP  

( ) ,31=BkP  

( ) ( ) .913131, == ∗BkAiP  

Let ( )AiUP  means the probability of the spin observed by Alice on 

the direction Ai be “up” and ( )AiDP  means the probability of the spin 

observed by Alice on the direction Ai be “down”. Let also ( )BkUP  means 

the probability of the spin observed by Bob on the direction Bk be “up” 
and ( )BkDP  means the probability of the spin observed by Bob on the 

direction Bk be “down”.  

( ) ( ) ,1=+ AiDPAiUP  

( ) ( ) .1=+ BkDPBkUP  

We can envisage two scenarios.  
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Scenario 1: No spooky action at a distance. Presence of locality and 
hidden variables.  

Any particle generated is determined to fall under any one of the 
following types. (Adopted from the Brian Greene’s ([3]) YouTube program 
“Your Daily Equation #21)  

 [ ( ) ,1AUP  ( ) ,2AUP  ( )]3AUP   [ ( ) ,1BDP  ( ) ,2BDP  ( )]3BDP  

Type 1: [1 1 1]  [1 1 1] 

Type 2: [1 0 0]  [1 0 0] 

Type 3: [1 1 0]  [1 1 0] 

Type 4: [0 1 1]  [0 1 1] 

Type 5: [0 0 1]  [0 0 1] 

Type 6: [0 1 0]  [0 1 0] 

Type 7: [1 0 1]  [1 0 1] 

Type 8: [0 0 0]  [0 0 0] 

Since Alice and Bob choose any of the three directions to measure the 
particles randomly, the number of cases on average where the pairs of 
particles measured by Alice and Bob have opposite or same orientations 
would be as follows:  

Type 1: Opposite orientation 9, Same orientation 0, 

Type 2: Opposite orientation 5, Same orientation 4, 

Type 3: Opposite orientation 5, Same orientation 4, 

Type 4: Opposite orientation 5, Same orientation 4, 

Type 5: Opposite orientation 5, Same orientation 4, 

Type 6: Opposite orientation 5, Same orientation 4, 

Type 7: Opposite orientation 5, Same orientation 4, 

Type 8: Opposite orientation 9, Same orientation 0. 
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Putting the Type 1 and Type 8 particles where all cases are of opposite 
orientation aside, we can see that at least 5 out of 9 cases are of opposite 
orientations. If the stream of particles generated and observed are very 
large we may safely assume that at least in 5/9 of cases the particles 
measured by Alice and Bob have opposite orientation.  

To see if the Bell’s inequality is prevailing here, let’s define the 
following sets of events for Alice. We could do the same for Bob.  

E1: The set of types were the A1 orientation is U.  

E2: The set of types were the A2 orientation is U.  

E3: The set of types were the A3 orientation is U.  

In case we have one of each segment we can construct the following Venn 
diagram: 

 

We can see that the Bell’s inequality prevails here.  

N(E1\E2) + N(E2\E3) > = N(E1\E3), 

N(E1) = 4, 

N(E2) = 4, 

N(E3) = 4, 

N(E1\E2) = 2, 
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N(E2\E3) = 2, 

N(E1\E3) = 2, 

2 + 2 > = 2. 

We can construct similar Venn diagram for any number of each type that 
we may have. Only the entries in the Venn diagram will change. The 
Bell’s inequality would again prevail.  

It consequently follows that if the number of cases, measured by Alice 
and Bob, having opposite orientations falls below the 5/9 fraction, the 
Bell’s inequality is violated, indicating the non-locality of the 
entanglement phenomena.  

Scenario 2: Spooky action at a distance. Non-locality.  

Alice randomly selects a direction to measure each particle she 
receives at her location with probability ( ) .31=AiP  Bob also randomly 

selects a direction to measure the particle he receives at his location with 
probability ( ) .31=BkP  There would be two cases.  

If the directions randomly selected by Alice and Bob happens to be 
the same, the orientation of the particles they measure would be 
opposite. Otherwise, because of the quantum entanglement effect, it 
would be a function of the angle between the directions they have chosen, 
i.e., 120 degrees, with the probability being equal to (Cos 120 deg)^2 = 
(1/2)^2 = 1/4.  

Case 1: Alica and Bob happen to randomly select same measurement 
direction. ( ) .93== kiP   

[( )AiUP  and ( )] .1=BkD  

Case 2: Alica and Bob happen to randomly select different 
measurement directions. P(i ≠ k) = 6/9.  

[( )AiUP  and ( )] =BkD  (cos 120 deg)^2 = 1/4. 
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Hence in total:  

[( )AiUP and ( )] ( ) ( ) .214196193 =⋅+⋅=BkD  

Comparing the two scenarios, we can conclude that if the assumption of 
locality and the presence of hidden variables is valid we shall experience 
opposite orientations of spins measured by Alice and Bob in at least 5/9 of 
the cases. On the other hand, if the assumption of locality and the 
presence of hidden variables is not valid this ratio will be less than 5/9, 
i.e., 1/2 on average. This will refute the assumption of locality and the 
presence of hidden variables and proves the non-locality of quantum 
entanglement, which has been indeed frequently ratified in laboratory 
experiments. Following MATLAB simulation was carried out to illustrate 
the phenomena.  

3. MATLAB Simulation 

Scenario 1: locality and presence of hidden variables  

Number of particle pairs generated and observed by Alice and Bob: 
1000,000.  

( ) ( ) .31,31 == BkPAiP  

A measurement is counted as one success whenever the orientations of 
the particles observed by Alice and Bob were of opposite orientations. 
Measurements follow one of the eight types discussed above. Only 
particle types 2 to 7 results are counted in the simulation. Hence P(type) 
= 1/6. Measurements by Alice and Bob would have been certainly 
opposite and always counted as success when observing Types 1 and 8. 
Hence the total success count of types 2 to 7 can be taken as the 
minimum success count figure.  
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MATLAB simulation success results 

N(a1b1) = 110815  

N(a1b2) = 37313  

N(a1b3) = 36880  

N(a2b1) = 37136  

N(a2b2) = 111335  

N(a2b3) = 36944  

N(a3b1) = 36682  

N(a3b2) = 37109  

N(a3b3) = 111407  

Total success number = 555621.  

Scenario 2: Non-locality  

Number of particle pairs generated and observed by Alice and Bob: 
1000,000  

( ) ( ) .31,31 == BkPAiP  

A measurement is counted as one success whenever the orientations of 
the particles observed by Alice and Bob were of opposite orientation.  

MATLAB simulation success results 

N(a1b1) = 110493  

N(a1b2) = 27588  

N(a1b3) = 27827  

N(a2b1) = 27700  

N(a2b2) = 111227  

N(a2b3) = 27395  
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N(a3b1) = 27864  

N(a3b2) = 28026  

N(a3b3) = 111461  

Total success number = 499681. 

Comparison 

Total number of successes, only counting types 2 to 7, when assuming 
locality = 555621. 

Total number of successes when assuming non-locality = 499681 < 
555621.  

Bell's inequality is hence violated proving the non-locality in 
entanglement.  

4. Conclusion 

The paper first presented a set theoretic proof of the Bell’s Inequality. 
The violation of the Bell's Inequality in quantum entanglement was then 
discussed and subsequently demonstrated through a MATLAB 
simulation. 
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Appendix 

MATLAB script for the first scenario: Locality and hidden 
variables 

%Simulating Quantum Entanglement  
%Locality and hidden variables 
%Alice and Bob randomly check observed states of particles 

in three 
%directions at their respective local positions 
a1b1=0; 
a1b2=0;  
a1b3=0;  
a2b1=0;  
a2b2=0;  
a2b3=0;  
a3b1=0; 
a3b2=0;  
a3b3=0;  
for n=1:1000000 
  t=randperm(6);  
  if t(1)==1;  
      a=randperm(3);  
    if a(1)==1;  
      b=randperm(3);  
      if b(1)==1;  
      a1b1=a1b1+1;  
      end  
    end  
    if a(1)==2;  
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      b=randperm(3);  
      if b(1)==2;  
      a2b2=a2b2+1;  
      end  
      if b(1)==3;  
      a2b3=a2b3+1;  
      end  
    end  
    if a(1)==3;  
      b=randperm(3);  
      if b(1)==2;  
      a3b2=a3b2+1;  
      end  
      if b(1)==3; 
      a3b3=a3b3+1;  
      end  
    end  
end  
if t(1)==2;  
     a=randperm(3);  
  if a(1)==1;  
     b=randperm(3);  
     if b(1)==1;  
     a1b1=a1b1+1;  
     end  
     if b(1)==2;  
     a1b2=a1b2+1;  
     end  
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  end  
  if a(1)==2;  
     b=randperm(3);  
     if b(1)==1;  
     a2b1=a2b1+1;  
     end  
     if b(1)==2;  
     a2b2=a2b2+1;  
     end  
  end  
  if a(1)==3;  
     b=randperm(3);  
     if b(1)==3;  
     a3b3=a3b3+1;  
     end  
  end  
end  
  if t(1)==3 ;  
      a=randperm(3);  
   if a(1)==1;  
      b=randperm(3);  
      if b(1)==1;  
      a1b1=a1b1+1;  
      end  
  end  
  if a(1)==2;  
     b=randperm(3);  
     if b(1)==2;  
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     a2b2=a2b2+1;  
     end  
     if b(1)==3;  
     a2b3=a2b3+1;  
     end  
  end  
  if a(1)==3;  
     b=randperm(3);  
     if b(1)==2;  
     a3b2=a3b2+1;  
     end  
     if b(1)==3;  
     a3b3=a3b3+1;  
     end  
  end  
end  
  if t(1)==4;  
      a=randperm(3);  
   if a(1)==1;  
      b=randperm(3);  
      if b(1)==1;  
      a1b1=a1b1+1;  
      end 
      if b(1)==2;  
      a1b2=a1b2+1;  
      end  
  end  
  if a(1)==2;  
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      b=randperm(3);  
      if b(1)==1;  
      a2b1=a2b1+1;  
      end  
      if b(1)==2;  
      a2b2=a2b2+1;  
      end  
  end  
  if a(1)==3;  
      b=randperm(3);  
      if b(1)==3;  
      a3b3=a3b3+1;  
      end  
   end  
end  
  if t(1)==5;  
      a=randperm(3);  
   if a(1)==1;  
      b=randperm(3);  
      if b(1)==1;  
      a1b1=a1b1+1;  
      end  
      if b(1)==3;  
      a1b3=a1b3+1;  
      end  
  end  
  if a(1)==2;  
      b=randperm(3);  
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      if b(1)==2;  
      a2b2=a2b2+1;  
      end  
  end  
  if a(1)==3;  
      b=randperm(3);  
      if b(1)==1;  
      a3b1=a3b1+1;  
      end  
      if b(1)==3;  
      a3b3=a3b3+1;  
      end  
  end  

end  
  if t(1)==6 

     a=randperm(3); 
  if a(1)==1;  
     b=randperm(3);  
     if b(1)==1;  
     a1b1=a1b1+1;  
     end  
     if b(1)==3;  
     a1b3=a1b3+1;  
     end  
 end  
 if a(1)==2;  
    b=randperm(3);  
    if b(1)==2;  
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    a2b2=a2b2+1;  
    end  
 end  
 if a(1)==3;  
    b=randperm(3);  
    if b(1)==1;  
    a3b1=a3b1+1;  
    end  
    if b(1)==3;  
    a3b3=a3b3+1;  
    end  
  end  
end  
end  
Sucsess= a1b1+a1b2+a1b3+a2b1+a2b2+a2b3+a3b1+a3b2+a3b3 
a1b1  
a1b2  
a1b3  
a2b1  
a2b2  
a2b3  
a3b1  
a3b2  
a3b3  
Sucsess  
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MATLAB script for the second scenario: Non-locality  

%Simulating Quantum Entanglement  
%Non-locality  
%Alice and Bob randomly check observed states of particles 

in three  
%directions at their respective local positions  
a1b1=0;  
a1b2=0;  
a1b3=0;  
a2b1=0;  
a2b2=0;  
a2b3=0;  
a3b1=0;  
a3b2=0;  
a3b3=0;  
for n=1:1000000  
    a=randperm(3);  
 if a(1)==1;  
    b=randperm(3);  
    if b(1)==1;  
    a1b1=a1b1+1;  
    end  
  if b(1)==2;  
  p=randperm(4);  
   if p(1)==1;  
    a1b2=a1b2+1;  
   end  
 end  
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if b(1)==3;  
  p= randperm(4);  
   if p(1)==1;  
    a1b3=a1b3+1;  
   end  
  end  
end  

if a(1)==2;  
b=randperm(3);  
if b(1)==2;  
a2b2=a2b2+1;  
end  
if b(1)==1;  
  p= randperm(4);  
  if p(1)==1;  
  a2b1=a2b1+1;  
  end  
end  
if b(1)==3;  
  p= randperm(4);  
  if p(1)==1;  
  a2b3=a2b3+1;  
  end  
end  

 end  
if a(1)==3;  

b=randperm(3);  
if b(1)==3;  
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a3b3=a3b3+1;  
end  
if b(1)==1;  
  p= randperm(4);  
  if p(1)==1;  
   a3b1=a3b1+1;  
  end  
end  
if b(1)==2;  
  p= randperm(4);  
   if p(1)==1;  
    a3b2=a3b2+1;  
   end  
 end  
end  

end  
Sucsess= a1b1+a1b2+a1b3+a2b1+a2b2+a2b3+a3b1+a3b2+a3b3 
a1b1  
a1b2  
a1b3  
a2b1  
a2b2  
a2b3  
a3b1  
a3b2  
a3b3  
Sucsess 


