Journal of Algebra, Number Theory: Advances and Applications Volume 25, Number 2, 2023, Pages 47-51 Available at http://scientificadvances.co.in DOI: http://dx.doi.org/10.18642/jantaa_7100122284

CORRIGENDUM TO: ZERO DIVISOR GRAPH OF A LATTICE WITH RESPECT TO AN IDEAL

MONA TAREK, M. A. SEOUD and AHMED GABER

Department of Mathematics Faculty of Science Ain Shams University Cairo Egypt e-mail: Mona.Saad@sci.asu.edu.eg m.a.seoud@hotmail.com a.gaber@sci.asu.edu.eg

Abstract

In this paper, we point out several errors in Afkhami et al. [1]. Moreover, we reform many proofs in Afkhami's article.

1. Introduction

Among the results that Afkhami et al. show in [1], we state the following. For a lattice \mathfrak{L} , $\Gamma(\mathfrak{L})$ is defined to be the graph associates the following set of vertices:

 $\{\alpha \in \mathfrak{L}; \alpha \land \beta = 0 \text{ for some non-zero element } \beta \in \mathfrak{L}\}.$

The vertices α and β are adjacent provided that $\alpha \wedge \beta = 0$.

@ 2023 Scientific Advances Publishers

²⁰²⁰ Mathematics Subject Classification: 05C25, 06B99.

Keywords and phrases: bounded distributive lattice, ideal, graph, zero divisor graph. Received June 30, 2023; August 31, 2023

Throughout the paper, the symbol \mathfrak{L} stands for a lattice. Also, we denote the set of all ideals in \mathfrak{L} as $\mathfrak{I}(\mathfrak{L})$.

Definition 1.1 ([1], Definition 3.1). Let $\kappa \in \mathfrak{I}(\mathfrak{L})$. Define the zero divisor graph of \mathfrak{L} with respect to κ denoted by $\Gamma_{\kappa}(\mathfrak{L})$, as follows:

 $\{\alpha \in \mathfrak{L} \setminus \kappa; \alpha \land \beta \in \kappa \text{ for some non-zero element } \beta \in \mathfrak{L} \setminus \kappa\}.$

For distinct $\alpha, \beta \in \mathfrak{L}$. The vertices α and β are adjacent providing that $\alpha \land \beta \in \kappa$.

Afkhami et al. claim that if $\kappa = \{0\}$. Then $\Gamma_{\kappa}(\mathfrak{L})$ is isomorphic to $\Gamma(\mathfrak{L})$. Regard the next example:

Example 1.2. Consider \mathfrak{L} with the Hasse diagram in Figure 1 and $\kappa = \{0\}$. Then $(\mathfrak{L}, {}^{\vee}, {}^{\wedge})$ is a bounded lattice. Obviously, the set of vertices of $\Gamma(\mathfrak{L})$ is $\{0, \alpha, \delta, \epsilon, \eta\}$ as $0 \wedge \beta = \alpha \wedge \delta = \alpha \wedge \eta = \epsilon \wedge \delta = \epsilon \wedge \eta = 0$. Also, $V(\Gamma_{\kappa}(\mathfrak{L})) = \{\alpha, \delta, \epsilon, \eta\}$. Then $|V(\Gamma(\mathfrak{L}))| = 5 \neq |V(\Gamma_{\kappa}(\mathfrak{L}))| = 4$. Hence $\Gamma_{\kappa}(\mathfrak{L})$ is not isomorphic to $\Gamma(\mathfrak{L})$.

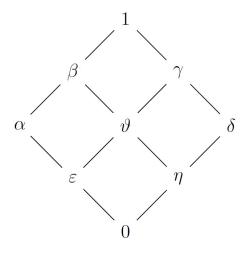


Figure 1.

Afkhami presents the following results:

CORRIGENDUM TO: ZERO DIVISOR GRAPH OF A LATTICE ... 49

Proposition 1.3 ([1], Proposition 3.2). Let $\kappa \in \mathfrak{I}(\mathfrak{L})$, $\Gamma_{\kappa}(\mathfrak{L})$ is connected with a diameter less than or equal to 3. Moreover, the girth of $\Gamma_{\kappa}(\mathfrak{L})$ is less than 7 provided that $\Gamma_{\kappa}(\mathfrak{L})$ has a cycle.

For $\kappa \in \mathfrak{I}(\mathfrak{L})$ and $\alpha \in \mathfrak{L}$. We set

$$(\kappa:\alpha) = \{\delta \in \mathfrak{L} : \delta \land \alpha \in \kappa\}.$$

Obviously, we have that $(\kappa : \alpha) \in \mathfrak{I}(\mathfrak{L})$ only if \mathfrak{L} has the distributive property.

Lemma 1.4 ([1], Lemma 3.3). For $\kappa \in \mathfrak{I}(\mathfrak{L})$ with a distributive \mathfrak{L} . Let $x - \alpha - y$ is a path in $\Gamma_{\kappa}(\mathfrak{L})$. Hence either $\kappa \cup \{\alpha\} \in \mathfrak{I}(\mathfrak{L})$, or $x - \alpha - y$ is part of a cycle of length does not exceed 4.

In ([1], Theorem 3.4), Afkhami constructs the proof by cases. In fact, case (4) is impossible to happen and an extra condition $(|V(\Gamma_{\kappa}(\mathfrak{L}))| \ge 3)$ is used as a necessary condition. In Theorem 1.5, we present Theorem 3.4 in [1] without this condition and a reformulation of the proof.

Theorem 1.5 ([1], Theorem 3.4). Consider a distributive \mathfrak{L} , let $\kappa \in \mathfrak{I}(\mathfrak{L})$. If $\Gamma_{\kappa}(\mathfrak{L})$ contains a cycle, hence the core K of $\Gamma_{\kappa}(\mathfrak{L})$ is a union of 3-cycles or 4-cycles. Furthermore, each element in $\Gamma_{\kappa}(\mathfrak{L})$ is a member of K or a vertex of degree 1.

Proof. Suppose that x is a member of K and x is not a member of any 3-cycles or 4-cycles contained in $\Gamma_{\kappa}(\mathfrak{L})$. Let x be in a cycle $x - y - z - w - \ldots - \alpha - x$ whose length exceeds 4. In the virtue of Lemma 1.4, $\kappa \cup \{x\} \in \mathfrak{I}(\mathfrak{L})$. Obviously $x \wedge w \in \kappa \cup \{x\}$ and $x \wedge w \notin \kappa$ as x and w are not adjacent, then $x \wedge w = x$. Similarly, $x \wedge z = x$. Thus $x \wedge (w \wedge z) = x \in \kappa$. Which is a contradiction. Moreover, we have that $|V(\Gamma_{\kappa}(\mathfrak{L}))| \geq 3$ as $\Gamma_{\kappa}(\mathfrak{L})$ contains a cycle. Let α be an element in $V(\Gamma_{\kappa}(\mathfrak{L}))$ such that x does not belong to K nor a vertex of degree 1.

MONA TAREK et al.

Suppose that α is of degree *n* for a natural number *n*. Hence α is adjacent to *n* distinct vertices *x*, *y*, ϵ , *f*, Since $\Gamma_{\kappa}(\mathfrak{L})$ contains a cycle and by Proposition 1.3, $\Gamma_{\kappa}(\mathfrak{L})$ is connected. Thus the path $x - \alpha - y - z - w - y$ is in $\Gamma_{\kappa}(\mathfrak{L})$. By Lemma 1.4, $\kappa \cup \{\alpha\} \in \mathfrak{I}(\mathfrak{L})$ and by using a similar manner we get that $(z \wedge w) \wedge \alpha = \alpha \in \kappa$. Which is a contradiction. \Box

Afkhami mentions in the proof of the previous theorem that the case (4): the path $x - \alpha - \beta - y$ is in $\Gamma_{\kappa}(\mathfrak{L})$, with x is of degree 1 and y in the core. Afkhami et al. said that case (4) can be reduced to the case (3): the path $x - \alpha - \beta$ is in $\Gamma_{\kappa}(\mathfrak{L})$, with x is of degree 1 and $\beta \in K$. This is not true. In fact, case (4) is impossible. Assume case (4), by the first part of Theorem 1.5, y at least in a cycle of length 3. Then $x - \alpha - \beta - y - w - e - y$. Hence the length between α and w is more than 3. Which contradicts Proposition 1.3. Afkhami also presents the previous theorem with a trivial condition $|V(\Gamma_{\kappa}(\mathfrak{L}))| \ge 3$. Indeed, this condition follows directly from the condition that $\Gamma_{\kappa}(\mathfrak{L})$ contains a cycle. (As the smallest cycle is the 3-cycle, then we have at least 3 vertices in $V(\Gamma_{\kappa}(\mathfrak{L}))$).

For every $x \in \mathcal{L}$, the symbol $[x]^{u}$ is defined to be the set $\{\alpha \in \mathcal{L}; x \leq \alpha\}.$

Proposition 1.6 ([1], Proposition 3.6). Let \mathfrak{L} be distributive and $\kappa \in \mathfrak{I}(\mathfrak{L})$. If $\bigcap_{k \in \kappa} [k]^{\mu} = \{1\}$, hence $\Gamma_{\kappa}(\mathfrak{L})$ contains no cut points.

Afkhami constructs an example ([1], Example 3.7) to show that the distributivity of \mathfrak{L} is a necessity in the previous proposition. Unfortunately, his example does not satisfy the condition $\bigcap_{k \in \mathfrak{K}} [k]^{\mu} = \{1\}.$

CORRIGENDUM TO: ZERO DIVISOR GRAPH OF A LATTICE ... 51

Example 1.7 ([1], Example 3.7). Consider $\kappa = \{\phi, \{4\}, \{4, 5\}, \{4, 5, 6\}, ...\}$. Consider $\mathfrak{L} = \kappa \cup \{\{3\}, \phi, \{1\}, \mathbb{N}, \{1, 2\}\}$. We have that \mathfrak{L} is a nondistributive lattice under inclusion with $\phi = 0$ and $\mathbb{N} = 1$. However, $\bigcap_{k \in \kappa} [k]^u = \{\mathbb{N} - \{1, 2, 3\}, \mathbb{N}\}.$

Moreover, we can show the necessity of \mathfrak{L} to be distributive in Proposition 1.6 by the following example. Take the lattice \mathfrak{L} stated in Example 1.7. Consider the ideal $J = \{\phi, \{1\}, \{3\}\}$ of \mathfrak{L} . Obviously, \mathfrak{L} is not distributive and $\bigcap_{j \in J} [j]^{\mu} = \{\mathbb{N}\}$. However, the vertex $\{1, 2\}$ is a cut point of $\Gamma_J(\mathfrak{L})$.

References

 M. Afkhami, K. Khashyarmanes and K. Nafar, Zero divisor graph of a lattice with respect to an ideal, Beiträge zur Algebra und Geometrie 56(1) (2015), 217-225.

DOI: https://doi.org/10.1007/s13366-013-0172-4