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Abstract

In this work, we present the study of the regularity of the solutions of the
abstract system (1) that includes the Euler-Bernoulli (o = 0) and Kirchhoff-

Love (w > 0) thermoelastic plates, we consider for both fractional couplings

given by A®0 and A°y;, where A is a strictly positive and self-adjoint linear
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operator and the parameter o € [0, %]. Our research stems from the work of

[1], [4], and [8]. Our contribution was to directly determine the Gevrey sharp

classes: for ® = 0, sg7 > 201_ T and sgg > o when o € (%, 1) and o € (1, %)

respectively. And s, > for case ® > 0 when o € (1, %). This work

_1
4(c-1)
also contains direct proofs of the analyticity of the corresponding semigroups

™. In the case =0 the analyticity of the semigroup 0 occurs when

c=1 and for the case ® >0 the semigroup etho g analytic for the

parameter ¢ € [5/4, 3/2]. The abstract system is given by:

{utt + 0Auy + A%u— A9 =0, o

0; + A0 + A%y =0,

where ® > 0.
1. Introduction

Let (H, (), |-]|) be a complex Hilbert space, and let A self-adjoint,

positive definite (unbounded) operator on the complex Hilbert space H,
A:D(A)cH-> H

The operator A" is positive seft-adjoint for r € R, bounded for r < 0,

and the embedding
D(AN) - D(A®),
is continuous for r; > ry. For fixed

3

3 and o > 0. 2)

c <

We consider the following abstract system hyperbolic and parabolic
equation:
3)
et + Ae + Ao-ut = 0.

Observe that no restriction ¢ > 0 1s assumed.
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The properties of the asymptotic behaviour and regularity of the

A

semigroup S, (¢) = e* associated with the abstract system (3), have

been extensively studied in recent years. Specifically speaking, in the
work [1] they studied the abstract system that includes the thermo-elastic

Euler Bernoulli plates (o = 0) with fractional coupling given by A°0 and

A°u, and the parameter o € [0, 1], the authors using the semigroup

technique show that the system 1is exponentially stable if only if

1

3 < o £ 1, analyticity is also proved if only if ¢ =1 and they prove that

1 In

the semigroup is polynomially stable when 0 < ¢ < % with rate ¢~
the work [4], they study the system (3) considering the parameter
c < [0, g], for the case @ = 0 they show that Sy(t) decays polynomially

1
to zero as t 1720 and this rate is optimal. They also prove using the

energy method that the system is exponentially stable when % <o <1
For the case ® > 0, the authors show that the corresponding semigroup
S, (t) is exponentially stable if only if % > o > 1. Also, since % <o<1

1
determine the optimal polynomial decay rate (¢t 4-49).

In 2019 and 2021, two more complete papers emerged [21, 8]. The
first is dedicated to the study of the asymptotic behaviour of two
thermoelastic plate systems, the first modelled with Fourier's law, as is
the case of the system (3), and the second model with Cattaneo’s law. The

model thermoelastic plates with inertial rotation term given by:
puy + 0A%uy +nAu — mA®0 = 0,
0, + mA“y, +rAPo = 0,

u(0) = u(0), 1(0) = vy, 6(0) = 6o,
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where A is a self-adjoint, positive definite operator on a complex Hilbert
space H, o, p,n, k > 0, m # 0, (o, B) € [0, 1] x [0, 1] and 7y € (0, 1]. The
stability analysis of the model with Fourier's law is done by applying
semigroup techniques, the authors determine regions based on the 3

parameters y, a, B to study, the exponential decay and polynomial decay
with optimal rate. In the second paper of 2021, Kuang et al. [8] assume

that

(@8, < = 0. 2210 (o, 1)

this work is dedicated to regularity of the semigroup S, () for o > 0.
The case ® = 0 is equivalent y = 0. In this work, the authors divide the

region E into 3 parts where the associated semigroups are analytic, of
Gevrey classes of a specific order, and non-smoothing, respectively.
Furthermore, detailed spectral analysis shows that the Gevrey-class
orders are sharp under the right conditions. They also show that the
orders of polynomial stability obtained in [21] are optimal. In all their
proofs the authors use contradictory arguments. Our two models studied

here are part of the family of models given in [8], that of the Euler
Bernoulli thermoelastic plate, it is the case of (a, B, y) = (%, %, 0) and

that of the Kirchhoff-Love thermoelastic plate, is the case
(a, B, y) = (%, %, %). The proofs presented in this research are direct
and more friendly for readers to understand the technique used here.

Several researchers year after year have devoted their attention to
the study of the asymptotic behaviour and the regularity of the solutions
of the thermoelastic system of plates. Regarding the analyticity of the
semigroup for the Euler-Bernoulli model, one of the first results was
established by Liu and Renardy [15] in the case of bounded and
articulated boundary conditions. Subsequently, Liu and Liu, [14], and
Lasiecka and Triggiani [9, 10, 11, 12] demonstrated other analyticity
results under various boundary conditions. More research in this
direction can be found at [6, 20, 23].
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In more recent research from 2020 Tebou et al. [7] studied

thermoelastic plates considering the fractional rotational inertial force
(y(-= A)"uy) for the parameter 7 e [0,1]. In Q, limited open subset of

R™, n > 1, with smooth enough boundary In this research, the authors

prove that the semigroup associated with the system is the Gevrey class s

for each s > for both: the Hinged plate/Dirichlet temperature

2-71
2 -4t
boundary conditions and Clamped plate/Dirichlet temperature boundary

conditions when the parameter T lies in the interval (0, %), also show

that the semigroup S(¢) is exponentially stable for Hinged boundary
conditions, for T in the interval [0, 1] and finish their investigation,

constructing a counterexample, that, under hinged boundary conditions,

the semigroup is not analytic, for all T in the interval (0,1). To
determine the Gevrey class of S(¢f) using the domain method of the

frequency, the appropriate decompositions of the components of the
system, and the use of Lions’ interpolation inequalities. More recent

research in this direction can be found at [18, 21, 25].

This article is organized as follows: in Section 2, we study the well-
posedness of the system (3) through semigroup theory. We leave our main
contributions for the third section where we analyze the regularity, which
is subdivided into two subsections. Subsection 3.1 is dedicated to the

analyticity and lack of analyticity for the two cases w = 0 and ® > 0, for

® = 0 (Euler-Bernoulli thermoelastic plate) we show that the semigroup
So(t) = 0 is analytic when the parameter ¢ =1 and Sp(t) = 0 is

not analytic when the parameter o € [0,1) U (1, %]. For case @ >0

(Kirchhoff-Love thermoelastic plate), we show that the semigroup

5 3

S, () = e is analytic when the parameter o [Z, 5] and
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S, () = e is not analytic when the parameter o < [0, %). In the last

Subsection 3.2, we determine the families of Gevrey sharp classes of the

semigroup associated with the system (3), for the Euler-Bernoulli plates

(o = 0) we have the classes sp; >

261_ T when the parameter ¢ e (%, 1)
and spg > o when the parameter o € (1, %). For thermoelastic

Kirchhoff-Love plates(w > 0) we have the Gevrey class s, > ﬁ
when the parameter ¢ € (1, %). We end this paper with a remark about

the exponential decay of S(t),s¢ = eho.

In our research, we apply the frequency domain method, spectral

§] and we strongly use the

analysis of the operator (- A)° for o < [0, 3

interpolation inequality, see Theorem 4.
2. Setting of the Semigroups

For r e R, we consider the compactly nested family of Hilbert spaces
H =9(A2), (u,v), =(A%u, A%), |u] =|A%|.

For r > 0, it is understood that H™" denotes the completion of the

domain, so H™" is the dual space of H". the subscript r will be always
omitted whenever zero. With this notation for ® positive, we can extend

the operator I + ®A in the following sense:
(I +o0A): H - H,
defined by

(I + 0A)zy, 29)yg14qt = (21, 22) + co(Al/Zzl, A1/2z2>, 4)
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for z;, z9 € H', where (-, -) denotes the inner product in the Hilbert
space H. Note that this operator is an isometric operator when we
1/2

consider the equivalent norm in the space H': (||z||2 + (o||z||f ) = el -

Finally, we define the family of phase spaces

H2xHxH if o=0,
He 5)
H2xH' xH if >0,

endowed with the Hilbert product norms

2 2 2 .
o MR oo
u, v, 0 = ©)
Ho 2 2 2 )
el + "U"Hl + 6] if o> 0.

Remark 1. Throughout the paper, Cauchy-Schwartz, Young and

Poincaré inequalities will be tacitly used in several occasions.

Taking v = u, an considering U = (u(¢), v(¢), 6(¢)), we rewrite system

(3) as the ODE in H,,
U@y = AU0)
dt emnr

where the linear operator A is defined as

u v
Ayl v | =T +0A) (-A%u + A%0) |, (7
0 - A0 - A%
with domains
u veH?
D(Ag) =14|v|e Hol-u+A° 20 e H*!, =0, ®

0 —9- A1y e H?
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and
u v e H?
D(Ay)=1|lv|eHyl-u+A20c H},, ©>0. 9
0 -0-A4°1y ¢ H?

Theorem 2. The operator A, is the infinitesimal generator of a

contraction semi-group

S, (@) = etho . He = Hey»

associated with the system (3) for ® > 0 and 0 < ¢ <

No| oo

Proof. See Theorem 2.3 ([4]). O

Remark 3. The operator A, does not generate a contraction

semigroup whenever

See Remark 2.4 [4].

Theorem 4 (Interpolation). Let o < <7vy. Then there exists a
constant L = L(a, B, v) such that
-8 B-a
4Pu] < L|A“u] s -|ATuls, (10
for every u e D(AY).

Proof. See Theorem 5.34 ([5]). O

In what follows, C, C,, and Cs will denote a positive constant that

assumes different values in different places.
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3. Regularity of Thermoelastic Euler-Bernoulli
and Kirchhoff-Love Plates

This subsection will be dedicated to the study of the analyticity and
the determination of the Gevrey sharp class for ® = 0 and for ® > 0 of

thy,

the semigroup S(f) =e the study will be approached using the

frequency domain characterization of semigroup properties and spectral
theory, proofs using direct argument are prioritized.

First, for case @ = 0: Note that if A € R and F = (f, g, h) € H,,
then the solution U = (u, v, 0) e D(Ay) of the stationary system
(i — Ag)U = F can be written by

hu-v=f in HZ (11)
v+ A%u—-A°0=g in H, (12)
i+ A0+ A° =h in H, (13)
we have to
o2 = Re((it. - Ag)U, U) = Re(F, U) < |Fll, [Ul, - (14

Second, for case o >0: Now, note that if A eR and
F =(f, g, h) e H,, then the solution U = (u, v, 0) € D(A,) of the
stationary system (il — A, )U = F can be written by

iu-v=f in HZ (15)
iMI + oA+ A%y — A% = (I + 0A)g in HL, (16)
0+ A0+ A% =h in H. 17

Now, we have to

6 = Re{(% - 4,)U, U) = Re(F, U) < |[Fll, [Ulyqo (18)
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3.1. On the analyticity of S(¢) = etho

In this subsection, we study the analyticity and the lack of analyticity
and the semigroup associated with the system (3), then we present a
theorem that characterizes the analyticity via semigroup theory of the
book of Liu-Zheng [17] (Theorem 1.3.3), and also some previous results

that will be used in this section.
Theorem 5 (see [17]). Let S(t) = '* be Cy-semigroup of contractions
on a Hilbert space H. Suppose that
p(A) 2 {ir/A € R} = iR. (19)

Then S(t) is analytic if and only if

lim sup|AGAT — A)! Iy < (20)

‘M—)oo
holds.

Remark 6. Note that to show the condition (20) it is enough to show
that: Let & > 0. There exists a constant Cy > 0 such that the solutions of

the system (3) for |A| > &, satisfy the inequality

vl :
b 't < Cs < PUUT < ColFlylUl,,- @

105~

Next, we will show two lemmas that will be fundamental to achieving our

results.

Lemma 7. Let 3 > 0. There exists Cs5 > 0 such that the solutions of

the system (3) for |A| > 0, satisfy

lim sup||(ir] — Ag)™" ",C(H y<® for
[\ >0 ® o >0 and
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Proof. Let’s split the proof into two cases: ® = 0 and ® > 0.

Case 1: ® = 0. Similarly to the equivalence given in the observation

(6) to show (22),, it suffices to show that

2 2 2 3
Jedly + ™ + 161" < CollEly [Ully, for & <o<5. (23)

As 0 < %, applying continuous immersions and estimative (14), we will

have [6]” < C5|F|l,,, [Ul,,, therefore it remains to show that

2 2
ledly + 101" < CslE 4, [0l -

Taking the duality product between Equation (12) and u and using the
Equation (11) taking advantage of the self-adjointness of the powers of

the operator A, we obtain
5 1 o1
[y = (v, iku) + (A26, A~ 2u) + (g, u)

1 _1
= ol + (v, £)+(AZ0, A° 2u) + (g, u),

then
1
2 o=5 12 2
lelly, < Cs 1My 1013, + el A~ 2ull™ + [l 24

Taking the duality product between Equation (13) and A °v, using the

Equation (12) and now taking advantage of the self-adjointness of the

powers of the operator A, we obtain

(e} (o)

13 11
[o* = [6* - (A%6, A2 "u) - (A6, A2 "v) + (A0, g) + (h, A™V),

considering ¢ > %, we have %— 6 <1 and %— o < 0, the continuous

embedding D(A") - D(A™), > r, and using the inequalities Cauchy-
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Schwartz and Young, for ¢ > 0 exists C, > 0 which does not depend on

A such that
2 2 1 3
Jol* < C8"F"HO "U"HO + 8||u||2 for 3 <o < 3 (25)
Using (25) in (24), we have
2 92 1 3
ledly < CslEl [Ully, + ey for 5 <o<3,
then

2 1
Wl < ColPlhe [0, for

IA

(26)

Do o

c <

Finally, using (26) in (25), finish proof this is the case.

Case 2: o > 0. Similarly to the equivalence given in the observation

(6), to show (22),, it suffices to show that

2 2 2
ledly + ol + 161" < CslFly, U1, 27)

As 0 < %, applying continuous immersions and estimative (18), we will

have []* < C5|F|,, [Ul,, . therefore it remains to show that
() ()

2 2
ledly + ol < CollFllyg, [0, -

Taking the duality product between Equation (16) and u and using the
Equation (15) taking advantage of the self-adjointness of the powers of

the operator A, we obtain
) 1 41
[ull; = (I + 0A)v, idu) + (A26, A" 2u)+ (I + 0A)g, u)

= ol + (T + 0A)o, £) + (4%, 4% Fu)+ (1 + 0A)g, u),
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then
1
2 =5 12 2
iy < CslFlly, [0y, + el A 2ul™ + ol - (28)

Taking the duality product between Equation (17) and A7 °(I + 0A)v,

using the Equation (16) and now taking advantage of the self-adjointness

of the powers of the operator A, we obtain

(¢

1 1_
by = (A0, — A%u + A%0 + (I + 0A)g) - (A%0, A2 )

1 3_
— (A20, A2 “v)+ (h, A0} + o(h, A'°V)

(o}

) 1 3 1 1
— 0] - (AZ6, A2 “u) - (A%0, A% “v)+(A°0, g)

1 3_
+ o0, A%g)— (A20, A2 "v) + (h, A%0) + o(h, A}O).

Sy 3 1 1 3 1
> 2 _6<1, =-0c<= 2 _5<=
Considering ¢ > 1, we have 3~ 0=< 1, g~ 0<35 and g~ 0=<73

the
continuous embedding D(A") - D(A™2),n >, and wusing the
inequalities Cauchy-Schwartz and Young, for € > 0 exists C; > 0 which

does not depend on A such that

2 2 2 3
[l < CollFlly, [, + elllally + g, 1 for 1<o <3 (29)
Using (29) in (28), we obtain
2 2 3
||u||2 < CS||F||Hm||U||Hm + a||v||Hl for 1<oc< 3 (30)

Finally, from (29) and (30), the proof of the second case of this lemma is
finished. O
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Lemma 8. Let 5 > 0. There exists C5 > 0 such that the solutions of

the system (3) for || > & and o = 0, satisfy

. 3
O PRI < MRS + 01 + ColFlyg [0, for 0<o <2,
. 3
@ M0l + 16171 < (2ol + C51Fllyyy [Ully, for 0< o< 3> 6D
or
.. _ 3
i) Pl < CPA 0] + C5|Fllyy, ULy, for 1<o< 5 (32
_ 3
(iii) |A° 1| < CsllFly 0Ny, for 0<o< 5 (33)
@) o} < C3llFllyy Uy, for o =1, (34)
Zo-1 2 3
W A 4 o" < Cs|F|,,. Uy, for 0<o<5, (35)
0 0 2
2043 o 7
v |A 4 u| < Cs|F|,, O for 1<o<—, (36)
Ho ™ 1Hg 6
e 7 3
— 5 —_— —,
(vii) |A ul* < C ||F||H0 ||U||H0 for §<0<3 (37
TR 1 11
(viii) A 8 of" < C5||F||H0 ||U||H0 for 3 <o < 5 (38)
204 o 1
(x) |[A 2 u|” < Cs||F|,, U] for = <o <1, (39)
Ho 7 Hy 2

5-2¢c
= 7
x) |A 2 u||2 < CfS"F"HO "U"Ho for 1<co< 5 (40)
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Proof. Items (i); and (i),: Taking the duality product between

Equation (12) and Au and using the Equations (11) and (13), taking
advantage of the self-adjointness of the powers of the operator A, we

obtain
Mulz = Aol® + (iA%u - iA°0 —ig, f) + (A°6, — iv —if ) + (g, — if — iv)

= Ml + i Au, Af)-i(6, A°f) —i(g, f)+i(6, A%)
1 i(0, ASF) +ilg, ) +ilg, v) for 0<o< % 1)

On the other hand, taking the duality product between Equation (13) and
A71(10) and using the Equation (12), taking advantage of the self-

adjointness of the powers of the operator A, we obtain

_1
Mo = — ixZ|A 20> - (A° v, 20) + (h, ATL(20)), (42)
from:
20-1 9
— (A1, 00) = i(A%, 0) + A 2 u|* —i(A° o, h), (43)
_1
(h, A1(00)) = — i(h, 8) — i(h, A°L0) +4|A 27 (44)

Adding (41) with (42) and in the result using the identities (43) and (44),

we get
Ml + 0171 = AJo|® + i( Au, Af) +i(g, v) +i(8, A%D)

_1 20-1
~ D2 A 20)% +i(A%, 0) +i|A % | —i(A° o, h)

-1
—i(h, 8) —i(h, A° o) + i A 2h|?. (45)
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From the identities — i[{ A° v, h) + (h, A°v)] = - i2Re(A° v, h) and
i[(6, A°v) + (A°v, 0)] = i2Re(0, A°v), taking real part of (45), we have
3
Mol? = ALy + 0171 + Im{(Au, Af) +(g, v) ~(h, 0)} for O<o<g.

(46)
Applying Cauchy-Schwartz and Young inequalities and norms ||[F "HO and

"U"HO , we finish proving of item (i); and (i), of this lemma.

Proof. Item (i1): Consider ¢ > 1. Taking the duality product between

Equation (11) and A%y, using the Equation (13) and taking advantage of

the self-adjointness of the powers of the operator A, we get
iMul5 = (A%, A*u) + (Au, Af)

(—ir0 — AB + h, A%7°U) + (Au, Af)

=~ i(6, o AZou) — (A0, A320u) 1 (h, A2OU) + (Au, Af).

il
(47)
On the other hand, taking the duality product between Equation (12) and

A3_26u, using the Equation (11) and taking advantage of the self-

adjointness of the powers of the operator A, we get

5-2c
(A®0, A3729u) = |A 2 uf? - (v, A3 2% (i) - (g, A3 2°u)

5220 3230
= A2 uf? - A2 o + (v, APFF) — (g, AP Ou).

(48)
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Using (48) in (47) for 1 < & < % we get

. . A - _
inuly = - (e, ﬁA2 °u) + (h, A¥°u) + (Au, Af)

5-2 3-2
AT w4 A2 ol - (v, A32Of) + (g, A3TOU). (49)

Taking imaginary part in (49), we get

M2 = Imi-i(JA A, %Au) (b, AZU) + (Au, AFf)

W

— (v, A372F) 4 (g, A®7%u)}.  (50)

Considering that 1 < ¢ < %, we have %S 2-0<1land 0<3-2c<1.
The continuous embedding D(AM) - D(A™), > ry, for ¢ >0 exists
C, > 0 which does not depend on A such that
M1l < Cel A0 + o 1l + 1]l
gl flly + 1ol 17l + 1 1]zl (51)
Of the estimates (23), norm ||F||H0 and "U"Ho’ we finish proving of item

(i1) of this lemma.

Proof. Item (i1i): Taking the duality product between Equation (13)
and A% %y, using the Equation (12), taking advantage of the self-

adjointness of the powers of the operator A, we obtain
) 1 41
JA°Io|* = (A° 20, irv) — (A20, A~ 2v) + (h, A° %v)

1 _1
= - (A20, A° 2u) + |A°10)% + (A% %0, g)

1 4.3

- (A%0, A 3u) + (h, A° %), (52)
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As c§§ then c—lsl c—2§c—1£l and c—§£0 therefore
2’ 2 ’ 2 2 ’

using the continuous embedding D(A™) - D(A), 5 > ry, in (52), we
finish the proof of item (ii1) of this lemma.

Proof. Item (iv): For ¢ = 1, adding the Equations (12) and (13) and in
the sequence we carry out the duality product by v and then by 6, we get

iMol? + 26, v) + (A%, v) + U = (g, v) + (h, v), (53)

6] + in(v, 8) + (A%u, 0) + (Av, 8) = (g, 8) + (h, 6), (54)

of identity iA[(6, v) + (v, 6) = IA2 Re(6, v) and taking the real part to the
sum of the identities (53) and (54), we have

1 1
[l = Re{- (A%u, v) - (A%u, 0) - (A2v, A20) + (g, v)
+ (h,v) + (g, 0) + (h, 0)}. (55)
From Equations (11) and (12), we have
(A%u, v) = (A%u, i - f) = — \|Au|* - (Au, Af)
(A%, 0) = (—idu+AB+g,0)=(-v—f,0)+ ||A%6||2 +(g,0). (56)

Using (56) in (55), we arrived
1
lol; = Re{(Au, Af) + (v, 6) +(f, 0) —[|A%0]
- (A%v, A%6> +(g, v)+ (h, v)+(h, 6)}. (57)

Using estimates (14) and (23), norms ||F||H0, ||U||H0 for & >0 exists

C. > 0 such that
2 2 2
[0l = CollEly, [Ully¢, + elloly + Csf Ol - (58)

Therefore, the proof of the item (iv) of this lemma is finished.
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Proof. Item (v): Taking the duality product between (13) by A Z2v

and using (11), we get

20-1
A % o =(A 29 i) — (A29 v)+(h, A 21))

21 1 -1
(A 20, - A%u+ A°0 + g) — (A20, v) + (h, A 2v)
1

20-1 1 1
(A26 Au)+|A * 0)* +(4 26 g)-(A20,v)+(h, A 2v),

2021 o1 for &> 0 exists C, > 0, such

3
then, as for ¢ < 3 we have 1 <9

that

20-1

|4+ o < ColFlyy Uy, + ellvl” + i3] + €. 4o

for 0<o g (59)

Therefore from estimates (14) and (23), the proof of the item (v) of this

lemma is finished.
Proof. Item (vi): Taking the duality product between (12) and

2c-1
A 2 y and using (11), we get

20-1 26-1
JAT U = (v, AT () + (A0, A% M)+ (g, A w)

20-1 20-1

20-1 20-1 1
A T o+ (v, A2 F)+(A%0, AT W)+ (g, A 2 u),

then, as for 1 < o < %, we have 20 -1 < 2G4+ 3 and 262_ L 1, using

estimates (14), (35), for € > 0 exist C; > 0 such that

2043 2043 1, 1
A% ul™ < CollFlyy [Ully, +elA* ul® + C|A26[" for 5 <o <1,
(60)

orl<oc< 1 The proof of the item (vi) of this lemma is finished.
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Proof. Item (vii): Taking the duality product between (12) and
A372%y and using (11), we get

5-20 L s
A 2 u||2 = (v, A372° () + (A20, A" 2 u)+ (g, A32%)

3=20 1 5-2¢
= A2 f? + (v, APTOF) 4 (AZ0, A 2 u)+ (g, A3P0U),

then, as for 7. o< 3 we have 83-20 201 the continuous

6 2 2 - 4 7

embedding D(A") - D(A™), > r, and using the inequalities Cauchy-
Schwartz and Young, for € > 0 exist C; > 0 such that
520 520, 2ol
1A 2 ul” < Cs[[Fllyy, Uy, +elA 2 ul”+]A 4 v

1
+ C A% for T<o<3, 61)

using estimates (14), (35), the proof of the item (vii) of this lemma is
finished.

_3
Proof. Item (viii): Taking the duality product between (13) and A 8v
and using (12), we get

80-3 _3 1 1 _3
JA 8 v|> = (A %6, inv) - (A26, ASv) + (h, A 8v)

5 893 , _3 1 1 -3
— (A6, ASu)+|A 16 0" +(A 86, g)—(A20, ASv) + (h, A 8v)

5 86-3 5 8c-3
(6, ASF)Y—(A 8 v, Au) + (h, ABu)+|A 16 o|?

3

_3 —
+(A 80, g)+(h, A 8v),

SGS—l we have 80 -3

th f
en, as for g 16

< %, the continuous

no| =

embedding D(A") - D(A™), > r, and using the inequalities Cauchy-
Schwartz and Young, for € > 0 exist C; > 0 such that
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8c-3 86-3
|45 vf* < ColFllyy Ul +elA S ol + Collully + cla®o?

11

=g

for (62)

1
2
using estimates (14) and (23), the proof of the item (viii) of this lemma is
finished.

Proof. Item (ix): Taking the duality product between (12) and
A%y and using (11), we get

20+1
JA 2 ul* = (v, A (inw)) + (A26 A% u>+<g, A%y

2ol o 26-1 3 36-2 25-1
=[A 2 v|* + (v, AT f)+(A%0, A 2u)+ (g, A*° u),

then, as for %<c<1, we have 30—%313 26;1, 262_1 < 868_3

and 20 -1 <1, using estimates (14), (37), for ¢ > 0 exist C; > 0 such

that

20+1 20+1 1
A 2 u|| < CSHF”HO"U"HO +glA 2 u|| +C, ||A26|| for 5 <0< 1.

(63)
The proof of this lemma’s item (ix) is finished.

Proof. Item (x): Taking the duality product between (12) and A3720y
and using (11), we get

5-20 5-20
JA 2 uf? = (v, A3 2% (i) + (A26 A2 u)+ (g, A32%)

3-20 5-2c
A 2 o + (v, A32Of) + (A26 A2 u)+ (g, A%,



38 F. M. S. SUAREZ and L. D. B. SOBRADO

then, as for 1<o S% we have > _226 < 868_3, the continuous

embedding D(A") > D(A™), > r, and using the inequalities Cauchy-
Schwartz and Young, for € > 0 exist C, > 0 such that
5-2c 5-2¢

8c-3 1
9 12 9 12 g L2 2nl2
1A% ul” < Csl|Fllyy [Uly, +elA 2 ul” +[A % o] + CeA20]

for 1<GS%,(64)
using estimates (14) and (38), the proof of the item (x) of this lemma is
finished. O

Lemma 9. Let 5 > 0. There exists Cy > 0 such that the solutions of

the system (3) for [A| > 8 and o = 0, satisfy
3 2 7
[A20|" < C5||F||H0 "U"HO for §<0<5 (65)

Proof. Taking the duality product between (13) and A%y and using
(12), we get

1 1 3-20
|AZv|? = (AY°6, irv) — (A26, A 2 v)+ (h, ATO0)
1 5-2¢ 1
=~ (A%0, A 2 u)+|A%0* + (A%, g)

1 3-2¢
- (A%, A% v+ (b A7),

3 - 20
2

then, as 7 <o< 3 we have: 1-0 <0, < %, the continuous

6 2’
embedding D(A") - D(A™), > r, and using the inequalities Cauchy-

Schwartz and Young, for ¢ > 0 exists C, > 0, such that



REGULARITY OF EULER-BERNOULLI AND KIRCHHOFF- ... 39
A%2<CA%29 A%ZCezh
|AZv]” < CY ul” + o] gl + el AZo]” + Celelly + Al vll}

for %<c<g, (66)

using estimates (14), (23) and (37), the proof of this lemma is finished.

O

Lemma 10. Let 6 > 0. There exists C5 > 0 such that the solutions of
the system (3) for [A| > 8 and ® > 0, satisfy

1

. - 3

@ A1A 29"2 + 0)||9||2] < C5"F"Hm"U"Hm for 0 <o < 3 (67)
.. 9 5 3

@) My < CsllFlyy, Ul for 5 <o<5, (68)

3
(i) [2] ||U||i11 < [0 lelly + 1011+ CsllFllyg, [0y, for 0< o<z, (69)

20-1
(i) Ao + oA 2 of? < Cs|Fl,, |U],, for0<o< g (70)
5
@) AUl < Cyl[Flyy, ULy, for 1< o <2 (71)

Proof. Item (i): Performing the product of duality between the
Equation (17) and M_z(I + ®A)0 and using the Equation (16), taking

advantage of the self-adjointness of the powers of the operator A, we
obtain

_1 -1
MIA 207 + of6]®] = - 2Z[|AT0)* + o] A 26]7]
— (I + 0AWv, A°720) + (A72(I + 0A)h, 10)
_1
= - 22| A0 + 0| A 26|*] - i(A%u, A°20)
+ i(A°0, A°720) + (I + 0A)g, A°720)

+ (A72(I + ©A)h, iA0 +iA° - ih),
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then
-1 2 2 2 1n(2 -1 2 o1 1
MIA 20" + 6] = — A[[AT0" + o] A 26] - A" 2u, A%6)
9 1 65 1 5.3
+ A0 +i(A%g, AT 20) +in(AZg, A 20)
— i(h, A710) —iw(h, 0) — i(h, A° %) —i(h, A°1v)
2 -1 2
+i[|ATR|? + oA 2A)].

Taking real part and considering o < %, and applying inequalities

Cauchy-Schwartz and Young, for ¢ > 0, exists C, > 0 such that
1
) 3
[A| {"A 29"2 + o)||e||2} < C5"F"Hm "U"Hm for ¢ < 3 (72)

Therefore, the proof of item (1) of this lemma 1is finished.

Proof. Item (i1): Performing the product of duality between the
Equation (15) and A2u, using (17) and taking advantage of the self-

adjointness of the powers of the operator A, we get
iMuls = (A%, A% °u) + (Au, Af) = (— M0 — AB + h, A*u) + (Au, Af)

= (0, A7) + (0, A27Of) —(A°0, A32U) + (h, A>°u) +(Au, Af).

On the other hand, performing the product of duality between the
Equation (16) and A3720u, using (15) and taking advantage of the self-

adjointness of the powers of the operator A, we get

5-2
(A%, A372%) = |A 2 ul? - ((I + 0A)v, A>2()) — (I + 0A)g, A3 2°u)

5-2c

3-20 1 5_
=142 uf? - AT of? - o A% ouf? - (4%, 4277

1 7_ 1 5_ 1 7_
~ (A%, AT Of) (A%g, A2 L) - o(AZg, AZ u).

(74)
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Using (74) in (73), we get
1 3_
D2 = (A%0, A2 "v) + (0, AZOf) + (h, AZOU) + (Au, Af)

2c

5-20 3-20 1 5_
— A2 uf A o + of AT + (A%, A2 )

1 1 1 54 1 7
+ o{AZv, AT °F) 4 (AZg, A2

Taking imaginary part in (75), we get
1 3_
Mul? = Im{(A20, A% “v) + (0, AZ°°f) + (h, A%°u) + (Au, Af)

1 5 17
L1 5 95 1 I_
+ (A2v, A2

f)+ ol A%v, AZ F)

1 5 9 1 )
+(AZg, A% “u)+ o{AZg, AT u)}.

Considering that % <o < %, we have
3 1 1 3 3-20 _1
<2 _g<= Z<92-06<2 < <=
Osg-osy gs2-osy, Os——<7,
1 _5 1 7
<2 _95< <Ll _95<
555 26 <0 and 553 2c < 1.

The continuous embedding D(A™) - D(A™2), > ry, we have
1
2 2 9112
el < CHlelly + 1A=0]” + 6] |AF] + [I2] Az + [ Az AF]

L 1
+ Azl ]af] + [ A% gl Au]}-

Of the estimates (27), (18) and norm |F[|,, and |[U],, , we have
(0] (0]

2 5
Il < CallFly [, for 2

IA

3
< =
0_2.

Therefore, the proof of item (i1) of this lemma is finished.

f)+olAZg, AZ u).

(75)

(76)

(77)

(78)

41
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Proof. Item (ii1): Performing the product of duality between the
Equation (16) and Au and using the Equation (15), taking advantage of

the self-adjointness of the powers of the operator A, we obtain

My = Mell2, + (1A%~ iA%6 — i(I + 0A)g, f)
+(A°0, —iv—if ) + (I + 0A)g, — if —iv)
1 1
= 7‘"1’";1 +i{ Au, Af)+i(0, A®) +i(g, v) +in(AZg, A%).

(79)
On the other hand, taking the duality product between Equation (17) and

A_I(KG) and using the Equation (16), taking advantage of the self-

adjointness of the powers of the operator A, we obtain

1 20-1
Mo = — 2| A 20 + i(A, 0) +i|A % u|* —i(A° v, h)
_1
— i(h, 0) —i(h, A°Lv) +i|A Zh|*. (80)
Adding (79) with (80), we get
M3 + 671 = lllvllill +i(Au, Af) +i(g, v) +i(6, A%)

1 1 -1 20-1
+io(A%g, A%0) - DZ|A 20|% + (A%, 0) +i|A % uf?

-1
— i2Re(A° Y0, B) —i(h, 0) + A 2|7 (81)

Of identity i[(6, A°v)+(A°v, 0)] = i2Re(B, A°v), taking real part of
(81), we have

1 1
Ml + 1071 = 22, + i Au, Af) + (g, v) + i AZg, A2v) ~i(h, 0).

(82)
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Applying Cauchy-Schwartz and Young inequalities and norms ||F,, and
[Ull,, » the proof of item (iii) of this lemma is finished.

Proof. Item (iv): Applying the product duality of (17) by

A°2(I + 0A)v, we have
|4 + oA 2 of?

1 _5
= (A20, A 2[-A%u+ A°0 + (I + 0A)g])

1 8 1 1 ) .
- (A20, A" 2v) - w(A20, A 2v)+(h, A° “v)+(h, A° V)

1 20-1
=~ (A%0, A 2 u)+|A°0)* + (6, A°Ig)

20-3

o— 20-1
2

1 1 20-1
~(A20, A 2 v)-0(A20, A 2 v)+(h, A° %)

+ o(h, A° ) + (0, g).

Considering 1 < ¢ < %, we have 6 -2 <o -1< %, using (27) and (18)

and applying Cauchy-Schwartz and Young inequalities, led & > 0. There

exists a constant Cy > 0 such that

20-1
== 3
[A™2 0 < Cs|[Flly [Uly, for 1< o< 3. (83)

Therefore, the proof of item (iv) of this lemma is finished.

Proof. Item (v): Applying the product duality of (16) by A2° %y and

using (11), we have
|A%u|* = (A% 20, (I + 0A)(rw)) + (A%°720, A%) + (A% 2g, (I + 0A)u)

206-1 1 405 1 40-3
= A + oA 2 o + (A0, A 2 f)+ (420, A 2 f)

66-5

2

46-5 46-3

1 1 405 1 46-3
+(A%20, A 2 u)+(A%?g, A 2 uy+w(A2g, A 2 u).
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20—-1 4c-5 46 -3
<
A

Considering 1 < 6 < g, we have 20 -2 <

and 46 -5

< o, using (18) and (27), applying Cauchy-Schwartz and
Young inequalities, led & > 0. There exists a constant Cg > 0 such that

20-1
|Au|? < w|A 2 v|® + C5|F|,, |Ul,, for 1<o< % (84)

Therefore, using estimative (70) the proof of item (v) of this lemma is
finished.

Lemma 11. The Cy-semigroup of contractions S(t) = ™o on a
Hilbert space H,,, satisfy
iR = {ix/L e R} < p(A,) for o=0. (85)

Proof. The test for both cases ® = 0 and o > 0, are standards. For

the case o = 0 consult [4], item (i) of Lemma 4.3, or [1].

For the case ® > 0 consult [21], Theorem 2.4.

3.1.1. Analyticity of S, (t) = e*® for © > 0
In this subsection, it will be shown that the semigroup Sy(t) for
o = 0 1s analytic when the parameter ¢ =1 and we also show that

S, (¢) for ® > 0 is analytic for ¢ € [%, %}

Theorem 12. The semigroup Sy(t) = ™0 s analytic for o = 1.

Proof. A proof of this theorem will be using the Theorem 5, therefore
we must verify the conditions (19) and (21).

The verification of the condition (19) was justified in the Lemma 11,

next we will verify the condition (21) for Sy(t) = etho
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Taking ¢ = 1 and the duality product between Equation (13) and 6

1 1
ol = ol ~ (AZv, A20) + (h. 6),

taking real part and using Cauchy-Schwartz and Young inequalities and

item (i1) of Lemma 8 and estimative (14), we have
PO < ColFlyg, [, for o =1. (56
On the other hand, from item (i1) of Lemma 8, we have
il < CIOf% + ol Uy, for o = 1. (87
Using estimative (86) in (87), we have
PIZ < ColFly [0y, for o = 1. (59

Finally, using (86) and (88) in estimative (31) (item (i) of Lemma (8)), we
get

2
I l™ < CsllF g, [Ulyy, for o =1. (89)
Therefore of the estimates (86), (88) and (89), we finish the proof of this
theorem.

O

Theorem 13. The semigroup S, (t) = e for @ > 0 is analytic for
4’ 2|

Proof. Now, proof of this theorem will be using the Theorem 5,

therefore we must verify the conditions (19) and (21).

The verification of the condition (19) was justified in the Lemma 11,

A(JJ

next we will verify the condition (21) for S, (¢) = e”®, where o > 0, ie.,

2 2 2 5 3
P Uelly + 1ol s + 10171 < CollElyy WUl for 7 <0< (90)



46 F. M. S. SUAREZ and L. D. B. SOBRADO
Adding the inequalities of the items (i) and (ii) of the Lemma 10, we
obtain

2 2 5 3
M Ukedly + 10171 < CsllElly, Ul for 7 <o <. (91)

Finally, using estimativel (91) in (69) (Item (i) of Lemma 10), we

conclude the proof this theorem. O

3.1.2. Lack of analyticity of Sy (¢) = e™o for @ > 0

The study of the lack of analyticity of S (¢) = et‘%, will be carried out

in two stages, the first for ® = 0 and the second ® > 0.

Stage 1: ® = 0. Since the operator linear A is strictly positive, self-

adjoint and it has compact resolvent, its spectrum is constituted by

positive eigenvalues (n,,) such that n, — o as n - «. For n € N, we
denote with e, an unitary ’D(AO)-norm eigenvector associated to the

eigenvalue n,,, that is,

Ae, =nue,, le,] =1, neN (92)

Theorem 14. The semigroup So(t)zetAO is not analytic for
cel0,1)UQq, %].

Proof. We apply Theorem 5 to show this result. Consider the
eigenvalues and eigenvectors of the operator A as in (98). Let
F, = (0, —%L, %”) € Hg. The solution U, = (u,, v,, 0,) of the system

(ir,I - Ay)U, = F, satisfies v, = ik, u, and the following equations:
Wu, — A%u, + A°0, = %,

én

L0, + A0, +ir,A%, = -5
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Let us see whether this system admits solutions of the form
Up = Upen, 0, =vpe,,
for some complex numbers p, and v,. Then, the numbers p,, v,
should satisfy the algebraic system

1

Ko = madun + M = 5, (93)
by + (g +Mp )0y = % (94)
At this point, we introduce the numbers
7»2n = n,zl.
Thus, if we introduce the notation x, =~ y, meaning that ’}1_{11 % is a
0 n
positive real number, we have that
Pnl = Ml
And v, = —1—. From (99)-(100), we find
2ny,
lin| = ‘_ é[;;l(lﬂs) + 7;120]_@ . (i) |7‘n|_26 for o<1 (95)
(i) [0 for o> 1.

Therefore, from (95), the solution U, of the system (ix,, — Ay)U,, = F,

for Ky > 0, satisfy

(i) [hu[r%° for o<1,

U > Kylv,| = Ko|r enll =
Oy = Kol = Kol = {0 Pl 7o <2

(96)
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Then

() o> for 6 <1,

97
(i) ,l° for o >1.

Pl = Kof
Therefore for (i) of (97) ||A,,| ||Un||H0 — o for 0 < 6 <1 and for (i1) of (97)

||7Ln|||Un||H0 — o for %2 c >1 approaches infinity as [A,| > .

Therefore the (20) condition fails. Consequently for o € [0, 1)U (1, %], the

semigroup Sy(t) is not analytic. This completes the proof of this theorem.

Remark. We can observe from (1) of (96), that when o <% to

semigroup Sy(¢) is not exponential.

O

Stage 2: ® = 0. Now, since the operator linear A 1is strictly positive,

self-adjoint and it has compact resolvent, its spectrum is constituted by
positive eigenvalues (n,) such that n, —» o as n — «. For n e N, we

denote with e, an unitary H'-norm eigenvector associated to the

eigenvalue n,,, thatis,

Ae, = e ooy =1 n e @9

Theorem 15. The semigroup S, (t) = e for ® > 0 is not analytic

for o € [0, % ).
Proof. We apply Theorem 5 to show this result. Consider the
eigenvalues and eigenvectors of the operator A as in (98). Let

F, =(0, -e,, 0) € H,. The solution U, = (u,,v,,0,) of the system

(v, I - Ay U, = F, satisfies v,, = ik,u, and the following equations:
W2 (I + oA, — A%u, + A0, = (I + 0Ae,,

iL,0, + AD, + ik, A, = 0.
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Let us see whether this system admits solutions of the form
Up = Hpep, 0, =rvpe,,

for some complex numbers p, and v,. Then, the numbers p,, v,

should satisfy the algebraic system
{7\’%1(1 + (")nn) - nrzz}un + ngyn = (1 + (Dnn)9 (99)
Mok, + (I, +M,)v, = 0. (100)

At this point, we introduce the numbers

2
7\‘2 Nn
n — .
1+ om,
Thus, if we introduce the notation x, =~ y,, meaning that lim M s a
n—ow |yn|
positive real number, we have that
2
Mnl” = Myl

From (99)-(100), we find

2
1+ N, . 0Ny, | - max{l-2c, §—26} ~ [\ 3-4c
26 T 20|~|n| 2 ~|”| )
Nn ApMn

|un| =1~

Therefore, the solution U, of the system (i, —A,)U, = F, for

K, > 0, satisfy
"Un"?-(oJ 2 Kco"Un"Hl = Kcolknllun"len"Hl = Kwp‘n|4_4c' (101)
Then

PnllUnlly, = Ko
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Therefore [A,||U,[,, — « for o < g approaches infinity as |A,| - .

Therefore the (20) condition fails. Consequently for ¢ < % to semigroup

S,,(¢) is not analytic. This completes the proof of this theorem.

Remark. We can observe from (101), that when 4 - 46 >0 < o <1

to semigroup S, (t) is not exponential.

3.2. Sharp Gevrey-class, for o > 0

In this section, we discuss the Gevrey class of the semigroup
S, () = '™ in two cases: In the first case we determine the Gevrey class
of Sy(t) and in the second we determine the Gevrey class of S (¢) both
determined Gevrey classes are Sharp.

Before exposing our results, it is useful to recall the next definition
and result presented in [7] (adapted from [22], Theorem 4, p. 153).

Definition 16. Let ¢{; > 0 be a real number. A strongly continuous
semigroup S(¢), defined on a Banach space H, is of Gevrey class s > 1
for t > ty, if S(¢) is infinitely differentiable for ¢ > ¢;, and for every
compact set K c (¢), ©) and each p >0, there exists a constant

C = C(u, K) > 0 such that
ISW O gz < Cu" (), forall t e K, n=0,1,2.... (102)

In this paper, we will use the following standard results to identify
analytic or Gevrey class semigroups, based on the estimation for the

resolvent of the generator of the semigroup.
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Theorem 17 ([22]). Let S(t) be a strongly continuous and bounded
semigroup on a Hilbert space H. Suppose that the infinitesimal generator
B of the semigroup S(t) satisfies the following estimate, for some

0<¢<1.

. . -1
Jim, suplM* (AT = B) g5y < - (103)

Then S(¢) is of Gevrey class s for t > 0, for every s > l

Remark 18. Note that showing the condition (103) is enough to show
that: Let & > 0. There exists a constant Cy > 0 such that the solutions of

the system (3) for |A| > &, satisfy the inequality

[0,

}\‘ o
M e

< Cy & WU, < CslFly, [Uly, foro=0.  (104)

Lemma 19. Let 8 > 0. There exists Cs5 > 0 such that the solutions of

the system (3) for [A| > 8 and ® = 0, satisfy

. 1

G) M| Al < Csl|E 34, [Ullyg,, for F<o<L
c-1

.. ST 1

i) 1] AZo10|? < CslE 34, [Ully,, for g<o<l

l1-c
=Z 9 3
(i) [A|A 2 6|7 < C5||F||HO "U"Ho forl <o < 5

2

20 +5
. £0 —oo0to 3
iv) A[|A 2 u||2 < CE;||F||H0 "U"Ho forl <o < 5
Proof. (1) Using (11) in (13), we get

iMA®u — A°f + M0 + AD = h. (105)
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Performing the product of duality between the Equation (105) and A°u,
using (11) and taking advantage of the self-adjointness of the powers of

the operator A, we get
) 1 41
N ACu||® = (A°f, A°u) + (A26, A" 2(iku))
~(A20, A 2 u)+(h, A%u)
1 41
= (A°f, A®u) + (A%26, A" 2v)+ (0, A°f)
1 20+1
- (A20, A 2 u)+(h, A°u),
1 1 8-3
aS§<G<1 and G_§<T
and (14), applying Cauchy-Schwartz and Young inequalities and

, using items (viil) and (ix) of Lemma 8

continuous embedding D(A™2) - D(A™), 19 > 11, finish to proof this
item.

(i1) Performing the product of duality between the Equation (13) and

2(c-1)
A 20-1 9 ysing (11) and taking advantage of the self-adjointness of the

powers of the operator A, we get

o-1 46-3 46%-3 2(6-1)

Oe_1 (9a_1) o\ 1
i)L"AZG—le"2 _ "A2(20—1)9"2 _ <A2(26_1)U, A20) + (h, A 251 g),
(106)
As for l<cs<1 we have 4c” - 3 < 8-3 and 2(6_1)<0 takin
geoch Moo D 8 po—1 < 0 taking

imaginary part, applying Cauchy-Schwartz and Young inequalities,
continuous embedding D(A™2) - D(A™), 19 > 71 and item (viil) Lemma

8 and estimative (14), finish to proof this item.
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(i11) Now, performing the product of duality between the Equation
(13) and Al_"e, using (11) and taking advantage of the self-adjointness of

the powers of the operator A, we get

1o 2-0c 1 1
A 20> = - A 2 6> - (A%v, A20) + (h, A7°0). (107)

86 -3
8

Lemma 8, we have

1 7 . . . . .
As 3 < =X g using continuous immersions and item (viii) of

—

1

IA

1
3 7
|AZ0[* < ColFllyy UL, for g <o < (108)

|

On the other hand, performing the product of duality between the
Equation (13) and Aoy, using (12) and taking advantage of the self-

adjointness of the powers of the operator A, we get
1, 1 14 1 3.4
|AZv|* = (A%60, A2 “irv) - (A%0, A2 v)+ (h, A1)
1 5 L -
=—(A20, A2 u)+|A20|" + (A0, g)

1 3_
— (A20, A2 v) + (h, A'%).

Applying Cauchy-Schwartz and Young inequalities and using estimates

(14), item (vii) of Lemma 8, for ¢ > 0, exists C, > 0 such that
Lo o g T ool
[A2v]" < C5||F||H0 ||U||H0 +g|A2Z v|* for 8 <o <5, (109)

then, as for % <6< g we have %— G < %, using continuous embedding

D(A™2) o D(A™), 19 > 71 in (109), we arrive

1
5 7 3
[AZ0 < ColFllygg ULy, for <o <3, (110)

6
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Taking real part in (107) and applying Cauchy-Schwartz and Young
inequalities and using estimates (14), (108) and (110), we finished the test

of this item.
(iv) Now, performing the product of duality between the Equation

2
(105) and AZ%° ~69*5, using (11) and taking advantage of the self-

adjointness of the powers of the operator A, we get

262 ~50+5 2 1 26%-6 9
AT 2wl = (Af, A2 5Ny 4 (A%0, AT Zinu)
1 262 _6o+ L
_(A%0, A7 TR 4 (h, AT 604y, (111)

using Cauchy-Schwartz and Young inequalities in (111), we get

26% 5045

2 2
MIA 2 uf < C{lAf]|AZ 3 4u| + ]| 4207 ~55+5y||

1 262 —6o+1L 1 952 gosd
FlA%e? 1A T U 4 (A%, AT T 2y))
1 262 —65+2
+|(AZ0, A 7T,

As, for 1<c<%, we have: 202—6c+5£202—50+4§1, 262 - 66 +

ES 5-2c

2 2

continuous immersions and estimates: (108), (110), items (vii) and (x) of

and 202 - 6o +% < % < 1. Using now Young inequality,

Lemma 8, finish proof this item.

O

Lemma 20. Let & > 0. There exists Cs5 > 0 such that the solutions of

the system (3) for [A| > 8 and o > 0, satisfy

40-1

dol 5
PIA ul < CollFly ULy, for 1<o <.
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Proof. Using (15) in (17), we get

MU — A°f + 100 + AB = h. (112)

Performing the product of duality between the Equation (112) and

20-1
A 2 y, using (15) and taking advantage of the self-adjointness of the

powers of the operator A, we get

do1 96-3 1 .
A T uf? = (Af, A7 2u) + (A%6, A% ()

1 20-1
- (A20, A°u)+(h, A 2 u)

_ 203 30 ao-1 3n ao-1
= (Af, A% 72u) 1 (A%0, A T0) + (A6, ATLf)

1 20-1
- (A20, A°u) +(h, A 2 u),

as for 1<c<%, we have: and 20—%<1,c—1<1 and 262_1

using items (iv) and (v) of Lemma 10 and estimative (18), applying

Cauchy-Schwartz and Young inequalities and continuous embedding

<1,

D(A™2) & D(A™), 19 > 11, finish to proof this lemma.

Our main result in this subsection is as follows:

Theorem 21. Let S, (¢) = ™o strongly continuous-semigroups of
contractions on the Hilbert space H,, the semigroups S,(t) are of
Greuvrey class s, for every:

1 1

(i) so1 >E: 9% —1

for ® =0 and %<0<1,

(i) sgo >1 s for =0 and 1<c<§,
¢o2 2

1 1 5
(lll) Sw>E—m fO}" >0 and 1<o<—.
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If the estimates to follow are verified

(i) for © = 0, 5 < o <1, limsupp* A = A0) ) <
e

.. . 1. _
(i) for ®=0,1< 0o < %, h\r}f\ljip [A[S]|GAT — Ag) 1"5(7'(0) < oo,

(iii) for ® > 0,1 < o < %, li‘ar‘ljipw‘l(cfl)"(ill ~ Ayt ||£(Hm) < oo

(113)

Proof. From (104) (Remark 18). To show the estimates of (113), it

suffices to show are equivalent to, let & > 0. There exists C5 > 0 such

that

(i) for © = 0 and 1 < o <1, }ZH[UIF, < Cs|IFlyy, [Ully, -
.. 3 1
(ii)for o =0 and 1 <o < 5 WGHUH%O < CSHF"HO "U"Ho’

5 1 4lc-1) 72
(iii) for ® > 0 and 1 < 5 < e 7| (o )"U"Hw < CSHF"Hw "U"Hm‘
(114)

Case(i):o):()and%<o'<1.

We are going to initially prove that for % < o < 1, it is verified:

2c-1y, 112 26102
Py < CollF Ny ULy, and A6 < CollElyy Uy, - (115)

20 +1

As for % <o <1, we have 1 € [o, ]. We are going to use an

interpolation inequality. Since

1=do+(1 —¢)(2"2+1), for ¢ = 26 — 1,
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using inequalities of item (ix) Lemma 8 and Lemma 19, we get that

2041
ey < ClACu*o A2 ul*2e

1-2 26— 2-2
< Co P Py Uy 12 1y, [0, 1272
Where do we conclude the proof of (115);.

c-1 l
26-1" 2

As for % <o <1, we have 0 €| ]. We are going to use an

interpolation inequality. Since

c-1 1
0—¢(26_1j+(1—¢)§,f0r(])—20—1 and 1- ¢ = 2 - 20,

using inequalities of item (ix) Lemma 8 and Lemma 19, we get that

o-1 20+1
o] < clazTe*o A 2 of* >

1-2 20— 2-2
< Colt ™ B g [0 120 1B Wy [0 1272

Where do we conclude the proof of (115),.

Equivalently,
Pl < PO CylFlyg ULy o for % <o <1, (116)
and
PO < PO Cs Pl [Ulyy,» for 5 <o <1. 117

Applying (116) and (117) in estimative (31) (item (i); Lemma 8), we have

_ 1
el < P CFlyy, U]y, > for g<o<l (118)

Finally, from estimates (116)-(118), finish to proof this is Case (1).
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Case(ii): =0 and 1 <o < %:

Remark. Next, for 1 < o < %, we are going to test the following

estimates:
1 2 1.9
o fully < CslFllyy, Uy, and Mo [0 < Cs[Fllyy, Uy, - (119)

262 -6 +5 5-20
2 ' T2

As for1<c<%, we have 1€|: } We are going to

use an interpolation inequality. Since

2
1:4{20‘#}(1—4))(5_226), forq):éandl—q): ";1,

using the items (vii) and (x) of the Lemma 8 and item (iv) of Lemma 19,
we get that

\ 26”-56+5 | 520
el < Cla 2 ulsla 2 ufe

1 1 o=l
< G570 1F o [Tl 3 1E o [Tl 3 © -

Where do we conclude the proof of (119);.

2 2 72

are going to use an interpolation inequality. Since

On the other hand, as for 1 < ¢ < §, we have 0 e [1_—0 l} We

0:¢(1;G)+(1—¢)%, for ¢:% and 1—¢=";1,

using inequalities (14) and item (iii) of Lemma 19, we get that

2 Le 1. 1 ol
6" < cla = el A%6] s

_1 1 o=L
< s "o 1E o [Tl 30 1E g [Ty, 3 © -

Where do we conclude the proof of (119)s.
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Adding the two estimates of (119), we arrive
9 9 o-1 3
P edly +161%] < Ao~ Col|Ellyq [Ty, for 1 <o <3 (120)
Applying (120) in estimative (31) (item (i); Lemma 8), we have
92 o-1 3
[A| ||U||H0 <|Me C?S"F"HO "U"HO for 1<o< 5 (121)
Where did we finish to prove this is Case (i1).

Case (iii): ® > 0 and 1 <6 < g:

Next we are going to prove that for 1 < ¢ < % , 1t 1s verified:

WAl < CollFly, [0, - (122)

4c -1

As for 1 <o <%, we have 1 e[ , o]. We are going to use an

interpolation inequality. Since

1= ¢(4G4_1)+(1—¢)c, for ¢ =4(c-1) and 1-¢ =5 - 4o,
using the item (v) of the Lemma 10 and Lemma 20, we get that
2 % 4(c-1)|| 40,1540
ey < ClA - u""] A%
< Gl O, [0y, 1O g 0T, 14

Where do we conclude the proof of (122). Then

2 5—4 5
|x| ||u||2 < Cg|x| G"F"Hm"U"Hm’ for 1 <o < 7 (123)
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From estimative (67), we have
2 3
[ ]6]" < C5||F||Hm||U||Hm, for 0 <o < 5 (124)
Adding the inequalities (123) and (124), we obtain
2 2 5-4c 5 5

[l + 1012 ] < CopP 4 UF Yy ULy, for 2 <o <2 az)
Finally, using estimative (125) in (69) (item (iii1) of Lemma 10), we finish
the proof of item (ii1) of this theorem.

O

Remark 22 (Gevrey Sharp Class). The Gevrey classes determined
above are Sharp, by the meaning of Sharp given by the theorem to follow:

Theorem 23. The functions ¢y;(c) = 26 -1 for c e (1/2,1), dgo(c) = %

for s e(,2) and ¢,(c) = 4(c -1) for o e (1, 5/4) that determine the
Geuvrey classes of the semigroups Sy;(t), Spo(t) and S, (t), respectively are

sharp, in the sense: If

Doy =0 + 8¢ = 206 -1+ 8¢; for all 857 > 0 such that
26 -1+98p; <1 and %<c<1,

Dy = dg + 69 = %+ 8g1 for all 8p9 > 0 such that

. (126)
2Gl+802 <1 and 1<G<§’

D, =0, +8, =4(c-1)+3, for all §, >0 such that

4c-1)+8, <1 and 1<c<%,
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then
1 1
— = 1
801>(D01 for 5 <0<l
S92 > 1 for 1<o< i, (127)
Sy > ‘Dim for 1<o< %

They are not Gevrey classes of the semigroups Sy;(t), Sgo(t) or S,(t),
respectively.

Proof. We will use the results obtained in the Theorem 21 and the
estimates determined in the Equations (96) for o = 0 and (101) for

o > 0, to prove this theorem, i.e., from the estimates (96) and (101), we

have
Ponl ™ Wnlgy = Kor Pl Wl > KonPenl™ — s,
when [A,| > o,
1
en] P2 Ul = Koalhon s 22Ul = Koglhn|*02 — oo,
0 0
when |7\.n| — 00, and

Pl P00l = Kol P00, 2 Koty — o,

when [A,| > .

Therefore ®g;, ®p9 and @, it does not verify the (113) condition for

® > 0 of the Theorem 21 concerning class Gevrey.

1
,802 >0 and s, > ———

Then the Gevrey classe sp; > 201— 4(c - 1)

1

they semigrupos Sy(¢) and S, (t), respectively are Sharp. O

We emphasize that in the tree since the determined Gevrey class is

sharp, we conclude that for this case the semigroups S,,(t) = eAw s also

not analytic.
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Remark 24 (Asymptotic Behaviour). A semigroup S(t) of class

Gevrey has more regular properties than a differentiable semigroup but
is less regular than an analytic semigroup. It should be noted that the
Gevrey class or the analyticity of the particular model implies three
important properties. The first is the property of the smoothing effect on
the initial data, that is, no matter how irregular the initial data is, the
model solutions are very smooth in positive time. The second property is
that systems are exponentially stable. And the third is that the systems
associated with the semigroup enjoy the property of linear stability,
which means that the type of the semigroup is equal to the spectral limit
of its infinitesimal operator. Specifically speaking of this investigation

Ay

system (3). The associated semigroups S, (t) = el for o >0, are

exponentially stable. The proof is a consequence of Lemmas 7 and 11: In
the case ® = 0; Sy(t) is exponentially stable for o € [1/2, 3/2] and for the

case > 0; S, (¢) is exponentially stable for ¢ € [1, 3/2].
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