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Abstract 

In this work, we present the study of the regularity of the solutions of the 

abstract system (1) that includes the Euler-Bernoulli  0  and Kirchhoff-

Love  0  thermoelastic plates, we consider for both fractional couplings 

given by A  and ,tuA  where A  is a strictly positive and self-adjoint linear 



F. M. S. SUÁREZ and L. D. B. SOBRADO 18 

operator and the parameter .]
2
3,0[  Our research stems from the work of 

[1], [4], and [8]. Our contribution was to directly determine the Gevrey sharp 

classes: for 
12

1,0 01 
 s  and 02s  when )1,

2
1(  and )

2
3,1(  

respectively. And  14
1


s  for case 0  when .)
4
5,1(  This work 

also contains direct proofs of the analyticity of the corresponding semigroups 

.te  In the case 0  the analyticity of the semigroup 0te  occurs when 

1  and for the case 0  the semigroup te  is analytic for the 

parameter .]23,45[  The abstract system is given by:  














,0

,02

tt

tttt

uAA

AuAAuu   (1) 

where .0  

1. Introduction 

Let   ,,,H  be a complex Hilbert space, and let A  self-adjoint, 

positive definite (unbounded) operator on the complex Hilbert space ,H  

  .: HH AA D  

The operator rA  is positive seft-adjoint for ,r  bounded for ,0r  

and the embedding 

,)()( 21 rr AA DD   

is continuous for .21 rr   For fixed  

2
3  and .0   (2) 

We consider the following abstract system hyperbolic and parabolic 

equation:  








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



.0

,02

tt

tttt

uAA

AuAAuu
  (3) 

Observe that no restriction 0  is assumed.  
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The properties of the asymptotic behaviour and regularity of the 

semigroup   
tetS  associated with the abstract system (3), have 

been extensively studied in recent years. Specifically speaking, in the 

work [1] they studied the abstract system that includes the thermo-elastic 

Euler Bernoulli plates  0  with fractional coupling given by A  and 

tuA  and the parameter  ,1,0  the authors using the semigroup 

technique show that the system is exponentially stable if only if 

,1
2
1   analyticity is also proved if only if 1  and they prove that 

the semigroup is polynomially stable when 
2
10   with rate .1t  In 

the work [4], they study the system (3) considering the parameter 

,]
2
3,0[  for the case 0  they show that  tS0  decays polynomially 

to zero as 


21
1

t  and this rate is optimal. They also prove using the 

energy method that the system is exponentially stable when .1
2
1   

For the case ,0  the authors show that the corresponding semigroup 

 tS  is exponentially stable if only if .1
2
3   Also, since 1

2
1   

determine the optimal polynomial decay rate .)( 44
1



t   

In 2019 and 2021, two more complete papers emerged [21, 8]. The 

first is dedicated to the study of the asymptotic behaviour of two 

thermoelastic plate systems, the first modelled with Fourier's law, as is 

the case of the system (3), and the second model with Cattaneo’s law. The 

model thermoelastic plates with inertial rotation term given by: 

       





















,0,0,00

,0

,0

00vuuu

AumAc

mAAuuAu

t

tt

tttt

  
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where A  is a self-adjoint, positive definite operator on a complex Hilbert 

space      1,01,0,,0,0,,,,  mH   and   .1,0  The 

stability analysis of the model with Fourier's law is done by applying 

semigroup techniques, the authors determine regions based on the 3 

parameters  ,,  to study, the exponential decay and polynomial decay 

with optimal rate. In the second paper of 2021, Kuang et al. [8] assume 

that  

     ,1,01,0
2

1
,0,, 



  E  

this work is dedicated to regularity of the semigroup  tS  for .0  

The case 0  is equivalent  .0  In this work, the authors divide the 

region E  into 3 parts where the associated semigroups are analytic, of 

Gevrey classes of a specific order, and non-smoothing, respectively. 

Furthermore, detailed spectral analysis shows that the Gevrey-class 

orders are sharp under the right conditions. They also show that the 

orders of polynomial stability obtained in [21] are optimal. In all their 

proofs the authors use contradictory arguments. Our two models studied 

here are part of the family of models given in [8], that of the Euler 

Bernoulli thermoelastic plate, it is the case of   )0,
2
1,

2
(,,   and 

that of the Kirchhoff-Love thermoelastic plate, is the case 

  .)
2
1,

2
1,

2
(,,   The proofs presented in this research are direct 

and more friendly for readers to understand the technique used here. 

Several researchers year after year have devoted their attention to 

the study of the asymptotic behaviour and the regularity of the solutions 

of the thermoelastic system of plates. Regarding the analyticity of the 

semigroup for the Euler-Bernoulli model, one of the first results was 

established by Liu and Renardy [15] in the case of bounded and 

articulated boundary conditions. Subsequently, Liu and Liu, [14], and 

Lasiecka and Triggiani [9, 10, 11, 12] demonstrated other analyticity 

results under various boundary conditions. More research in this 

direction can be found at [6, 20, 23].  
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In more recent research from 2020 Tebou et al. [7] studied 

thermoelastic plates considering the fractional rotational inertial force 

  )( ttu  for the parameter  .1,0  In ,  limited open subset of 

,1, nn  with smooth enough boundary In this research, the authors 

prove that the semigroup associated with the system is the Gevrey class s 

for each 


42
2

s  for both: the Hinged plate/Dirichlet temperature 

boundary conditions and Clamped plate/Dirichlet temperature boundary 

conditions when the parameter   lies in the interval ,)
2
1,0(  also show 

that the semigroup  tS  is exponentially stable for Hinged boundary 

conditions, for   in the interval  1,0  and finish their investigation, 

constructing a counterexample, that, under hinged boundary conditions, 

the semigroup is not analytic, for all   in the interval  .1,0  To 

determine the Gevrey class of  tS  using the domain method of the 

frequency, the appropriate decompositions of the components of the 

system, and the use of Lions’ interpolation inequalities. More recent 

research in this direction can be found at [18, 21, 25]. 

This article is organized as follows: in Section 2, we study the well-

posedness of the system (3) through semigroup theory. We leave our main 

contributions for the third section where we analyze the regularity, which 

is subdivided into two subsections. Subsection 3.1 is dedicated to the 

analyticity and lack of analyticity for the two cases 0  and ,0  for 

0 (Euler-Bernoulli thermoelastic plate) we show that the semigroup 

  0
0

tetS   is analytic when the parameter 1  and   0
0

tetS   is 

not analytic when the parameter   .]
2
3,1(1,0   For case 0  

(Kirchhoff-Love thermoelastic plate), we show that the semigroup 

  
tetS  is analytic when the parameter ]

2
3,

4
5[  and 
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  
tetS  is not analytic when the parameter .)

4
5,0[  In the last 

Subsection 3.2, we determine the families of Gevrey sharp classes of the 

semigroup associated with the system (3), for the Euler-Bernoulli plates 

 0  we have the classes 
12

1
01 

s  when the parameter )1,
2
1(  

and 02s  when the parameter .)
2
3,1(  For thermoelastic 

Kirchhoff-Love plates  0  we have the Gevrey class  14
1


s  

when the parameter .)
4
5,1(  We end this paper with a remark about 

the exponential decay of   .0


AtetS  

In our research, we apply the frequency domain method, spectral 

analysis of the operator    for ]
2
3,0[  and we strongly use the 

interpolation inequality, see Theorem 4. 

2. Setting of the Semigroups 

For ,r  we consider the compactly nested family of Hilbert spaces 

.,,,,)( 2222 uAuvAuAvuA
rrrr

rr
r  DH  

For ,0r  it is understood that rH  denotes the completion of the 

domain, so rH  is the dual space of .rH  the subscript r  will be always 

omitted whenever zero. With this notation for   positive, we can extend 

the operator AI   in the following sense: 

  ,: 11  HHAI  

defined by 

  ,,,, 2
21

1
21

2121 11 zAzAzzzzAI   HH  (4) 
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for ,, 1
21 Hzz  where ,  denotes the inner product in the Hilbert 

space .H  Note that this operator is an isometric operator when we 

consider the equivalent norm in the space   .: 1
212

1
21

HH zzz   

Finally, we define the family of phase spaces 












,0if

,0if
:

12

2

HHH

HHH
  (5) 

endowed with the Hilbert product norms 

 














.0if

,0if
:,,

222
2

222
22

1H
vu

vu
vu   (6) 

Remark 1. Throughout the paper, Cauchy-Schwartz, Young and 

Poincaré inequalities will be tacitly used in several occasions. 

Taking tuv   an considering       ,,, ttvtuU   we rewrite system 

(3) as the ODE in   

   ,tUtU
dt
d

   

where the linear operator   is defined as 

  ,)(: 21




































 




vAA

AuAAI

v

v

u

  (7) 

with domains 

  ,0,:
21

42

2

00 













































H

H

H

vA

Au

v

v

u

D   (8) 
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and 

  .0,:
21

32

2
















































H

H

H

vA

Au

v

v

u

D  (9) 

Theorem 2. The operator   is the infinitesimal generator of a 

contraction semi-group 

  ,:    tetS  

associated with the system (3) for 0  and .
2
30   

Proof. See Theorem 2.3 ([4]).   

Remark 3. The operator   does not generate a contraction 

semigroup whenever 

.0,
2
3   

See Remark 2.4 [4]. 

Theorem 4 (Interpolation). Let .  Then there exists a 

constant   ,,LL  such that 

,



   uAuALuA  (10) 

for every .)(  Au D  

Proof. See Theorem 5.34 ([5]).    

In what follows, ,, CC  and C  will denote a positive constant that 

assumes different values in different places. 
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3. Regularity of Thermoelastic Euler-Bernoulli  

and Kirchhoff-Love Plates 

This subsection will be dedicated to the study of the analyticity and 

the determination of the Gevrey sharp class for 0  and for 0  of 

the semigroup    tetS  the study will be approached using the 

frequency domain characterization of semigroup properties and spectral 

theory, proofs using direct argument are prioritized. 

First, for case :0  Note that if   and   ,,, 0 hgfF  

then the solution    0,, D vuU  of the stationary system 

  FUIi  0  can be written by 

fvui        in     ,2H   (11) 

  gAuAvi  2       in     ,H   (12) 

hvAAi      in     ,H   (13) 

we have to 

  .,Re,Re
000

2
1  UFUFUUi     (14) 

Second, for case :0  Now, note that if   and 

  ,,,  hgfF  then the solution     D,, vuU  of the 

stationary system   FUIi    can be written by 

,in 2Hfvui    (15) 

    ,in 12   HgAIAuAvAIi  (16) 

.in HhvAAi    (17) 

Now, we have to 

  .,Re,Re2
1  

  UFUFUUi   (18) 
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3.1. On the analyticity of   tetS   

In this subsection, we study the analyticity and the lack of analyticity 

and the semigroup associated with the system (3), then we present a 

theorem that characterizes the analyticity via semigroup theory of the 

book of Liu-Zheng [17] (Theorem 1.3.3), and also some previous results 

that will be used in this section. 

Theorem 5 (see [17]). Let   tetS   be semigroupC -0  of contractions 

on a Hilbert space .  Suppose that 

    . ii   (19) 

Then  tS  is analytic if and only if 

     




1suplim Ii  (20) 

holds. 

Remark 6. Note that to show the condition (20) it is enough to show 

that: Let .0  There exists a constant 0C  such that the solutions of 

the system (3) for ,  satisfy the inequality 

.2




 UFCUC
F

U
   (21) 

Next, we will show two lemmas that will be fundamental to achieving our 

results. 

Lemma 7. Let .0  There exists 0C  such that the solutions of 

the system (3) for ,0  satisfy 

   

















 .

2
310

,
2
3

2
10

suplim 1

and

and
forIi    (22) 
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Proof. Let’s split the proof into two cases: 0  and .0  

Case 1: .0  Similarly to the equivalence given in the observation 

(6) to show   ,22 1  it suffices to show that 

.
2
3

2
1for

00

222
2    UFCvu  (23) 

As ,
2
10   applying continuous immersions and estimative (14), we will 

have ,
00

2
 UFC  therefore it remains to show that 

.
00

22
2  UFCvu   

Taking the duality product between Equation (12) and u and using the 

Equation (11) taking advantage of the self-adjointness of the powers of 

the operator ,A  we obtain 

uguAAuivu ,,, 2
1

2
1

2
2 


 

,,,, 2
1

2
1

2 uguAAfvv 


    

then 

.222
2

2
1

00
vuAUFCu 


    (24) 

Taking the duality product between Equation (13) and ,vA   using the 

Equation (12) and now taking advantage of the self-adjointness of the 

powers of the operator ,A  we obtain 

,,,,, 2
1

2
1

2
3

2
1

22 vAhgAvAAuAAv 
  

considering ,
2
1  we have 1

2
3   and ,0

2
1   the continuous 

embedding 21,)()( 21 rrAA rr DD   and using the inequalities Cauchy-
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Schwartz and Young, for 0  exists 0C  which does not depend on 

  such that 

.
2
3

2
1for2

2
2

00
  uUFCv   (25) 

Using (25) in (24), we have 

,
2
3

2
1for2

2
2
2 00

  uUFCu   

then 

.
2
3

2
1for

00

2
2    UFCu  (26) 

Finally, using (26) in (25), finish proof this is the case. 

Case 2: .0  Similarly to the equivalence given in the observation 

(6), to show   ,22 2  it suffices to show that 

.222
2 1   UFCvu

H
 (27) 

As ,
2
10   applying continuous immersions and estimative (18), we will 

have ,2
  UFC  therefore it remains to show that 

.22
2 1   UFCvu

H
 

Taking the duality product between Equation (16) and u  and using the 

Equation (15) taking advantage of the self-adjointness of the powers of 

the operator ,A  we obtain 

  ugAIuAAuivAIu ,,, 2
1

2
1

2
2 


 

     ,,,, 2
1

2
1

1
2 ugAIuAAfvAIv 



H
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then 

.222
2 1

2
1

H
vuAUFCu 


     (28) 

Taking the duality product between Equation (17) and   ,vAIA   

using the Equation (16) and now taking advantage of the self-adjointness 

of the powers of the operator ,A  we obtain 

 
  2

1
2
1

1 ,, 22 AAgAIAuAAv
H

 

vAhvAhvAA 
 1,,, 2

3
2
1

 

gAvAAuAA ,,, 2
1

2
1

2
3

2
1

2  
 

.,,,, 11 2
3

2
1

vAhvAhvAAgA    

Considering ,1  we have 
2
1

2
1,1

3
3   and 

2
1

2
3   the 

continuous embedding 21,)()( 21 rrAA rr DD   and using the 

inequalities Cauchy-Schwartz and Young, for 0  exists 0C  which 

does not depend on   such that 

.
2
31for][ 22

2
2

11 
 HH

vuUFCv   (29) 

Using (29) in (28), we obtain 

.
2
31for22

2 1 
 H

vUFCu   (30) 

Finally, from (29) and (30), the proof of the second case of this lemma is 

finished.   
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Lemma 8. Let .0  There exists 0C  such that the solutions of 

the system (3) for   and ,0  satisfy 

 1i  ,
2
30][

00

22
2

2   forUFCuv    

 2i  ,
2
30][

00

222
2   forUFCvu    (31) 

or  

(ii) ,
2
31

00

212
2  

 forUFCACu    (32) 

(iii) ,
2
30

00

21  
 forUFCvA    (33) 

(iv) ,1
00

2
1   forUFCv    (34) 

(v) ,
2
30

00
4

12
2  


forUFCvA    (35) 

(vi) ,
6
71

00
4

32
2  


forUFCuA    (36) 

(vii) ,
2
3

6
7

00
2
25

2  


forUFCuA    (37) 

(viii) ,
8

11
2
1

00
8

38
2  


forUFCvA    (38) 

(ix) ,1
2
1

00
2

12
2  


forUFCuA    (39) 

(x) .
6
71

00
2
25

2  


forUFCuA    (40) 
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Proof. Items  1i  and   :i 2  Taking the duality product between 

Equation (12) and u  and using the Equations (11) and (13), taking 

advantage of the self-adjointness of the powers of the operator ,A  we 

obtain 

ivifgifivAfigiAuiAvu   ,,,222
2  

  vAifgifAiAfAuiv   ,,,,2  

.
2
30for,,,   vgifgifAi   (41) 

On the other hand, taking the duality product between Equation (13) and 

 1A  and using the Equation (12), taking advantage of the self-

adjointness of the powers of the operator ,A  we obtain 

  ,,, 11222 2
1

 
AhvAAi   (42) 

from: 

,,,, 121 2
12

hvAivAivAivA  


  (43) 

  .,,, 211 2
1
hAivAhihiAh

   (44) 

Adding (41) with (42) and in the result using the identities (43) and (44), 

we get  

vAivgiAfAuivu  ,,,][ 222
2  

hvAivAivAiAi ,, 1222 2
12

2
1





 

.,, 21 2
1

hAivAhihi
     (45) 



F. M. S. SUÁREZ and L. D. B. SOBRADO 32 

From the identities   hvAivAhhvAi ,Re2,, 111    and 

 ,,Re2,,[ vAivAvAi    taking real part of (45), we have 

.
2
30for},,,Im{][ 22

2
2  hvgAfAuuv  

(46) 

Applying Cauchy-Schwartz and Young inequalities and norms 
0

F  and 

,
0

U  we finish proving of item  1i  and  2i  of this lemma. 

Proof. Item (ii): Consider .1  Taking the duality product between 

Equation (11) and ,2uA  using the Equation (13) and taking advantage of 

the self-adjointness of the powers of the operator ,A  we get 

AfAuuAvAui ,, 22
2    

AfAuuAhAi ,, 2    

.,,,, 2232 AfAuuAhuAAuAi 

   

 (47) 

On the other hand, taking the duality product between Equation (12) and 

,23 uA   using the Equation (11) and taking advantage of the self-

adjointness of the powers of the operator ,A  we get 

  uAguiAvuAuAA  


2323223 ,,, 2
25

  

.,, 232322 2
23

2
25

uAgfAvvAuA  


  

(48) 
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Using (48) in (47) for ,
2
31   we get 

AfAuuAhuAiui ,,, 222
2 


   

.,, 232322 2
23

2
25

uAgfAvvAuA  


  (49) 

Taking imaginary part in (49), we get 

AfAuuAhAuAiu ,,,Im{ 212
2 


   

.,, 2323 uAgfAv     (50) 

Considering that ,
2
31   we have 12

2
1   and .1230   

The continuous embedding ,,)()( 21
21 rrAA rr DD   for 0  exists 

0C  which does not depend on   such that 

2
2
2

212
2 uhuACu  

   

.2222 ugfvfu    (51) 

Of the estimates (23), norm 
0

F  and ,
0

U  we finish proving of item 

(ii) of this lemma. 

Proof. Item (iii): Taking the duality product between Equation (13) 

and ,2vA   using the Equation (12), taking advantage of the self-

adjointness of the powers of the operator ,A  we obtain 

vAhvAAviAvA 2221 ,,, 2
1

2
1

   

gAAuAA ,, 2212
1

2
1

 
 

 .,, 22
3

2
1

vAhvAA 
   (52) 
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As ,
2
3  then 

2
112,1

2
1   and ,0

2
3   therefore 

using the continuous embedding ,,)()( 21
21 rrAA rr DD   in (52), we 

finish the proof of item (iii) of this lemma. 

Proof. Item (iv): For ,1  adding the Equations (12) and (13) and in 

the sequence we carry out the duality product by v  and then by ,  we get 

,,,,, 2
1

22 vhvgvvuAvivi    (53) 

,,,,,, 22  hgAvuAvii  (54) 

of identity vivvi ,Re2,,[   and taking the real part to the 

sum of the identities (53) and (54), we have 

vgAvAuAvuAv ,,,,Re{ 2
1

2
1

222
1    

 .},,,  hgvh   (55) 

From Equations (11) and (12), we have 

AfAuAuifuiuAvuA ,,, 222   

.,,,, 22 2
1

 gAfvgAuiuA   (56) 

Using (56) in (55), we arrived 

22
1

2
1

,,,Re{  AfvAfAuv  

.},,,, 2
1

2
1

 hvhvgAvA   (57) 

Using estimates (14) and (23), norms 
00

,  UF  for 0  exists 

0C  such that 

.2
1

2
1

2
1 00

  CvUFCv    (58) 

Therefore, the proof of the item (iv) of this lemma is finished. 
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Proof. Item (v): Taking the duality product between (13) by vA 2
1

 

and using (11), we get 

vAhvAviAvA 2
1

2
1

2
1

4
12

,,,2 



 

vAhvAgAuAA 2
1

2
1

2
1

,,, 2 
  

,,,,, 2
1

2
1

2
1

4
12

2
1

2 vAhvAgAAAuA





 

then, as for ,
2
3  we have ,

2
1

4
12   for 0  exists ,0C  such 

that 

22
2

22 2
1

00
4

12

]  


ACuvUFCvA   

.
2
30for   (59) 

Therefore from estimates (14) and (23), the proof of the item (v) of this 
lemma is finished. 

Proof. Item (vi): Taking the duality product between (12) and 

uA 2
12 

 and using (11), we get 

  uAguAAuiAvuA 2
12

2
1

4
12

4
32

,,, 122


   

,,,, 2
12

2
1

2
12

4
12

122 uAguAAfAvvA


   

then, as for ,
6
71   we have 

4
3212   and ,1

2
12   using 

estimates (14), (35), for 0  exist 0C  such that 

222 2
1

4
32

00
4

32

 


ACuAUFCuA   ,1

2
1for   

(60) 

or .
6
71   The proof of the item (vi) of this lemma is finished. 



F. M. S. SUÁREZ and L. D. B. SOBRADO 36 

Proof. Item (vii): Taking the duality product between (12) and 

uA 23  and using (11), we get 

  uAguAAuiAvuA  


23232 ,,, 2
25

2
1

2
25

 

,,,, 23232 2
25

2
1

2
23

uAguAAfAvvA  


 

then, as for 
2
3

6
7   we have ,

4
12

2
23   the continuous 

embedding 21,)()( 21 rrAA rr DD   and using the inequalities Cauchy-

Schwartz and Young, for 0  exist 0C  such that 

222 4
12

2
25

00
2
25

vAuAUFCuA


     

 ,
2
3

6
7for22

1
  AC   (61) 

using estimates (14), (35), the proof of the item (vii) of this lemma is 

finished. 

Proof. Item (viii): Taking the duality product between (13) and vA 8
3

 

and using (12), we get 

vAhvAAviAvA 8
3

8
1

2
1

8
3

8
38

,,,2 



 

vAhvAAgAAuAA 8
3

8
1

2
1

8
3

16
38

8
5

,,,, 2 



 

216
38

8
5

8
38

8
5

,,, 


AuAhAuvAfA  

,,, 8
3

8
3

vAhgA


  

then, as for ,
8

11
2
1   we have ,

2
1

16
38   the continuous 

embedding 21,)()( 21 rrAA rr DD   and using the inequalities Cauchy-

Schwartz and Young, for 0  exist 0C  such that 
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22
2

22 2
1

8
38

00
8

38

 


ACuCvAUFCvA   

,
8

11
2
1for    (62) 

using estimates (14) and (23), the proof of the item (viii) of this lemma is 

finished. 

Proof. Item (ix): Taking the duality product between (12) and 

uA 12   and using (11), we get 

  uAguAAuiAvuA 123122 ,,, 2
3

2
1

2
12

 


 

,,,, 123122 2
3

2
1

2
12

uAguAAfAvvA  


 

then, as for ,1
2
1   we have 

8
38

2
12,

2
121

2
33   

and ,112   using estimates (14), (37), for 0  exist 0C  such 

that 

222 2
1

2
12

00
2

12

 


ACuAUFCuA   .1

2
1for   

(63) 

The proof of this lemma’s item (ix) is finished. 

Proof. Item (x): Taking the duality product between (12) and uA 23  

and using (11), we get 

  uAguAAuiAvuA  


23232 ,,, 2
25

2
1

2
25

 

,,,, 23232 2
25

2
1

2
23

uAguAAfAvvA  

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then, as for 
6
71   we have ,

8
38

2
23   the continuous 

embedding 21,)()( 21 rrAA rr DD   and using the inequalities Cauchy-

Schwartz and Young, for 0  exist 0C  such that 

2222 2
1

8
38

2
25

00
2
25

 


ACvAuAUFCuA   

,
6
71for   (64) 

using estimates (14) and (38), the proof of the item (x) of this lemma is 

finished.   

Lemma 9. Let .0  There exists 0C  such that the solutions of 

the system (3) for   and ,0  satisfy 

.
2
3

6
7

00
2
1

2   forUFCvA   (65) 

Proof. Taking the duality product between (13) and vA 1  and using 

(12), we get 

vAhvAAviAvA  


112 ,,, 2
23

2
1

2
1

 

gAAuAA ,, 122
1

2
25

2
1

 


 

,,, 12
23

2
1

vAhvAA 


 

then, as ,
2
3

6
7   we have: ,

2
1

2
23,01   the continuous 

embedding 21,)()( 21 rrAA rr DD   and using the inequalities Cauchy-

Schwartz and Young, for 0  exists ,0C  such that 
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}{ 2
1

222 2
1

2
25

2
1

vhCvAguACvA  


 

,
2
3

6
7for   (66) 

using estimates (14), (23) and (37), the proof of this lemma is finished. 

 

Lemma 10. Let .0  There exists 0C  such that the solutions of 

the system (3) for   and ,0  satisfy 

(i) ,
2
30][ 222

1





forUFCA    (67) 

(ii) ,
2
3

4
52

2 
 forUFCu    (68) 

(iii)   ,
2
3022

2
2

1 
 forUFCuv H

  (69) 

(iv) ,
2
30221 2

12







 forUFCvAvA    (70) 

(v) .
4
512 


 forUFCuA    (71) 

Proof. Item (i): Performing the product of duality between the 

Equation (17) and    AIA 2  and using the Equation (16), taking 

advantage of the self-adjointness of the powers of the operator ,A  we 

obtain 

   221222 2
1

2
1




AAiA  

       ,, 22 hAIAAvAI  

   222212 ,[ 2
1

AuAiAAi  

    22 ,, AgAIiAAi  

  ,,2 ihviAiAhAIA    
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then 

    


2
1

2
1

2
1

2
1

,221222 AuAiAAiA  

 
 2

3
2
1

2
5

2
1

,,21 AgAiAgAiAi  

 vAhivAhihiAhi 121 ,,,,    

 .[ 221 2
1
hAhAi

   

Taking real part and considering ,
2
3  and applying inequalities 

Cauchy-Schwartz and Young, for ,0  exists 0C  such that 

.
2
3for222

1














 UFCA   (72) 

Therefore, the proof of item (i) of this lemma is finished. 

Proof. Item (ii): Performing the product of duality between the 

Equation (15) and ,2uA  using (17) and taking advantage of the self-

adjointness of the powers of the operator ,A  we get 

AfAuuAhAiAfAuuAvAui ,,,, 222
2    

.,,,,, 22322 AfAuuAhuAAfAvA    

On the other hand, performing the product of duality between the 

Equation (16) and ,23 uA   using (15) and taking advantage of the self-

adjointness of the powers of the operator ,A  we get 

      uAgAIuiAvAIuAuAA  


2323223 ,,, 2
25

 

 fAvAvAvAuA
 

 22222 2
5

2
1

2
23

2
25

,  

 .,,,
222

2
7

2
1

2
5

2
1

2
7

2
1

uAgAuAgAfAvA


  

(74) 
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Using (74) in (73), we get 

AfAuuAhfAvAAui ,,,, 222
2

2
3

2
1

 
 

fAvAvAvAuA
 

 22222 2
5

2
1

2
23

2
25

,  

.,,,
222

2
7

2
1

2
5

2
1

2
7

2
1

uAgAfAgAfAvA


   (75) 

Taking imaginary part in (75), we get 

AfAuuAhfAvAAu ,,,,Im{ 222
2

2
3

2
1

 
 

fAvAfAvA



22

2
7

2
1

2
5

2
1

,,  

.},,
22

2
7

2
1

2
5

2
1

uAgAuAgA


    (76) 

Considering that ,
2
3

4
5   we have 

,
4
1

2
230,

4
32

2
1

4
1

2
30   

.12
2
7

2
1and02

2
5

2
1   

The continuous embedding ,,)()( 21
21 rrAA rr DD   we have 

AfAuAuhAfvACu  22
1

2
2

2
1

{   

 .}2
1

2
1

AugAAfvA    (77) 

Of the estimates (27), (18) and norm 


F  and ,


U  we have 

.
2
3

4
5for2

2 
  UFCu  (78) 

Therefore, the proof of item (ii) of this lemma is finished. 
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Proof. Item (iii): Performing the product of duality between the 

Equation (16) and u  and using the Equation (15), taking advantage of 

the self-adjointness of the powers of the operator ,A  we obtain 

  fgAIiiAuiAvu ,222
2 1  

H
 

  ivifgAIifivA   ,,  

.,,,, 2
1

2
1

1
2 vAgAivgivAiAfAuiv  
H

 

(79) 

On the other hand, taking the duality product between Equation (17) and 

 1A  and using the Equation (16), taking advantage of the self-

adjointness of the powers of the operator ,A  we obtain 

hvAivAivAiAi ,, 12222 2
12

2
1





 

 .,, 21 2
1
hAivAhihi

    (80) 

Adding (79) with (80), we get 

vAivgiAfAuivu  ,,,][ 222
2 1H

  

222 2
12

2
1

2
1

2
1

,, vAivAiAivAgAi


 
  

.,,Re2 21 2
1
hAihihvAi

    (81) 

Of identity ,,Re2],,[ vAivAvAi    taking real part of 

(81), we have 

.,,,,][ 2
1

2
1

1
222

2  hivAgAivgiAfAuivu
H

 

(82) 
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Applying Cauchy-Schwartz and Young inequalities and norms 


F  and 

,


U  the proof of item (iii) of this lemma is finished. 

Proof. Item (iv): Applying the product duality of (17) by 

  ,2 vAIA   we have 

221 2
12

vAvA


  

  ][, 22
5

2
1

gAIAuAAA  
 

vAhvAhvAAvAA 12 ,,,, 2
1

2
1

2
3

2
1


  

  gAAuAA 121 ,, 2
12

2
1

 


 

vAhvAAvAA 2,,, 2
12

2
1

2
32

2
1




 

.,, 1 gvAh    

Considering ,
4
51   we have ,

2
112   using (27) and (18) 

and applying Cauchy-Schwartz and Young inequalities, led .0  There 

exists a constant 0C  such that 

.
2
31for22

12






  UFCvA   (83) 

Therefore, the proof of item (iv) of this lemma is finished. 

Proof. Item (v): Applying the product duality of (16) by uA 22   and 

using (11), we have 

    uAIgAuAAuiAIvAuA   ,,, 2222222  

fAvAfAvAvAvA 2
34

2
1

2
54

2
1

2
12

,,221


   

.,,, 2
34

2
1

2
54

2
1

2
56

2
1

uAgAuAgAuAA


  
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Considering ,
4
51   we have 1

2
34

2
54,

2
1222   

and ,
2

54   using (18) and (27), applying Cauchy-Schwartz and 

Young inequalities, led .0  There exists a constant 0C  such that 

.
4
51for22 2

12









 UFCvAwuA  (84) 

Therefore, using estimative (70) the proof of item (v) of this lemma is 

finished. 

Lemma 11. The semigroupC -0  of contractions    tetS  on a 

Hilbert space ,  satisfy 

    .0  forii   (85) 

Proof. The test for both cases 0  and ,0  are standards. For 

the case 0  consult [4], item (i) of Lemma 4.3, or [1]. 

For the case 0  consult [21], Theorem 2.4. 

 

3.1.1. Analyticity of   


tetS   for 0  

In this subsection, it will be shown that the semigroup  tS0  for 

0  is analytic when the parameter 1  and we also show that 

 tS  for 0  is analytic for .
2
3,

4
5





  

Theorem 12. The semigroup   0
0

tetS   is analytic for .1  

Proof. A proof of this theorem will be using the Theorem 5, therefore 

we must verify the conditions (19) and (21). 

The verification of the condition (19) was justified in the Lemma 11, 

next we will verify the condition (21) for   .0
0

tetS   
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Taking 1  and the duality product between Equation (13) and   

,,, 2
1

2
1

2
1

2  hAvAi  

taking real part and using Cauchy-Schwartz and Young inequalities and 

item (ii) of Lemma 8 and estimative (14), we have 

.1for
00

2    UFC  (86) 

On the other hand, from item (ii) of Lemma 8, we have 

.1for
00

22
2    UFCCu   (87) 

Using estimative (86) in (87), we have 

.1for
00

2
2    UFCu   (88) 

Finally, using (86) and (88) in estimative (31) (item (i) of Lemma (8)), we 

get 

.1for
00

2    UFCv   (89) 

Therefore of the estimates (86), (88) and (89), we finish the proof of this 

theorem. 

 

Theorem 13. The semigroup   
tetS  for 0  is analytic for 

.
2
3,

4
5





  

Proof. Now, proof of this theorem will be using the Theorem 5, 

therefore we must verify the conditions (19) and (21). 

The verification of the condition (19) was justified in the Lemma 11, 

next we will verify the condition (21) for   ,
etS  where ,0  i.e., 

.
4
3

4
5for][ 222

2 1 
  UFCvu

H
  (90) 
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Adding the inequalities of the items (i) and (ii) of the Lemma 10, we 

obtain 

.
4
3

4
5for][ 22

2 
  UFCu   (91) 

Finally, using estimativel (91) in (69) (Item (iii) of Lemma 10), we 

conclude the proof this theorem.   

3.1.2. Lack of analyticity of   


tetS   for 0  

The study of the lack of analyticity of   ,
tetS  will be carried out 

in two stages, the first for 0  and the second .0  

Stage 1: .0  Since the operator linear A  is strictly positive, self-

adjoint and it has compact resolvent, its spectrum is constituted by 

positive eigenvalues  n  such that n  as .n  For ,n  we 

denote with ne  an unitary norm-)( 0AD  eigenvector associated to the 

eigenvalue ,n  that is, 

.,1,  neeAe nnnn  (92) 

Theorem 14. The semigroup   0
0

tetS   is not analytic for 

  .],1(1,0
2
3  

Proof. We apply Theorem 5 to show this result. Consider the 

eigenvalues and eigenvectors of the operator A  as in (98). Let 

.),,0( 022
 nn ee

nF  The solution  nnnn vuU  ,,  of the system 

  nnn FUIi  0  satisfies nnn uiv   and the following equations: 

,
2

22 n
nnnn

e
AuAu    

.
2
n

nnnnn
e

uAiAi    
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Let us see whether this system admits solutions of the form 

,, nnnnnn eeu   

for some complex numbers n  and .n  Then, the numbers nn ,  

should satisfy the algebraic system 

,
2
1}{ 22  

nnnnn    (93) 

  .
2
1 

nnnnnn ii    (94) 

At this point, we introduce the numbers 

.: 22
nn   

Thus, if we introduce the notation nn yx   meaning that 
n

n
n y

x


lim  is a 

positive real number, we have that 

.nn   

And .
2

1



n

n  From (99)-(100), we find 

    

   


















.1forii

1fori

22 1

22
21

n

nn
nnn

i   (95) 

Therefore, from (95), the solution nU  of the system   nnn FUi  0  

for ,00 K  satisfy 

 
 







 



.1forii

,1fori 21

000
n

n
nnnnn eKvKU   

(96) 
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Then 

 
 








 



.1forii

,1fori
1

22

00
n

n
nn KU    (97) 

Therefore for (i) of (97) 
0nn U  for 10   and for (ii) of (97) 


0nn U  for 1

2
3   approaches infinity as .n  

Therefore the (20) condition fails. Consequently for   ,],1(1,0
2
3  the 

semigroup  tS0  is not analytic. This completes the proof of this theorem. 

Remark. We can observe from (i) of (96), that when 
2
1  to 

semigroup  tS0  is not exponential. 

 

Stage 2: .0  Now, since the operator linear A  is strictly positive, 

self-adjoint and it has compact resolvent, its spectrum is constituted by 

positive eigenvalues  n  such that n  as .n  For ,n  we 

denote with ne  an unitary norm-1H  eigenvector associated to the 

eigenvalue ,n  that is, 

.,1, 1  neeAe nnnn H   (98) 

Theorem 15. The semigroup   
tetS  for 0  is not analytic 

for .,0[
4
5  

Proof. We apply Theorem 5 to show this result. Consider the 

eigenvalues and eigenvectors of the operator A  as in (98). Let 

  .0,,0  nn eF  The solution  nnnn vuU  ,,  of the system 

  nnn FUIi    satisfies nnn uiv   and the following equations: 

    ,22
nnnnn eAIAuAuAI    

.0 
nnnnn uAiAi  
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Let us see whether this system admits solutions of the form 

,, nnnnnn eeu   

for some complex numbers n  and .n  Then, the numbers nn ,  

should satisfy the algebraic system 

   ,1}1{ 22
nnnnnnn    (99) 

  .0 
nnnnnn ii    (100) 

At this point, we introduce the numbers 

.
1

:
2

2

n

n
n 


  

Thus, if we introduce the notation nn yx   meaning that 
n

n
n y

x


lim  is a 

positive real number, we have that 

.2
nn   

From (99)-(100), we find 

.
1 43}2,21max{

2

2

2
2
3 












 nn

nn

n

n

n
n i  

Therefore, the solution nU  of the system   nnn FUi    for 

,0K  satisfy  

.44
11


 

 nnnnnn KeKvKU HH   (101) 

Then 

.45 
 


KUnn   
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Therefore 
nn U  for 

4
5  approaches infinity as .n  

Therefore the (20) condition fails. Consequently for 
4
5  to semigroup 

 tS  is not analytic. This completes the proof of this theorem. 

Remark. We can observe from (101), that when 1044   

to semigroup  tS  is not exponential. 

 

3.2. Sharp Gevrey-class, for 0  

In this section, we discuss the Gevrey class of the semigroup 

  ,tetS   in two cases: In the first case we determine the Gevrey class 

of  tS0  and in the second we determine the Gevrey class of  tS  both 

determined Gevrey classes are Sharp. 

Before exposing our results, it is useful to recall the next definition 

and result presented in [7] (adapted from [22], Theorem 4, p. 153). 

Definition 16. Let 00 t  be a real number. A strongly continuous 

semigroup  ,tS  defined on a Banach space ,  is of Gevrey class 1s  

for ,0tt   if  tS  is infinitely differentiable for ,0tt   and for every 

compact set   ,0tK  and each ,0  there exists a constant 

  0,  KCC  such that 

       ,! snn nCtS   for all .2,1,0,  nKt  (102) 

In this paper, we will use the following standard results to identify 

analytic or Gevrey class semigroups, based on the estimation for the 

resolvent of the generator of the semigroup. 
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Theorem 17 ([22]). Let  tS  be a strongly continuous and bounded 

semigroup on a Hilbert space .  Suppose that the infinitesimal generator 

  of the semigroup  tS  satisfies the following estimate, for some 

.10   

    .suplim 1  
 Ii  (103) 

Then  tS  is of Gevrey class s for ,0t  for every .1


s  

Remark 18. Note that showing the condition (103) is enough to show 

that: Let .0  There exists a constant 0C  such that the solutions of 

the system (3) for ,  satisfy the inequality 

.0for2 
















UFCUC

F

U
  (104) 

Lemma 19. Let .0  There exists 0C  such that the solutions of 

the system (3) for   and ,0  satisfy 

(i) .1
2
1

00

2  
 forUFCuA   

(ii) .1
2
1

00
12

1
2  




forUFCA   

(iii) .
2
31

00
2

1
2  


forUFCA   

(iv) .
2
31

00
2

5522
2  


forUFCuA   

Proof. (i) Using (11) in (13), we get 

.hAifAuAi    (105) 
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Performing the product of duality between the Equation (105) and ,uA  

using (11) and taking advantage of the self-adjointness of the powers of 

the operator ,A  we get 

 uiAAuAfAuAi 
 2

1
2
1

,,2  

uAhuAA 


,, 2
12

2
1

 

 fAvAAuAfA   ,,, 2
1

2
1

 

,,, 2
12

2
1

uAhuAA 


 

as 1
2
1   and ,

8
38

2
1   using items (viii) and (ix) of Lemma 8 

and (14), applying Cauchy-Schwartz and Young inequalities and 

continuous embedding ,,)()( 12
12  AA DD   finish to proof this 

item. 

(ii) Performing the product of duality between the Equation (13) and 

 
,12

12




A  using (11) and taking advantage of the self-adjointness of the 

powers of the operator ,A  we get 

   
 

.,, 12
12

122
34

2122
34

212
1

2
1

2

 











AhAvAAAi   

(106) 

As for ,1
2
1   we have   8

38
122
34 2 


  and 

 
,0

12
12 




 taking 

imaginary part, applying Cauchy-Schwartz and Young inequalities, 

continuous embedding 12,)()( 12  AA DD   and item (viii) Lemma 

8 and estimative (14), finish to proof this item. 
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(iii) Now, performing the product of duality between the Equation 

(13) and ,1 A  using (11) and taking advantage of the self-adjointness of 

the powers of the operator ,A  we get 

.,, 122 2
1

2
1

2
2

2
1

 


AhAvAAAi  (107) 

As ,
8
7

8
38

2
1   using continuous immersions and item (viii) of 

Lemma 8, we have 

.
8

11
8
7for

00
2
1

2    UFCvA  (108) 

On the other hand, performing the product of duality between the 

Equation (13) and ,1 vA   using (12) and taking advantage of the self-

adjointness of the powers of the operator ,A  we get 

vAhvAAviAAvA 
 12 ,,, 2

3
2
1

2
1

2
1

2
1

 

gAAuAA ,, 122
1

2
5

2
1

 
 

.,, 12
3

2
1

vAhvAA 
  

Applying Cauchy-Schwartz and Young inequalities and using estimates 

(14), item (vii) of Lemma 8, for ,0  exists 0C  such that 

,
2
3

6
7for22 2

3

00
2
1




 vAUFCvA   (109) 

then, as for 
2
3

6
7   we have ,

2
1

2
3   using continuous embedding 

12,)()( 12  AA DD   in (109), we arrive 

,
2
3

6
7for

00
2
1

2    UFCvA  (110) 
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Taking real part in (107) and applying Cauchy-Schwartz and Young 

inequalities and using estimates (14), (108) and (110), we finished the test 

of this item. 

(iv) Now, performing the product of duality between the Equation 

(105) and ,562 2
uA   using (11) and taking advantage of the self-

adjointness of the powers of the operator ,A  we get 

uiAAuAAfuAi 



2
9

624522
2

2
12

2
5522

,,  

,,, 5622
11

62 22
2
1

uAhuAA 
   (111) 

using Cauchy-Schwartz and Young inequalities in (111), we get 

uAhuAAfCuA 5624522 22
2

5522
{  


 

vAAuAA 2
9

6222
11

622
2

2
12

2
1

,}


  

., 2
9

62 2
2
1

fAA


  

As, for ,
2
31   we have:  62,1452562 222  

2
25

2
11   and .1

2
1

2
962 2   Using now Young inequality, 

continuous immersions and estimates: (108), (110), items (vii) and (x) of 

Lemma 8, finish proof this item. 

 

Lemma 20. Let .0  There exists 0C  such that the solutions of 

the system (3) for   and ,0  satisfy 

.
4
5124

14






 forUFCuA   
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Proof. Using (15) in (17), we get 

.hAifAuAi    (112) 

Performing the product of duality between the Equation (112) and 

,2
12

uA


 using (15) and taking advantage of the self-adjointness of the 

powers of the operator ,A  we get 

 uiAAuAAfuAi  
122 ,, 2

1
2
3

4
14

 

uAhuAA 2
12

2
1

,,


   

fAAvAAuAAf 112
,,, 2

1
2
1

2
3


  

,,, 2
12

2
1

uAhuAA


   

as for ,
4
51   we have: and 11,1

2
32   and ,1

2
12   

using items (iv) and (v) of Lemma 10 and estimative (18), applying 

Cauchy-Schwartz and Young inequalities and continuous embedding 

,,)()( 12
12  AA DD   finish to proof this lemma. 

 

Our main result in this subsection is as follows: 

Theorem 21. Let   
tetS  strongly continuous-semigroups of 

contractions on the Hilbert space ,  the semigroups  tS  are of 

Grevrey class s  for every: 

 

 

   


































 .

4
510

14
11iii

,
2
3101ii

,1
2
10

12
11i

02
02

01
01

andfors

andfors

andfors
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If the estimates to follow are verified 

     

     

       






































.suplim,1,0iii

,suplim,1,0ii

,suplim,1,0i

114
4
5

1
02

3

1
0

12
2
1

0

1

0













Iifor

Iifor

Iifor

 

(113) 

Proof. From (104) (Remark 18). To show the estimates of (113), it 

suffices to show are equivalent to, let .0  There exists 0C  such 

that 

 

 

   





























.,
4
51and0foriii

,,
2
31and0forii

,,1and0fori

214

2

212
2
1

000

1
000







UFCU

UFCU

UFCU

 

 (114) 

Case (i): 0  and .1
2
1    

We are going to initially prove that for ,1
2
1   it is verified: 

00

212
 UFCu 

   and .
00

212
 UFC

    (115) 

As for ,1
2
1   we have .

2
12,[1   We are going to use an 

interpolation inequality. Since 

  ,12for,
2

1211 




   
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using inequalities of item (ix) Lemma 8 and Lemma 19, we get that 




 22122
2

2
12
uAuACu  

.}{}{ 221221
0000


   UFUFC  

Where do we conclude the proof of   .115 1  

As for ,1
2
1   we have .

2
1,

12
1[0

  We are going to use an 

interpolation inequality. Since 

  ,
2
11

12
10 







  for 12   and ,221   

using inequalities of item (ix) Lemma 8 and Lemma 19, we get that 

 





22122 2
12

12
1

AAC  

.}{}{ 221221
0000


   UFUFC  

Where do we conclude the proof of   .115 2  

Equivalently, 

  ,1
2
1for,

00

122
2  


 UFCu   (116) 

and 

  .1
2
1for,

00

122  


 UFC   (117) 

Applying (116) and (117) in estimative (31) (item  1i  Lemma 8), we have 

  .1
2
1for,

00

122  


 UFCv  (118) 

Finally, from estimates (116)-(118), finish to proof this is Case (i). 
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Case (ii): 0  and :
2
31    

Remark. Next, for ,
2
31   we are going to test the following 

estimates: 

.and
00

1

00

1 22
2  UFCUFCu      (119) 

As for ,
2
31   we have .

2
25,

2
5521

2








   We are going to 

use an interpolation inequality. Since 

  ,
2
251

2
5521

2





 







   for ,11and1




  

using the items (vii) and (x) of the Lemma 8 and item (iv) of Lemma 19, 
we get that 









11

2

2
25

2
552

2
2 uAuACu  

.}{}{
1

00

1

00

1






   UFUFC  

Where do we conclude the proof of   .119 1  

On the other hand, as for ,
2
31   we have .

2
1,

2
10 



   We 

are going to use an interpolation inequality. Since 

  ,
2
11

2
10 





    for  


 1   and  ,11


  

using inequalities (14) and item (iii) of Lemma 19, we get that 








1

2
11

2
1

2 AAC  

.}{}{
1

00

1

00

1






   UFUFC  

Where do we conclude the proof of   .119 2  
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Adding the two estimates of (119), we arrive 

 .
2
31for[

00

122
2  



 UFCu  (120) 

Applying (120) in estimative (31) (item  1i  Lemma 8), we have 

.
2
31for

00

1

0

2  


 UFCU   (121) 

Where did we finish to prove this is Case (ii). 

Case (iii): 0  and :
4
51    

Next we are going to prove that for ,
4
51   it is verified: 

  .2
2

14


   UFCu  (122) 

As for ,
4
51   we have .],

4
14[1   We are going to use an 

interpolation inequality. Since 

    ,451and14for,1
4

141 




   

using the item (v) of the Lemma 10 and Lemma 20, we get that 

  


 45142
2

4
14

uAuACu  

        .}{}{ 451414
0


 
  UFUFC  

Where do we conclude the proof of (122). Then 

.
4
51for,452

2 



  UFCu  (123) 
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From estimative (67), we have 

.
2
30for,2 

  UFC   (124) 

Adding the inequalities (123) and (124), we obtain 

  .
4
5

4
5for,4522

2 



  UFCu  (125) 

Finally, using estimative (125) in (69) (item (iii) of Lemma 10), we finish 

the proof of item (iii) of this theorem. 

 

Remark 22 (Gevrey Sharp Class).  The Gevrey classes determined 

above are Sharp, by the meaning of Sharp given by the theorem to follow: 

Theorem 23. The functions   1201   for    


 1,1,2/1 02  

for 
2
3,1(  and    14   for  4/5,1  that determine the 

Gevrey classes of the semigroups    tStS 0201 ,  and  ,tS  respectively are 

sharp, in the sense: If 

 

 







































,
4
51114

014:

,
2
3112

01:

,1
2
1112

012:

021

02010002

01

01010001

and

thatsuchallfor

and

thatsuchallfor

and

thatsuchallfor

  (126) 
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then  






























 .

4
511

,
2
311

,1
2
11

02
02

01
01

fors

fors

fors

  (127) 

They are not Gevrey classes of the semigroups    tStS 0201 ,  or  ,tS  

respectively. 

Proof. We will use the results obtained in the Theorem 21 and the 

estimates determined in the Equations (96) for 0  and (101) for 

,0  to prove this theorem, i.e., from the estimates (96) and (101), we 

have 

 























































.when

,

and,when

,

,when

,

124

0202

01
12

01

02
0

02
1

0
02

01
0

01
0

01

n

nnnnn

n

nnnnn

n

nnnnn

KUKU

KUKU

KUKU







 

Therefore 0201 ,   and   it does not verify the (113) condition for 

0  of the Theorem 21 concerning class Gevrey. 

Then the Gevrey classe 


 0201 ,
12

1 ss  and  14
1


s  

they semigrupos  tS0  and  ,tS  respectively are Sharp.   

We emphasize that in the tree since the determined Gevrey class is 

sharp, we conclude that for this case the semigroups   wt
w etS A  is also 

not analytic. 
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Remark 24 (Asymptotic Behaviour). A semigroup  tS  of class 

Gevrey has more regular properties than a differentiable semigroup but 

is less regular than an analytic semigroup. It should be noted that the 

Gevrey class or the analyticity of the particular model implies three 

important properties. The first is the property of the smoothing effect on 

the initial data, that is, no matter how irregular the initial data is, the 

model solutions are very smooth in positive time. The second property is 

that systems are exponentially stable. And the third is that the systems 

associated with the semigroup enjoy the property of linear stability, 

which means that the type of the semigroup is equal to the spectral limit 

of its infinitesimal operator. Specifically speaking of this investigation 

system (3). The associated semigroups   
tetS  for ,0  are 

exponentially stable. The proof is a consequence of Lemmas 7 and 11: In 

the case  tS0;0  is exponentially stable for  2/3,2/1  and for the 

case  tSw;0  is exponentially stable for  .2/3,1  
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