Journal of Mathematical Sciences: Advances and Applications Volume 72, 2023, Pages 41-47 Available at http://scientificadvances.co.in DOI: http://dx.doi.org/10.18642/jmsaa_7100122277

REFINEMENTS OF SINGULAR VALUE INEQUALITIES FOR POSITIVE SEMIDEFINITE MATRICES

RONG MA and FENG ZHANG

Department of Mathematics Southeast University Chengxian College Nanjing 210000 P. R. China e-mail: marong_730@163.com fzhang1024@163.com

Abstract

We obtain several inequalities relating the singular values of $AX - XB$ and $AX + XB$ for positive semidefinite matrices A, B . These results are refinement of Audeh's result.

2023 Scientific Advances Publishers

http://creativecommons.org/licenses/by/3.0/deed.en_US

²⁰²⁰ Mathematics Subject Classification: 15A18, 15A42, 15A60.

Keywords and phrases: positive semidefinite matrix, singular values, inequality. Received March 30, 2023

This work is licensed under the Creative Commons Attribution International License (CC BY 3.0).

42 RONG MA AND FENG ZHANG

1. Introduction

We denote by M_n the vector space of all complex $n \times n$ matrices. The notation $A \geq 0$ is used to mean that A is positive semidefinite. The singular values of A are enumerated as $s_1(A) \geq s_2(A) \geq \cdots \geq s_n(A)$. These are the eigenvalues of the positive semidefinite matrix $A := (A^*A)^{\frac{1}{2}}.$ IG MA AND FENG ZHANG

1. Introduction

e vector space of all complex $n \times n$ matrices. The

to mean that A is positive semidefinite. The

re enumerated as $s_1(A) \geq s_2(A) \geq \cdots \geq s_n(A)$.

alues of the positive semidefinite m

Let $A, B \in M_n$, the singular value inequality [1]

$$
s_j(A-B) \le s_j \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}, \tag{1}
$$

for $A \geq 0$ and $B \geq 0$, aroused much interest and several alternate proofs were given. Of these the one germane to our discussion occurs in the paper of Audeh [3]. He obtained a singular value inequality for generalized commutator $AX - XB$.

For $A, B, X \in M_n$, a matrix of the form $AX + XA$ is called anticommutator, and a matrix of the form $AX + XB$ is called a generalized anticommutator. For recent studies and details for generalizations of singular value inequalities for generalized anticommutator, we refer to [3]-[5].

It is remarkable that generalized commutator and generalized anticommutator give striking results on many topics, including similarity, commutativity, hyperinvariant subspaces, spectral operators, and differential equations. Bhatia and Rosenthal [2] showed how these are useful in perturbation theory. In this paper, we refine Theorems 2.4 and 2.7 in [3].

2. Main Results

We begin this section with the following lemmas, which plays an important role in our discussion.

Lemma 1. Let $A, B \in M_n$. Then

$$
s_j(AB^*) \le s_j \left(\frac{|A|+|B|}{2}\right)^2. \tag{2}
$$

Proof. By the definition of singular values and Theorem 2.1 in [6], we have

$$
s_j(AB^*) = \sqrt{\lambda_j(A^*AB^*B)}
$$

$$
\leq \lambda_j \left(\frac{|A|+|B|}{2}\right)^2
$$

$$
= s_j \left(\frac{|A|+|B|}{2}\right)^2.
$$

Lemma 2 ([7]). If $0 \le A \le B$. Then $s_j(A) \le s_j(B)$.

Our first result is the following singular value inequality for generalized commutator, which is a refinement of Theorem 2.4 in [3].

Theorem 3. Let $A, B, X \in M_n$ with $A \geq 0, B \geq 0$. Then

$$
s_j((AX - XB) \oplus 0)
$$

$$
\leq \frac{1}{4} s_j \left(\begin{pmatrix} A & A^{\frac{1}{2}} X B^{\frac{1}{2}} \\ A^{\frac{1}{2}} X B^{\frac{1}{2}} \end{pmatrix}^{\frac{1}{2}} + \begin{pmatrix} A^{\frac{1}{2}} |X^*|^2 A^{\frac{1}{2}} & -A^{\frac{1}{2}} X B^{\frac{1}{2}} \\ -A^{\frac{1}{2}} X B^{\frac{1}{2}} \end{pmatrix}^{\frac{1}{2}} \right)^2
$$
\n
$$
\leq \frac{1}{2} s_j \left(A + A^{\frac{1}{2}} |X^*|^2 A^{\frac{1}{2}} \right) \qquad B + B^{\frac{1}{2}} |X|^2 B^{\frac{1}{2}} \right)
$$

for $j = 1, 2, \dots, 2n$.

Proof. Let
$$
C = \begin{pmatrix} A^{\frac{1}{2}} & X B^{\frac{1}{2}} \\ 0 & 0 \end{pmatrix}
$$
, $D^* = \begin{pmatrix} A^{\frac{1}{2}} X & 0 \\ -B^{\frac{1}{2}} & 0 \end{pmatrix}$.

Then for $j = 1, 2, \dots, 2n$, we get

$$
s_j((AX - XB) \oplus 0)
$$
\n
$$
= s_j(CD^*)
$$
\n
$$
\leq s_j \left(\frac{|C| + |D|}{2}\right)^2
$$
\n
$$
= \frac{1}{4} s_j \left[\left(A + \frac{A^{\frac{1}{2}}XB^{\frac{1}{2}}}{A^{\frac{1}{2}}XB^{\frac{1}{2}}}\right)^{\frac{1}{2}} + \left(A^{\frac{1}{2}}|X^*|^2A^{\frac{1}{2}} - A^{\frac{1}{2}}XB^{\frac{1}{2}}\right)^{\frac{1}{2}}\right]^2
$$
\n
$$
\leq \frac{1}{2} s_j \left(A + A^{\frac{1}{2}}|X^*|^2A^{\frac{1}{2}} - 0\right)
$$
\n
$$
B + B^{\frac{1}{2}}|X|^2B^{\frac{1}{2}}.
$$

where the first inequality follows from the inequality (2) and the second inequality is due to $\left(\frac{A+D}{2}\right) \leq \frac{A+D}{2}$ $\left(\frac{A+B}{2}\right)^2 \leq \frac{A^2+B^2}{2}$ $\left(\frac{A+B}{2}\right)$ $\left(\frac{A+B}{2}\right)^2 \le \frac{A^2+B^2}{2}$ and Lemma 2.

Next, we present the following refinement of Theorem 2.7 in [3], which is singular value inequality for generalized anticommutator. To reach our findings, we need the following lemmas:

Lemma 4 ([8]). If $0 \le A \le B$. Then $0 \le A^r \le B^r$ for $r \in [0, 1]$.

Lemma 5 ([8]). Let $A \in M_n$. Then

$$
\begin{pmatrix} 0 & A^* \\ A & 0 \end{pmatrix} \le \begin{pmatrix} |A| & 0 \\ 0 & |A^*| \end{pmatrix}.
$$

REFINEMENTS OF SINGULAR VALUE INEQUALITIES … 45

Theorem 6. Let $A, B, X \in M_n$ with $A \geq 0, B \geq 0$. Then

 $s_j((AX+XB) \oplus 0)$

$$
\leq \frac{1}{4} s_j \left(\begin{pmatrix} A & A^{\frac{1}{2}} X B^{\frac{1}{2}} \\ A^{\frac{1}{2}} X B^{\frac{1}{2}} \end{pmatrix}^* - B^{\frac{1}{2}} |X|^2 B^{\frac{1}{2}} \right)^{\frac{1}{2}} + \begin{pmatrix} A^{\frac{1}{2}} |X^*|^2 A^{\frac{1}{2}} & A^{\frac{1}{2}} X B^{\frac{1}{2}} \\ A^{\frac{1}{2}} X B^{\frac{1}{2}} \end{pmatrix}^* - \begin{pmatrix} A^{\frac{1}{2}} |X^*|^2 A^{\frac{1}{2}} & A^{\frac{1}{2}} X B^{\frac{1}{2}} \\ A^{\frac{1}{2}} X B^{\frac{1}{2}} \end{pmatrix}^* - B
$$
\n
$$
\leq \frac{1}{2} s_j \left(A + A^{\frac{1}{2}} |X^*|^2 A^{\frac{1}{2}} + 2 \left| A^{\frac{1}{2}} X B^{\frac{1}{2}} \right| \right), \qquad B + B^{\frac{1}{2}} |X|^2 B^{\frac{1}{2}} + 2 \left| A^{\frac{1}{2}} X B^{\frac{1}{2}} \right| \right),
$$

for $j = 1, 2, \dots, 2n$.

Proof. Let
$$
C = \begin{pmatrix} A^{\frac{1}{2}} & X B^{\frac{1}{2}} \\ 0 & 0 \end{pmatrix}
$$
, $F^* = \begin{pmatrix} A^{\frac{1}{2}} X & 0 \\ B^{\frac{1}{2}} & 0 \end{pmatrix}$,

$$
S = \begin{pmatrix} A + \left| \left(A^{\frac{1}{2}} X B^{\frac{1}{2}} \right)^* \right| & 0 \\ 0 & B^{\frac{1}{2}} |X|^2 B^{\frac{1}{2}} + \left| A^{\frac{1}{2}} X B^{\frac{1}{2}} \right| \end{pmatrix}
$$

and

$$
T = \begin{pmatrix} A^{\frac{1}{2}} |X^*|^2 A^{\frac{1}{2}} + \left| \left(A^{\frac{1}{2}} X B^{\frac{1}{2}} \right)^* \right| & 0 \\ 0 & B + \left| A^{\frac{1}{2}} X B^{\frac{1}{2}} \right| \end{pmatrix}.
$$

Then for $j = 1, 2, \dots, 2n$, we obtain $s_i((AX + XB) \oplus 0)$ $= s_j(CF^*)$ 2 $\frac{1}{2}$ $\left(\frac{|C|+|F|}{2}\right)$ $\leq s_j\left(\frac{|C|+|F|}{2}\right)$ 2 2 2 $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{\text{Z}}$ $\frac{1}{2}$ $\left(\frac{1}{4^{\frac{1}{2}}} |X^*|^2 \frac{1}{4^{\frac{1}{2}}} \right)$ $4^{\frac{1}{2}} \frac{x}{4^{\frac{1}{2}}}$ $\frac{1}{2}\frac{1}{XB^{\frac{1}{2}}}\Big)^{*}$ $\frac{1}{B^{\frac{1}{2}}|X|^{2}B^{\frac{1}{2}}}$ $\frac{1}{2}$ $\chi R^{\tfrac{1}{2}}$ 4 1 $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ J Ì L L L L L L ſ $\overline{}$ $\overline{}$ \mathbf{I} \mathbf{I} J λ L L L L L ſ \vert J λ $\overline{}$ $\overline{\mathcal{L}}$ $+$ $\left($ $\overline{}$ \downarrow \downarrow Ј Ì $\overline{}$ \mathbf{r} L L ſ \vert J Ì I \setminus $=\frac{1}{4} s_j \left| \left| \left(\frac{1}{4.2 \times 2.2} \right)^* \right| \right|$ $\left| \left(\frac{1}{4.2 \times 2.2} \right)^2 \right|$ $\left| \left(\frac{1}{4.2 \times 2.2} \right)^* \right|$ * * A^2XB^2 B $A^2|X^*|^2A^2$ A^2XB A^2XB^2 $B^2|X|^2B$ $A^2 X B$ s_j 2 $rac{1}{2}$ + $T^{1/2}$ 4 1 \vert J Ì I \backslash $\leq \frac{1}{4} s_j \left(S^{\frac{1}{2}} + T \right)$, 0 $B + B^2|X|^2B^2 + 2$ $2||A^2XB^2||$ 0 2 1 $\frac{1}{2}|X|^2 R^{\frac{1}{2}} + 2 \Big| A^{\frac{1}{2}} X R^{\frac{1}{2}}$ $\frac{1}{2}|X^*|^2 A^{\frac{1}{2}} + 2 \left| \frac{1}{2 X R^2} \right|$ 2 2 $\overline{}$ \downarrow \downarrow \downarrow \downarrow Ј λ L L L L L L ſ $+ B^2 |X|^2 B^2 +$ $\overline{}$ J λ $\overline{}$ L $+A^{\frac{1}{2}}|X^*|^2A^{\frac{1}{2}}+2\Big|$ \leq * × $B + B^2 |X|^2 B^2 + 2 |A^2 X B$ $A + A^2|X^*|^2 A^2 + 2||A^2 XB$ sj

where the first inequality follows from the inequality (2), the second inequality is due to Lemmas 2, 4 and 5 and the third inequality is a direct result of matrix inequality $\left(\frac{A+B}{2}\right) \leq \frac{A-B}{2}$ $\left(\frac{A+B}{2}\right)^2 \le \frac{A^2+B^2}{2}$ $\left(\frac{A+B}{2}\right)$ $\left(\frac{A+B}{2}\right)^2 \leq \frac{A^2+B^2}{2}$ and Lemma 2. \Box

References

 [1] X. Zhan, Singular values of differences of positive semidefinite matrices, SIAM Journal on Matrix Analysis and Applications 22(3) (2001), 819-823.

DOI: https://doi.org/10.1137/S0895479800369840

 [2] R. Bhatia and P. Rosenthal, How and why to solve the operator equation $AX - XB = Y$, Bulletin of the London Mathematical Society 29(1) (1997), 1-21.

DOI: https://doi.org/10.1112/S0024609396001828

 [3] W. Audeh, Singular value inequalities and applications, Positivity 25(3) (2020), 843-852.

DOI: https://doi.org/10.1007/s11117-020-00790-6

 [4] A. Al-Natoor and F. Kittaneh, Singular value and norm inequalities for positive semidefinite matrices, Linear and Multilinear Algebra 70(19) (2022), 4498-4507.

DOI: https://doi.org/10.1080/03081087.2021.1882373

 [5] J. Zhao, Singular value and unitarily invariant norm inequalities for sums and products of operators, Advances in Operator Theory 6 (2021); Article 64, page 1-14.

DOI: https://doi.org/10.1007/s43036-021-00160-3

 [6] X. Xu and C. He, Inequalities for eigenvalues of matrices, Journal of Inequalities and Applications 1 (2013); Article 6, page 1-6.

DOI: https://doi.org/10.1186/1029-242X-2013-6

- [7] R. Bhatia, Positive Definite Matrices, Princeton University Press, 2007.
- [8] R. Bhatia, Matrix Analysis, Springer, 1997.

п