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Abstract 

We obtain several inequalities relating the singular values of XBAX   and 

XBAX   for positive semidefinite matrices ., BA  These results are 

refinement of Audeh’s result.  
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1. Introduction 

We denote by nM  the vector space of all complex nn   matrices. The 

notation 0A  is used to mean that A  is positive semidefinite. The 

singular values of A  are enumerated as      .21 AsAsAs n   

These are the eigenvalues of the positive semidefinite matrix 

.)(: 2
1

AAA   

Let ,, nMBA   the singular value inequality [1] 
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B

A
sBAs jj   (1) 

for 0A  and ,0B  aroused much interest and several alternate proofs 

were given. Of these the one germane to our discussion occurs in the 

paper of Audeh [3]. He obtained a singular value inequality for 

generalized commutator .XBAX   

For ,,, nMXBA   a matrix of the form XAAX   is called 

anticommutator, and a matrix of the form XBAX   is called a 

generalized anticommutator. For recent studies and details for 

generalizations of singular value inequalities for generalized 

anticommutator, we refer to [3]-[5]. 

It is remarkable that generalized commutator and generalized 

anticommutator give striking results on many topics, including similarity, 

commutativity, hyperinvariant subspaces, spectral operators, and 

differential equations. Bhatia and Rosenthal [2] showed how these are 

useful in perturbation theory. In this paper, we refine Theorems 2.4 and 

2.7 in [3]. 

2. Main Results 

We begin this section with the following lemmas, which plays an 

important role in our discussion. 
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Lemma 1. Let ., nMBA   Then 
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sABs jj   (2) 

Proof. By the definition of singular values and Theorem 2.1 in [6], we 

have 

)()( BABAABs jj
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Lemma 2 ([7]). If .0 BA   Then    .BsAs jj   

Our first result is the following singular value inequality for 

generalized commutator, which is a refinement of Theorem 2.4 in [3]. 

Theorem 3. Let nMXBA ,,  with .0,0  BA  Then 
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for .2,,2,1 nj   
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Proof. Let .
0
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Then for ,2,,2,1 nj   we get 

  0 XBAXs j  

)(  CDs j  

2

2 





 


DC

s j  

2

2

2

2
1

2
1

2
1

2
1

2
1

2
1

2
12

1

2
1

2
1

2
1

2
1

2
1

2
1

4
1











































































 





BXBA

XBAAXA

BXBXBA

XBAA
s j  

,
0

0
2
1

2
1

2
1

2
1

2
1

2

2
























BXBB

AXAA
s j  

where the first inequality follows from the inequality (2) and the second 

inequality is due to 
22

222 BABA 

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
   and Lemma 2.   

Next, we present the following refinement of Theorem 2.7 in [3], 

which is singular value inequality for generalized anticommutator. To 

reach our findings, we need the following lemmas: 

Lemma 4 ([8]). If .0 BA   Then rr BA 0  for  .1,0r  

Lemma 5 ([8]). Let .nMA   Then 
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Theorem 6. Let nMXBA ,,  with .0,0  BA  Then 

  0 XBAXs j  
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Then for ,2,,2,1 nj   we obtain 
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where the first inequality follows from the inequality (2), the second 

inequality is due to Lemmas 2, 4 and 5 and the third inequality is a direct 

result of matrix inequality 
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