PARAMETRIZATION OF ALGEBRAIC POINTS OF GIVEN DEGREE ON THE PARTICULARLY HYPERELLIPTIC CURVE II OF TOMASZ JED,RZEJAK

MOHAMADOU MOR D. DIALLO and MOUSSA FALL

Laboratory of Mathematics and Applications
Assane Seck University
Ziguinchor
Senegal
e-mail: m.diallo1836@zig.univ.sn
m.fall@univ-zig.sn

Abstract

We explicitly define the set of algebraic points of any given degree over \mathbb{Q} on the affine equation curve of $y^{2}=x\left(x^{4}+1259712\right)$.

This note deals with a special case of a hyperelliptic curve of affine equation $\mathcal{C}_{5, A}: y^{2}=x^{5}+A x$. These curves are described by Tomasz Jedrzejak in [7], who showed that the Mordell-Weil group is finite when $A=1259712$ and explained the generators of the torsion group for this family of curves.

2020 Mathematics Subject Classification: 14L40, 14H40, 14C20.
Keywords and phrases: Mordell-Weil group, Jacobian, linear system.
Received March 31, 2023

This work is licensed under the Creative Commons Attribution International License (CC BY 3.0).
$\underline{\text { http://creativecommons.org/licenses/by/3.0/deed.en US }}$
Open Access

1. Introduction

Let \mathcal{C} be a smooth projective plane curve defined on \mathbb{Q}. For all algebraic extension field \mathbb{K} of \mathbb{Q}, we denote by $\mathcal{C}(\mathbb{K})$ the set of \mathbb{K}-rational points of \mathcal{C} on \mathbb{K} and by $\mathcal{C}^{(d)}(\mathbb{Q})$ the set of algebraic points of degree d over \mathbb{Q}. The degree of an algebraic point R is the degree of its field of definition on \mathbb{Q}, i.e., $\operatorname{deg}(R)=[\mathbb{Q}(R): \mathbb{Q}]$. A famous theorem of Fatlings [6] shows that if \mathcal{C} is a smooth projective plane curve defined over \mathbb{K} of genus $g \geq 2$, then $\mathcal{C}(\mathbb{K})$ is finite. Fatling's proof is still ineffective in the sense that it does not provide an algorithm for computing $\mathcal{C}(\mathbb{K})$. Currently for curve \mathcal{C} defined over a numbers field \mathbb{K} of genus $g \geq 2$, there is no know algorithm for computing the set $\mathcal{C}(\mathbb{K})$ or for deciding if $\mathcal{C}(\mathbb{K})$ is empty. But there is a bag of strikes that can be used to show that $\mathcal{C}(\mathbb{K})$ is empty, or to determine $\mathcal{C}(\mathbb{K})$ if it is not empty. These include local method, Chabauty method [2], Descent method [5], Mordell-Weil sieves method [1]. These methods often succeed with less than full knowledge of the Jacobian of the curve. If it is finite it is not hard to determine $\mathcal{C}(\mathbb{Q})$ and to generalize for all number field \mathbb{K}. The purpose of this note is to determine a parametrization of the set $\mathcal{C}_{1259712}^{(\ell)}(\mathbb{Q})$ on the curve $\mathcal{C}_{1259712}: y^{2}=x\left(x^{4}+1259712\right)$. The curve $\mathcal{C}_{1259712}$ studied in [7] has $\operatorname{rk}(\mathcal{J})(\mathbb{Q})=0$ when $A=1259712$, so the Mordell-Weil group of the Jacobian $\mathcal{J}(\mathbb{Q})$ is finite.
1.1. Main result. Our main result is the following theorem:

Theorem 1. The set of algebraic points of degree at most ℓ (with $\ell \geq 5)$ on \mathbb{Q} on the curve $\mathcal{C}_{1259712}$ of affine equation $y^{2}=x\left(x^{4}+1259712\right)$ is given by

$$
\mathcal{F}=\mathcal{F}_{1} \bigcup \mathcal{F}_{2} \bigcup\left(\bigcup_{k \in\{2,3\}} \mathcal{F}_{3}^{k}\right) \bigcup\left(\bigcup_{k \in\{2,3\}} \mathcal{F}_{4}^{k}\right) \bigcup\left(\bigcup_{k \in\{0, \ldots, 3\}} \mathcal{F}_{5}^{k}\right)
$$

with

$$
\begin{aligned}
& \mathcal{F}_{1}=\left\{\begin{array}{c}
\binom{\frac{\sum_{i=0}^{2}}{2} a_{i} x^{i}}{x,-\frac{\ell-5}{2} a_{j} x^{j}} \left\lvert\, \begin{array}{c}
a_{0} \text { and } b_{0} \text { not simultaneousy zero, } \\
a_{\frac{\ell}{2}}^{2} \neq 0 \text { if } \ell \text { is even, } b_{\frac{\ell-5}{2}}^{2} \neq 0 \text { if } \ell \\
\text { is odd and } x \text { is a solution } \\
\text { of the equation: }
\end{array}\right. \\
\left(\begin{array}{l}
\frac{\ell}{2} a_{i=0}^{i} x^{i}+
\end{array}\right)^{2}=\left(\sum_{j=0}^{\left.\frac{\ell-5}{2} a_{j} x^{j}\right)^{2} x\left(x^{4}+1259712\right)}\right.
\end{array}\right\}, \\
& \mathcal{F}_{2}=\left\{\begin{array}{c}
\left(\begin{array}{c}
\frac{\sum_{i=1}^{2} a_{i} x^{i}}{\frac{\ell-3}{2}} b_{j} x^{j} \\
x,-\frac{\ell+2}{2} \neq 0 \text { if } \ell \text { is even, } b_{\frac{\ell-3}{2}}^{2} \neq 0 \\
\text { if } \ell \text { is odd and } x \text { solution of } \\
\text { the equation: } \\
\left.a_{i=1}^{\frac{\ell+1}{2}} a_{i} x^{i-\frac{1}{2}}\right)^{2}=\left(\sum_{j=0}^{\left.\frac{\ell-4}{2} b_{j} x^{j}\right)^{2}\left(x^{4}+1259712\right)}\right.
\end{array}\right\}, ~
\end{array}\right. \\
& \mathcal{F}_{3}^{k}=\left\{\begin{array}{c}
\left(\begin{array}{c}
\frac{\sum_{i=1}^{2} a_{i}\left(x^{i}+\mu^{i}\right)}{\frac{\ell-3}{2}} \sum_{j=0} x_{j}^{j}
\end{array}\right) \left\lvert\, \begin{array}{c}
a_{\frac{\ell+2}{2}} \neq 0 \text { if } \ell \text { is even, } b_{\frac{\ell-3}{2}} \neq 0 \\
\text { if } \ell \text { is odd and } x \text { solution of } \\
\text { the equation: }
\end{array}\right. \\
\left(\frac{\left.\sum_{i=1}^{\frac{\ell+2}{2}} a_{i}\left(\frac{x^{i}+\mu^{i}}{x}\right)\right)^{2}=\left(\sum_{j=0}^{\frac{\ell-3}{2}} b_{j} x^{j-\frac{1}{2}}\right)^{2}\left(x^{4}+1259712\right)}{\text { with } \mu^{i}=-\frac{1}{2}\left(\eta_{k-2}^{i}+\eta_{k}^{i}\right)}\right.
\end{array}\right\},
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{F}_{4}^{k}=\left\{\begin{array}{c}
\left.\left(\begin{array}{c}
\frac{\sum_{i=1}^{2} a_{i}\left(x^{i}+\mu^{i}\right)}{\frac{\ell-3}{2}} \sum_{j=0} b_{j} x^{j}
\end{array}\right) \left\lvert\, \begin{array}{c}
\begin{array}{c}
\frac{\ell+2}{2} \neq 0 \text { if } \ell \text { is even, } b_{\frac{\ell-3}{2}} \neq 0 \\
\text { if } \ell \text { odd and } x \text { solution of } \\
\text { the equation: }
\end{array} \\
\left(\sum_{i=1}^{\frac{\ell+2}{2}} a_{i}\left(\frac{x^{i}+\nu^{i}}{x}\right)\right)^{2}=\left(\sum_{j=0}^{\frac{\ell-3}{2}} b_{j} x^{j-\frac{1}{2}}\right)^{2}\left(x^{4}+1259712\right) \text { with } \\
\nu^{i}=-\frac{1}{2}\left(\eta_{\kappa-2}^{i}+\eta_{\kappa}^{i}\right), \kappa=k+1 \text { if } k=2 \text { and } \kappa=k-1 \text { if } k=3
\end{array}\right.\right\}, ~
\end{array}\right. \\
& \mathcal{F}_{5}^{k}=\left\{\begin{array}{c}
\left.\binom{\left.\frac{\sum_{i=1}^{2}}{\sum_{i}} a_{i=0}^{2}+\omega^{i}\right)}{x,-\frac{\frac{\ell}{2}}{\sum_{i} x^{j}}} \left\lvert\, \begin{array}{c}
a_{\frac{\ell+5}{2} \neq 0 \text { if } \ell \text { is even, } b_{\frac{\ell}{2}} \neq 0}^{\text {if } \text { is odd and } x \text { solution of }} \begin{array}{c}
\text { the equation: }
\end{array} \\
\left(\frac{\frac{\ell+5}{2} a_{i=1}\left(\frac{x^{i}+\omega^{i}}{\left.x^{\frac{5}{2}}\right)}\right)^{2}=\left(\sum_{j=0}^{\frac{\ell}{2}} b_{i} x^{j-2}\right)^{2}\left(x^{4}+1259712\right)}{\text { with } \omega^{i}=-\frac{1}{4}\left(\sum_{k=0}^{3} \eta_{k}^{i}\right)}\right.
\end{array}\right.\right\} .
\end{array}\right.
\end{aligned}
$$

Definition 1. For a divisor $\mathcal{D} \in \operatorname{Div}(\mathcal{C})$, we define the \mathbb{Q}-vector space denoted $\mathcal{L}(\mathcal{D})$ by:

$$
\mathcal{L}(\mathcal{D}):=\left\{f \in \mathbb{K}(\mathcal{C})^{*} \mid \operatorname{div}(f) \geq-\mathcal{D}\right\} \cup\{0\} .
$$

Remark 1. For two divisors \mathcal{D} and \mathcal{D}^{\prime}, we have

$$
\mathcal{D} \equiv \mathcal{D}^{\prime} \Rightarrow \mathcal{L}(\mathcal{D}) \simeq \mathcal{L}\left(\mathcal{D}^{\prime}\right) \Rightarrow \operatorname{dim} \mathcal{L}(\mathcal{D})=\operatorname{dim} \mathcal{L}\left(\mathcal{D}^{\prime}\right)
$$

Lemma 1. According to Lemma 3.1 (see [8, page 205]), we have $\mathcal{J}(\mathbb{Q}) \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$.

The projective form of the equation of the curve $\mathcal{C}_{1259712}$ is $Z^{3} Y^{2}=X \prod_{k=0}^{3}\left(X-\eta_{k} Z\right)$, we note P_{k}, P_{4} and ∞ the points of \mathcal{C}, defined by $P_{k}=\left[\eta_{k}: 0: 1\right], P_{4}=[0: 0: 1]$ and $\infty=[0: 1: 0]$ with $\eta_{k}=6 \sqrt{3} e^{\frac{2 k \pi}{4} \imath}$ and $k \in\{0, \ldots, 3\}$.

Lemma 2. For curve $C_{1259712}: y^{2}=x\left(x^{4}+1259712\right)$, we have

- $\operatorname{div}(x)=2 P_{4}-2 \infty, \bullet \operatorname{div}\left(x-\eta_{k}\right)=2 P_{k}-2 \infty$, where $P_{k}=\left[\eta_{k}: 0: 1\right]$ and $k \in\{0, \ldots, 3\}$.
- $\operatorname{div}(y)=\sum_{k=0}^{3} P_{k}+P_{4}-5 \infty$.

In fact, it is calculations of the type $\operatorname{div}(x-\varpi)=\operatorname{div}(X-\varpi Z)-\operatorname{div}(Z)=$ $(X=\varpi Z) \cdot \mathcal{C}_{1259712}-(Z=0) \cdot C_{1259712}$ (see [4, proof Lemma 2, page 154]).

Corollary 1. The following results are the consequences of Lemma 2:

- $\sum_{k=0}^{5} j\left(P_{k}\right)+j\left(P_{4}\right)=0$, • $2 j\left(P_{k}\right)=0$, where $P_{k}=\left[\eta_{k}: 0: 1\right]$ and $k \in\{0, \ldots, 3\}$.

So the $j\left(P_{i}\right)$ generate the same subgroup $\mathcal{J}(\mathbb{Q})$.

Lemma 3. According to Lemma 3.1 (see [8, page 205]), we have

$$
\begin{aligned}
\mathcal{J}(\mathbb{Q})= & \left\langle\left[P_{4}-\infty\right],\left[P_{0}+P_{2}-2 \infty\right],\left[P_{1}+P_{3}-2 \infty\right]\right\rangle \\
= & \left\{\alpha_{1} j\left(P_{4}\right)+\alpha_{2}\left(j\left(P_{0}\right)+j\left(P_{2}\right)\right)+\alpha_{3}\left(j\left(P_{1}\right)+j\left(P_{3}\right)\right),\right. \\
& \text { with } \left.\alpha_{1}, \alpha_{2}, \alpha_{3} \in\{0,1\}\right\} .
\end{aligned}
$$

Lemma 4. $A \mathbb{Q}$-base of $\mathcal{L}\left(m_{\infty}\right)$ is given by

$$
\mathcal{B}_{m}=\left\{x^{i} \mid i \in \mathbb{N} \text { and } i \leq \frac{m}{2}\right\} \bigcup\left\{y x^{j} \mid j \in \mathbb{N} \text { and } j \leq \frac{m-5}{2}\right\} .
$$

Proof. See proof of Lemma 4 [4, page 154].

3. Proof of the Main Theorem

Let $R \in \mathcal{C}_{1259712}(\overline{\mathbb{Q}})$ to $[\mathbb{Q}(R): \mathbb{Q}]=\ell$ with $\ell \geq 5$ and $R \notin\left\{P_{k, k \in\{0, \ldots, 3\}}\right.$, $\left.P_{4}, \infty\right\}$. Consider R_{1}, \ldots, R_{ℓ} the Galois conjugates of R and let $t=\left[R_{1}+\ldots+R_{\ell}-\ell \infty\right] \in \mathcal{J}(\mathbb{Q})$. From Lemma 3, we have $t=-\alpha_{1} j\left(P_{4}\right)-$ $\alpha_{2}\left(j\left(P_{0}\right)+j\left(P_{2}\right)\right)-\alpha_{3}\left(j\left(P_{1}\right)+j\left(P_{3}\right)\right), \alpha_{1}, \alpha_{2}, \alpha_{3} \in\{0,1\} \quad$ and hence $\left[R_{1}+\ldots+R_{\ell}-\ell \infty\right]=\left[\left(\alpha_{1}+2 \alpha_{2}\right.\right.$. This gives the following formula:

$$
\begin{aligned}
{\left[R_{1}+\ldots+R_{\ell}+\alpha_{1} P_{4}\right.} & +\alpha_{2}\left(P_{0}+P_{2}\right)+\alpha_{3}\left(P_{1}+P_{3}\right) \\
& \left.-\left(\ell+\alpha_{1}+2 \alpha_{2}+2 \alpha_{3}\right) \infty\right]=0
\end{aligned}
$$

According to Abel Jacobi's theorem ([3, page 156]), there exists a rational function f of efinite on \mathbb{Q} such that

$$
\begin{align*}
\operatorname{div}(f)=R_{1}+\ldots+R_{\ell}+\alpha_{1} P_{4} & +\alpha_{2}\left(P_{0}+P_{2}\right)+\alpha_{3}\left(P_{1}+P_{3}\right) \\
& -\left(\ell+\alpha_{1}+2 \alpha_{2}+2 \alpha_{3}\right) \infty
\end{align*}
$$

Four cases are possible:

Case 1: $\alpha_{k}=0, \forall k \in\{1,2,3\}$.
The formula (\star) becomes: $\operatorname{div}(f)=R_{1}+\ldots+R_{\ell}-\ell \infty$, donc $f \in \mathcal{L}(\ell \infty)$. According to Lemma 4, we have $f=\sum_{i=0}^{\frac{\ell}{2}} a_{i} x^{i}+\sum_{j=0}^{\frac{\ell-5}{2}} a_{j} y x^{j}$ with a_{0} and a_{0} not simultaneously all zero (otherwise one of the R_{i} should be equal P_{0}, which would be absurd), $a_{\frac{\ell}{2}} \neq 0$ if ℓ is even (otherwise one of R_{i} should be equal ∞, which would be absurd) and $b_{\frac{\ell-5}{2}} \neq 0$ if ℓ is odd (otherwise one of R_{i} should be equal ∞, which would be absurd). At point R_{i}, we have $f=0$, implying that, $y=-\frac{\sum_{i=0}^{\frac{\ell}{2}} a_{i} x^{i}}{\frac{\ell-5}{2}}$. By replacing the value of y

$$
\sum_{j=0}^{2} a_{j} x^{j}
$$

in the expression of the equation of the curve, we obtain

$$
\begin{equation*}
\left(\sum_{i=0}^{\frac{\ell}{2}} a_{i} x^{i}\right)^{2}=\left(\sum_{j=0}^{\frac{\ell-5}{2}} a_{j} x^{j}\right)^{2} x\left(x^{4}+1259712\right) \tag{1}
\end{equation*}
$$

Expression (1) is an equation of degree ℓ in x. Indeed, whatever the parity of ℓ, the first member of Equation (1) has degree $2 \times\left(\frac{\ell}{2}\right)=\ell$ and the second member has degree $2 \times\left(\frac{\ell-5}{2}\right)+5=\ell$. This gives a family of points of degree ℓ :

$$
\mathcal{F}_{1}=\left\{\begin{array}{c}
\left\{\begin{array}{c}
\frac{\sum_{i=0}^{2}}{\sum_{i} x^{i}} \\
\sum_{j=0}^{2} a_{j} x^{j}
\end{array}\right) \left\lvert\, \begin{array}{c}
a_{0} \text { and } b_{0} \text { not simultaneously zero, } \\
a_{\frac{\ell}{2}} \neq 0 \text { if } \ell \text { is even, } b_{\frac{\ell-5}{2}}^{2} \neq 0 \text { if } \ell \\
\text { is odd and } x \text { is a solution } \\
\text { of the equation: }
\end{array}\right. \\
\left(\sum_{i=0}^{\frac{\ell}{2}} a_{i} x^{i}+\right)^{2}=\left(\sum_{j=0}^{\frac{\ell-5}{2}} a_{j} x^{j}\right)^{2} x\left(x^{4}+1259712\right)
\end{array}\right\} .
$$

Case 2: only $\alpha_{1} \neq 0$.
The formula (\star) becomes : $\operatorname{div}(f)=R_{1}+\ldots+R_{\ell}+P_{4}-(\ell+1) P_{\infty}$, so $f \in \mathcal{L}\left((\ell+1) P_{\infty}\right)$, according to Lemma 4, we have $f=\sum_{i=0}^{\frac{\ell+1}{2}} a_{i} x^{i}+\sum_{j=0}^{\frac{\ell-4}{2}} b_{j} y x^{j}$ and since $\operatorname{ord}_{P_{4}} f=1$, so $a_{0}=0$; implies that $f=\sum_{i=1}^{\frac{\ell+1}{2}} a_{i} x^{i}+\sum_{j=0}^{\frac{\ell-4}{2}} b_{j} y x^{j}$ with $a_{\frac{\ell+1}{2}} \neq 0$ if ℓ is even (otherwise one of the R_{i} should be equal ∞, which would be absurd) and $b_{\frac{\ell-4}{2}} \neq 0$ if ℓ odd (otherwise one of the R_{i} should be equal ∞, which would be absurd). At the points R_{i}, we have

the expression of the equation of the curve, we obtain: $\left(\sum_{i=1}^{\frac{\ell+1}{2}} a_{i} x^{i}\right)^{2}=$ $\left(\sum_{j=0}^{\frac{\ell-4}{2}} b_{j} x^{j}\right)^{2} x\left(x^{4}+1259712\right)$ which also corresponds to the equation:

$$
\begin{equation*}
\left(\sum_{i=1}^{\frac{\ell+1}{2}} a_{i} x^{i-\frac{1}{2}}\right)^{2}=\left(\sum_{j=0}^{\frac{\ell-4}{2}} b_{j} x^{j}\right)^{2}\left(x^{4}+1259712\right) \tag{2}
\end{equation*}
$$

Expression (2) is an equation of degree ℓ in x.
Indeed, whatever the parity of ℓ, the first member of (2) is of degree $2 \times\left(\frac{\ell+1}{2}-\frac{1}{2}\right)=\ell \quad$ and the second member is of degree $2 \times\left(\frac{\ell-4}{2}\right)+4=\ell$. This gives a family of points of degree ℓ :

$$
\mathcal{F}_{2}=\left\{\begin{array}{c}
\left.\binom{\frac{\sum_{i=1}^{2}}{\sum_{j=0} x^{i}}}{x,-\frac{\ell-3}{2} b_{j} x^{j}} \left\lvert\, \begin{array}{c}
\begin{array}{c}
\frac{\ell+1}{2} \neq 0 \text { if } \ell \text { is even, } b_{\frac{\ell-4}{2}} \neq 0 \\
\text { if } \ell \text { is odd and } x \text { solution of } \\
\text { the equation: }
\end{array} \\
\left(\sum_{i=1}^{\frac{\ell+1}{2}} a_{i} x^{i-\frac{1}{2}}\right)^{2}=\left(\sum_{j=0}^{\frac{\ell-4}{2}} b_{j} x^{j}\right)^{2}\left(x^{4}+1259712\right)
\end{array}\right.\right\} .
\end{array}\right.
$$

Case 3: only one of $\alpha_{k} \neq 0$ with $k \in\{2,3\}$.

The formula (\star) becomes: $\operatorname{div}(f)=R_{1}+\ldots+R_{\ell}+P_{k-2}+P_{k}-(\ell+2) P_{\infty}$, so $f \in \mathcal{L}\left((\ell+2) P_{\infty}\right)$, according to Lemma 4, we have $f=\sum_{i=0}^{\frac{\ell+2}{2}} a_{i} x^{i}+\sum_{j=0}^{\frac{\ell-3}{2}} b_{j} y x^{j}$ and since $\operatorname{ord}_{P_{k-2}} f=\operatorname{ord}_{P_{k}} f=1$, so $\quad a_{0}=-\frac{1}{2} \sum_{i=1}^{\frac{\ell+2}{2}} a_{i}\left(\eta_{k-2}^{i}-\eta_{k}^{i}\right) . \quad$ By posing: $\mu^{i}=-\frac{1}{2}\left(\eta_{k-2}^{i}+\eta_{k}^{i}\right)$ implies that $f=\sum_{i=1}^{\frac{\ell+2}{2}} a_{i}\left(x^{i}+\mu^{i}\right)+\sum_{j=0}^{\frac{\ell-3}{2}} b_{j} y x^{j}$ with $a_{\frac{\ell+2}{2}} \neq 0$ if ℓ is even (otherwise one of the R_{i} should be equal ∞, which would be absurd) and $b_{\frac{\ell-3}{2}} \neq 0$ if ℓ if l is odd (otherwise one of the R_{i} should be equal ∞, which would be absurd). At the points R_{i}, we have $f=0$, which implies that $y=-\frac{\sum_{i=1}^{\frac{\ell+2}{2}} a_{i}\left(x^{i}+\mu^{i}\right)}{\frac{\ell-3}{2} b_{j=0}^{j}}$. By replacing the value of y in the expression of the equation of the curve, we obtain equation $\left(\sum_{i=1}^{\frac{\ell+2}{2}} a_{i}\left(x^{i}+\mu^{i}\right)\right)^{2}=\left(\sum_{j=0}^{\frac{\ell-3}{2}} b_{j} x^{j}\right)^{2} x\left(x^{4}+1259712\right) \quad$ which also corresponds to the equation:

$$
\begin{equation*}
\left(\sum_{i=1}^{\frac{\ell+2}{2}} a_{i}\left(\frac{x^{i}+\mu^{i}}{x}\right)\right)^{2}=\left(\sum_{j=0}^{\frac{\ell-3}{2}} b_{j} x^{j-\frac{1}{2}}\right)^{2}\left(x^{4}+1259712\right) \tag{3}
\end{equation*}
$$

Expression (3) is an equation of degree ℓ. Indeed, whatever the parity of ℓ, the first member of Equation (3) is of degree $2 \times\left(\frac{\ell+2}{2}-1\right)=\ell$ and
the second member is of degree $2 \times\left(\frac{\ell-3}{2}-\frac{1}{2}\right)+4=\ell$. This gives a family of points of degree ℓ :

$$
\mathcal{F}_{3}^{k}=\left\{\begin{array}{c}
\binom{\frac{\sum_{i=1}^{2}}{a_{i}\left(x^{i}+\mu^{i}\right)}}{x,-\frac{\frac{\ell-3}{2}}{\sum_{j=0}^{2}} b_{j} x^{j}} \left\lvert\, \begin{array}{c}
a_{\frac{\ell+2}{2}}^{2} \neq 0 \text { if } \ell \text { is even, } b_{\frac{\ell-3}{2}} \neq 0 \\
\text { if } \ell \text { is odd and } x \text { solution of } \\
\text { the equation: }
\end{array}\right. \\
\left(\sum_{i=1}^{\frac{\ell+2}{2}} a_{i}\left(\frac{x^{i}+\mu^{i}}{x}\right)\right)^{2}=\left(\sum_{j=0}^{\frac{\ell-3}{2}} b_{j} x^{j-\frac{1}{2}}\right)^{2}\left(x^{4}+1259712\right) \\
\text { with } \mu^{i}=-\frac{1}{2}\left(\eta_{k-2}^{i}+\eta_{k}^{i}\right)
\end{array}\right\} .
$$

Case 4: $\alpha_{1} \neq 0$ and one of $\alpha_{k} \neq 0$ with $k \in\{2,3\}$.
The formula (\star) becomes $\operatorname{div}(f)=R_{1}+\ldots+R_{\ell}+P_{4}+P_{k-2}+P_{k}$ $-(\ell+3) \infty$, from Corollary 1 the formula (*) will be written $\operatorname{div}(f)=R_{1}+$ $\ldots+R_{\ell}+P_{\kappa-2}+P_{\kappa}-(\ell+2) \infty$ with $\kappa=k+1$ if $k=2$ and $\kappa=k-1$ if $k=3$, so $f \in \mathcal{L}\left((\ell+2) P_{\infty}\right)$, according to Lemma 4, we have $f=\sum_{i=0}^{\frac{\ell+2}{2}} a_{i} x^{i}+\sum_{j=0}^{\frac{\ell-3}{2}} b_{j} y x^{j}$ and since $\operatorname{ord}_{P_{\kappa-2}} f=\operatorname{ord}_{P_{\kappa}} f=1$, so $a_{0}=-\frac{1}{2}$ $\sum_{i=1}^{\frac{\ell+2}{2}} a_{i}\left(\eta_{\kappa-2}^{i}-\eta_{\kappa}^{i}\right) . \quad$ By posing: $\quad \nu^{i}=-\frac{1}{2}\left(\eta_{\kappa-2}^{i}+\eta_{\kappa}^{i}\right) \quad$ implies that $f=\sum_{i=1}^{\frac{\ell+2}{2}} a_{i}\left(x^{i}+\nu^{i}\right)+\sum_{j=0}^{\frac{\ell-3}{2}} b_{j} y x^{j}$ with $a_{\frac{\ell+2}{2}} \neq 0$ if ℓ is even (otherwise one of the R_{i} should be equal ∞, which would be absurd) and $\frac{b_{\frac{\ell-3}{2}}}{} \neq 0$ if ℓ is odd (otherwise one of the R_{i} should be equal ∞, which would be absurd). At the points R_{i}, we have $f=0$, which implies that
$y=-\frac{\sum_{i=1}^{\frac{\ell+2}{2}} a_{i}\left(x^{i}+\nu^{i}\right)}{\sum_{j=0}^{\frac{\ell-3}{2}} b_{j} x^{j}}$. By replacing the value of y in the expression of the equation of the curve, we obtain equation $\left(\sum_{i=1}^{\frac{\ell+2}{2}} a_{i}\left(x^{i}+\nu^{i}\right)\right)^{2}$ $=\left(\sum_{j=0}^{\frac{\ell-3}{2}} b_{j} x^{j}\right)^{2} x\left(x^{4}+1259712\right)$ which also corresponds to the equation:

$$
\begin{equation*}
\left(\sum_{i=1}^{\frac{\ell+2}{2}} a_{i}\left(\frac{x^{i}+\nu^{i}}{x}\right)\right)^{2}=\left(\sum_{j=0}^{\frac{\ell-3}{2}} b_{j} x^{j-\frac{1}{2}}\right)^{2}\left(x^{4}+1259712\right) \tag{4}
\end{equation*}
$$

Expression (4) is an equation of degree ℓ in x.
Indeed, whatever the parity of ℓ, the first member of Equation (4) is of degree $2 \times\left(\frac{\ell+2}{2}-1\right)=\ell$ and the second member is of degree $2 \times\left(\frac{\ell-3}{2}-\frac{1}{2}\right)+4=\ell$. This gives a family of points of degree ℓ :

$$
\mathcal{F}_{4}^{k}=\left\{\begin{array}{c}
\left(\begin{array}{c}
\frac{\sum_{i=1}^{2}}{a_{i}\left(x^{i}+\mu^{i}\right)} \\
x,-\frac{\ell+-3}{2} \\
\sum_{j=0} b_{j} x^{j}
\end{array}\right) \left\lvert\, \begin{array}{c}
a_{\frac{\ell+2}{2}} \neq 0 \text { if } \ell \text { is even, } b_{\frac{\ell-3}{2}} \neq 0 \\
\text { if } \ell \text { is odd and } x \text { solution of } \\
\text { the equation: }
\end{array}\right. \\
\left(\sum_{i=1}^{\left.\frac{\ell+2}{2} a_{i}\left(\frac{x^{i}+\nu^{i}}{x}\right)\right)^{2}=\left(\sum_{j=0}^{\frac{\ell-3}{2}} b_{j} x^{j-\frac{1}{2}}\right)^{2}\left(x^{4}+1259712\right) \text { with }}\right. \\
\nu^{i}=-\frac{1}{2}\left(\eta_{\kappa-2}^{i}+\eta_{k}^{i}\right), \kappa=k+1 \text { if } k=2 \text { and } \kappa=k-1 \text { if } k=3
\end{array}\right\} .
$$

Remark 2. For the case where only $\alpha_{1}=0$, we find the second point.
Indeed, for $\alpha_{1}=0$, the formula (\star) becomes $\operatorname{div}(f)=R_{1}+\ldots+$ $R_{\ell}+P_{0}+P_{1}+P_{2}+P_{3}+-(\ell+4) \infty$, from Corollary 1 the formula (*) will be written $\operatorname{div}(f)=R_{1}+\ldots+R_{\ell}+P_{4}+P_{\kappa}-(\ell+1) \infty$, from which we obtain the second case.

Case 5: None of the n_{k} are zero
The formula (\star) becomes: $\operatorname{div}(f)=R_{1}+\ldots+R_{\ell}+P_{4}+\sum_{k=0}^{3} P_{k}-(\ell+5) \infty$, so $f \in \mathcal{L}((\ell+5) \infty)$, according to Lemma 4, we have $f=\sum_{i=0}^{\frac{\ell+5}{2}} a_{i} x^{i}+\sum_{j=0}^{\frac{\ell}{2}} b_{i} y x^{j}$ and since $\operatorname{ord}_{P_{4}} f=\operatorname{ord}_{P_{k}} f=1, \forall k \in\{0, \ldots, 3\}$, results in so : $a_{0}=0$ and $a_{1}=-\frac{1}{4}\left(\sum_{i=1}^{\frac{\ell+5}{2}} a_{i}\left(\sum_{k=0}^{3} \eta_{k}^{i}\right)\right)$. By posing $\omega^{i}=-\frac{1}{4}\left(\sum_{k=0}^{3} \eta_{k}^{i}\right)$, we hence $a_{1}=a \phi+\sum_{i=1}^{\frac{\ell+2}{2}} a_{i} \omega^{i} \quad$ implies that $f=\sum_{i=1}^{\frac{\ell+5}{2}} a_{i}\left(x^{i}+\omega^{i}\right)+\sum_{j=0}^{\frac{\ell}{2}} b_{i} y x^{j} \quad$ with $a_{\frac{\ell+5}{2}} \neq 0$ if ℓ is even (otherwise one of the R_{i} should be equal ∞, which would be absurd) and $b_{\frac{\ell}{2}} \neq 0$ is ℓ is odd (otherwise one of the R_{i} should be equal ∞, which would be absurd). At point R_{i}, we have $f=0$, which implies that $y=-\frac{\sum_{i=1}^{\frac{\ell+5}{2}} a_{i}\left(x^{i}+\omega^{i}\right)}{\sum_{j=0}^{\frac{\ell}{2}} b_{i} x^{j}}$. By replacing the value of y in the expression of the equation of the curve, we obtain

$$
\left(\sum_{i=1}^{\frac{\ell+5}{2}} a_{i}\left(x^{i}+\omega^{i}\right)\right)^{2}=\left(\sum_{j=0}^{\frac{\ell}{2}} b_{i} x^{j}\right)^{2} x\left(x^{4}+1259712\right)
$$

This also corresponds to the equation

$$
\begin{equation*}
\left(\sum_{i=1}^{\frac{\ell+5}{2}} a_{i}\left(\frac{x^{i}+\omega^{i}}{x^{\frac{5}{2}}}\right)\right)^{2}=\left(\sum_{j=0}^{\frac{\ell}{2}} b_{i} x^{j-2}\right)^{2}\left(x^{4}+1259712\right) \tag{5}
\end{equation*}
$$

Expression (5) is an equation of degree ℓ in x.
Indeed; whatever the parity of ℓ, the first member of Equation (5) is of degree $2 \times\left(\frac{\ell+5}{2}-\frac{5}{2}\right)=\ell$ and the second member is of degree $2 \times\left(\frac{\ell}{2}-2\right)+4=\ell$. This gives a point family of degree ℓ :

$$
\mathcal{F}_{5}^{k}=\left\{\begin{array}{c}
\left\{\begin{array}{c}
\left.\frac{\sum_{i=1}^{\frac{\ell+5}{2}} a_{i}\left(x^{i}+\omega^{i}\right)}{\sum_{j=0}^{\frac{\ell}{2}} b_{i} x^{j}}\right) \left\lvert\, \begin{array}{c}
a_{\frac{\ell+5}{2}} \neq 0 \text { if } \ell \text { is even, } b_{\frac{\ell}{2}} \neq 0 \\
\text { if } \ell \text { is odd and } x \text { solution of } \\
\text { the equation: }
\end{array}\right. \\
\left(\frac{\sum_{i=1}^{\frac{\ell+5}{2}} a_{i}\left(\frac{x^{i}+\omega^{i}}{\left.x^{\frac{5}{2}}\right)}\right)^{2}=\left(\sum_{j=0}^{\frac{\ell}{2}} b_{i} x^{j-2}\right)^{2}\left(x^{4}+1259712\right)}{\text { with } \omega^{i}=-\frac{1}{4}\left(\sum_{k=0}^{3} \eta_{k}^{i}\right)} .\right.
\end{array}\right\} . . .
\end{array}\right.
$$

References

[1] N. Bruin and M. Stoll, The Mordell-Weil sieve: Proving non-existence of rational points on curves, LMS Journal of Computation and Mathematics 13 (2010), 272-306. DOI: https://doi.org/10.1112/S1461157009000187
[2] R. F. Coleman, Effective Chabauty, Duke Mathematical Journal 52(3) (1985), 765-770.
[3] P. A. Griffiths, Introduction to Algebric curves, American Mathematical Society, Providence, 1989.
[4] M. Fall, M. M. D. Diallo and C. M. Coly, Algebraic points of any given degree on the affine curves $y^{2}=x(x+2 p)(x+4 p)\left(x^{2}-8 p^{2}\right)$, Journal of Contemporary Applied Mathematics 13(1) (2023), 11-23.
[5] S. Siksek and M. Stoll, Partial descent on hyperelliptic curves and the generalized Fermat equation $x^{3}+y^{4}+z^{5}=0$, Bulletin of the London Mathematical Society 44(1) (2012), 151-166.

DOI: https://doi.org/10.1112/blms/bdr086
[6] G. Faltings, Finiteness theorems for Abelian varieties over number fields (Endlichkeitssätze für abelsche Varietäten über Zahlkörpern) (German), Inventiones Mathematicae 76(3) (1983), 349-366.

DOI: https://doi.org/10.1007/BF01388432
[7] T. Jedrzejak and M. Ulas, Characterization of the torsion of the Jacobian of $y^{2}=x^{5}+A x$ and some applications, Acta Arithmetica 144(2) (2010), 183-191.

DOI: https://doi.org/10.4064/aa144-2-7
[8] T. Jedrzejak, Characterization of the torsion of the Jacobians of two families of hyperelliptic curves, Acta Arithmetica 161(3) (2013), 201-218.

DOI: https://doi.org/10.4064/aa161-3-1

