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Abstract 

We explicitly define the set of algebraic points of any given degree over   on 

the affine equation curve of .)1259712( 42  xxy  

This note deals with a special case of a hyperelliptic curve of affine equation 

.: 52
,5 AxxyA   These curves are described by Tomasz ¸Jedrzejak  in [7], 

who showed that the Mordell-Weil group is finite when 1259712A  and 

explained the generators of the torsion group for this family of curves. 
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1. Introduction 

Let   be a smooth projective plane curve defined on .  For all 

algebraic extension field   of ,  we denote by    the set of -rational 

points of   on   and by   d  the set of algebraic points of degree d 

over .  The degree of an algebraic point R is the degree of its field of 

definition on ,  i.e.,     .:deg  RR   A famous theorem of Fatlings 

[6] shows that if   is a smooth projective plane curve defined over   of 

genus ,2g  then    is finite. Fatling’s proof is still ineffective in the 

sense that it does not provide an algorithm for computing  .  

Currently for curve   defined over a numbers field   of genus ,2g  

there is no know algorithm for computing the set    or for deciding if 

   is empty. But there is a bag of strikes that can be used to show that 

   is empty, or to determine    if it is not empty. These include local 

method, Chabauty method [2], Descent method [5], Mordell-Weil sieves 
method [1]. These methods often succeed with less than full knowledge of 

the Jacobian of the curve. If it is finite it is not hard to determine    

and to generalize for all number field .  The purpose of this note is to 

determine a parametrization of the set    
1259712  on the curve 

.)1259712(: 42
1259712  xxy  The curve 1259712  studied in [7] has 

   0rk   when ,1259712A  so the Mordell-Weil group of the 

Jacobian    is finite. 

1.1. Main result. Our main result is the following theorem: 

Theorem 1. The set of algebraic points of degree at most   (with 

)5  on   on the curve 1259712  of affine equation )1259712( 42  xxy  

is given by 
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2. Auxiliary Results 

Definition 1. For a divisor  , Div  we define the -vector space 

denoted    by: 

         .0div:    ff   
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Remark 1. For two divisors   and ,  we have 

       .dimdim~    

Lemma 1. According to Lemma 3.1 (see [8, page 205]), we have 

  .222    

The projective form of the equation of the curve 1259712  is 

 ,
3

0

23 ZXXYZ k
k

 


 we note 4, PPk  and   the points of ,  defined by 

   1:0:0,1:0: 4  PP kk  and  0:1:0  with 


4
2

36



k

k e  

and  .3,,0 k  

Lemma 2. For curve  ,)1259712: 42
1259712  xxyC  we have 

   ,22div 4  Px     ,22div  kk Px  where  1:0:kk P  

and  .3,,0 k  

   .5div 4

3

0
 


PPy k

k
 

In fact, it is calculations of the type        ZZXx divdivdiv  

    12597121259712 0 CZZX    (see [4, proof Lemma 2, page 

154]). 

Corollary 1. The following results are the consequences of Lemma 2: 

     ,04

5

0



PjPj k

k
    ,02 kPj  where  1:0:kk P  and 

 .3,,0 k  

So the  iPj  generate the same subgroup  .  
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Lemma 3. According to Lemma 3.1 (see [8, page 205]), we have 

        2,2, 31204 PPPPP  

             ,31320241 PjPjPjPjPj    

 with  .1,0,, 321   

Lemma 4. A base-  of  m  is given by 

.
2

5
2 






 







  mjandjyxmiandix ji

m    

Proof. See proof of Lemma 4 [4, page 154]. 

3. Proof of the Main Theorem 

Let  1259712R   to   :R     with 5  and   , 0, , 3 ,R P  k k  

4 , .P   Consider  RR ,,1  the Galois conjugates of R  and let 

   .1   RRt  From Lemma 3, we have    41 Pjt  

           1,0,,, 321313202  PjPjPjPj  and hence 

  .2[( 211   RR  This gives the following formula: 

    313202411 PPPPPRR    

    .022 321    

According to Abel Jacobi’s theorem ([3, page 156]), there exists a rational 

function f of efinite on   such that 

     313202411div PPPPPRRf    

  .22 321        

Four cases are possible: 
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Case 1:  .3,2,1,0  kk  

The formula    becomes:   ,div 1   RRf  donc  . f  

According to Lemma 4, we have j
j
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yxaxaf 
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 with 0a  and 0a  

not simultaneously all zero (otherwise one of the iR  should be equal ,0P  

which would be absurd), 0
2
a  if   is even (otherwise one of iR  should 

be equal ,  which would be absurd) and 0
2

5 b  if   is odd (otherwise 

one of iR  should be equal ,  which would be absurd). At point ,iR  we 

have ,0f  implying that, .
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 By replacing the value of y  

in the expression of the equation of the curve, we obtain 

.)1259712( 4
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  (1) 

Expression (1) is an equation of degree   in .x  Indeed, whatever the 

parity of ,  the first member of Equation (1) has degree  






2
2  and 

the second member has degree .5
2

52  




   This gives a family of 

points of degree :  
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Case 2: only .01   

The formula    becomes :     ,1div 41  PPRRf    so 

  ,1  Pf   according to Lemma 4, we have j
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with 0
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1 a  if   is even (otherwise one of the iR  should be equal ,  

which would be absurd) and 0
2

4 b  if   odd (otherwise one of the iR  

should be equal ,  which would be absurd). At the points ,iR  we have 

,0f  which implies that .
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the expression of the equation of the curve, we obtain: 
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 (2) 

Expression (2) is an equation of degree   in .x  

Indeed, whatever the parity of ,  the first member of (2) is of degree 
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   This gives a family of points of degree :  
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Case 3: only one of 0k  with  .3,2k  

 



MOHAMADOU M. D. DIALLO and MOUSSA FALL 58 

The formula    becomes:     ,2div 21   PPPRRf   kk  

so   ,2  Pf   according to Lemma 4, we have j
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with 0
2

2 a  if   is even (otherwise one of the iR  should be equal ,  

which would be absurd) and 0
2

3 b  if   if l is odd (otherwise one of the 

iR  should be equal ,  which would be absurd). At the points ,iR  we 

have ,0f  which implies that 
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 By replacing the 

value of y  in the expression of the equation of the curve, we obtain 
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corresponds to the equation: 
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 (3) 

Expression (3) is an equation of degree .  Indeed, whatever the parity of 

,  the first member of Equation (3) is of degree  
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2
22  and 
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the second member is of degree .4
2
1

2
32  





   This gives a 

family of points of degree :  
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Case 4: 01   and one of 0k  with  .3,2k  

The formula    becomes   kk PPPRRf  241div   

  ,3    from Corollary 1 the formula    will be written    1div Rf  

   22    PPR  with 1 k  if 2k  and 1 k  if 

,3k  so   ,2  Pf   according to Lemma 4, we have  
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of the iR  should be equal ,  which would be absurd) and 0
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3 b  if   

is odd (otherwise one of the iR  should be equal ,  which would be 

absurd). At the points ,iR  we have ,0f  which implies that 
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the equation of the curve, we obtain equation  
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  (4) 

Expression (4) is an equation of degree   in .x  

Indeed, whatever the parity of ,  the first member of Equation (4) is 

of degree  
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Remark 2. For the case where only ,01   we find the second point. 

Indeed, for ,01   the formula    becomes    1div Rf  

  ,43210   PPPPR  from Corollary 1 the formula    

will be written     ,1div 41    PPRRf  from which we 

obtain the second case. 

Case 5: None of the kn  are zero 

The formula    becomes:     ,5div
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This also corresponds to the equation 
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  (5) 

Expression (5) is an equation of degree   in .x  

Indeed; whatever the parity of ,  the first member of Equation (5) is 

of degree  
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