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Fpz is the prime modal ©-valent field with p2 elements as presented by
Ayissi Eteme in [5] in order to define on F,7 a notion of Hamming code which
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and Hamming m® code. By using this relation, we give a method to construct

good m@® steganographic protocols.
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1. Introduction

Steganography [4, 6] is the art and science of invisible communications.
It 1s used, sometimes together with cryptography to protect information
from unwanted third parties. The design of a steganographic system has
two facets: firstly, the choice of accurate covers and the search for
strategies to modify them in an imperceptible way; secondly, the design
of efficient algorithms for embedding and extracting the information.
Recall that error-correcting codes are commonly used for detecting and
correcting errors in data transmission. It was first suggested by Crandall

[9] and later implicitly used by Westfeld in the design of F'5 [10].

An m® approach of the notion of code [11] has allowed to bring out
the new classes of codes: m® codes. The m® codes [2, 12, 13] present an
enrichment from the logical view-point compared with the classical codes.
Indeed, with the m® codes, we can mathematically express that an

information is lightly, partially or greatly damaged.

Let E be a finite m® set, then a non-empty subset C of E is called
an mO® code. Often E is the m® set of n-tuples from a finite alphabet A

with p2 elements. The elements of E are called m® words and the
elements of C are called m® codewords. When A is a mO® field, E is an
n-dimensional vector space over A. In this case, C is called a linear m®

code if C is a linear subspace of E. When A = F,;, the finite m® field of
p? elements and E will be denoted V(n, pZ).

Section 2 recalls firstly the essential notions of m® set, secondly the
linear m® codes and lastly the Hamming m®-distance of (C, FO':‘C )-

Section 3 presents the Hamming codes on V(n, 2Z). Section 4 is devoted

to the m® steganographic protocol F'5 and Hamming m® codes.
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2. Preliminaries

2.1. The modal ®-valent set structure and the algebra of (]F pZs Fa)

m@® sets are considered to be non-classical sets which are compatible

with a non-classical logic called the chrysippian m® logic.

Definition 1 ([14]). Let E be a non-empty set, I be a chain whose first

and last elements are 0 and 1, respectively, (F, )ad*, where I, = I'\{0}
be a family of applications form E to E.

A mO set is the pair (E, (F,),.;, ) simply denoted by (E, F,)
satisfying the following four axioms:

eNF,(E)= N {F,x):x e E}+0
o ael,

e Vo, B € I, if a # B, then F # Fg;
.V(X,BEI*,FQOFﬁ ZFﬁ,

o Vx,ye E, if Va € I,, F,(x) = F,(y), then x = y.

Theorem 1 ([7]) (The theorem of m® determination). Let (E, F,) be
a mO set.
Vx,y € E, x =g y if and only if Vo € L., F,(x) = F ().
Proof. [7].

Definition 2 ([11]). Let C(E, F,) = n F,(E). We call C(E, F,)
ael,

the set of m® invariant elements of the m® set (E, F).
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Proposition 1 ([7]). Let (E, F,) be an m® set. The following

properties are equivalent:

(1) xe N Fy(E),
ael,

(2) Va € I, F,(x) = x;
(3) Vo, B € L., F,(x) = Fg(x);
(4) Fp e L, x = F,(x).

Proof. [7].

Definition 3 ([1]). Let (E, F,) and (E’, F,) be two m® sets. Let X

be a non-empty set. We shall call

(1) (E', F;) is a modal ®-valent subset of (E, F,) if the structure of
mO set (E', F}) is the restriction to E’ of the structure of the m® set

(E, F,), this means:
o £'CE;

evVa:ael, F, = o g

(2) X'is a modal ©-valent subset of (E, F,) if:
e X CFE;

o (X, Fy ) is an m®s which is a modal ©-valent subset of (E, F,).
X

In all what follows we shall write F x for F,(x), F,E for F,(E), etc.

Let p € N, a prime number. Let us recall that if a e Fpz.

F

Pz = ]Fp U {po : _'(x = O(mOdp))}’ ]Fp = {O’ 1’ 2’ e, P _1}
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We define the m® support of @ denoted s(a) as follows:

a ifae]Fp;

s(a) =
x if a = x,5 with 7(x = 0(mod p)).
Thus s(a) € F,,.
Definition 4 ([14]). Let L be a binary operation on F,. So,

Ya, b Fp,a L b e Fp. Let x, y e Fpz- We define a binary operation

1" on Fpz as follows:

x, y €,
« ] slx) Ls(y) if
Y (s(x) L s(y)) = 0(mod p) otherwise
(s(x) L s(¥)pz otherwise.
1" as defined above on F,; will be called an m® law on F,j; for
x, y € Fpz.
Thus we can define x+yeF,; and xxyelF,; for every
x, y € Fpz, where + and x are m® addition and m® multiplication,
respectively.
Theorem 2 ([1]). (FPZ, F,, +,x) is an m® ring of unity 1 and of
ity —L
mO® unity o7
Proof. [1].
Remark 1. Since p is prime, (F,z, F;,) is an m® field.

Definition 5 ([5]). x is a divisor of zero in (F,y, F,) if it exists

y € Fpz such that x x y = 0.
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Example 1 ([5]). p = 2, we have Fyy; = {0, 1, 197, 397}.

The table of m® determination and tables laws of Fyy :

Foz | O | 1 | 19z | 32z

|0 1 0
F, | 0 0 1
+© 0 1 | 19z | 39z
0 0 | 1 | 1y | 39
1 1 0 0 0
1oy | 1oy | 0| 0 0
392 | 392 | 0| O 0
x® |0 1 log | 39z

0 0 0
1 o] 1 | 19 | 3y
loz. | 0 | 1oz | 1oz | 39z
39z | 0 | 39z | 39z | 1oz

Observation:

Fy7 has no divisor of zero, is a m® ring from four elements, that’s a m®

field of four elements.

2.2. Linear m® codes

Let (A, F,) be a finite m® set. For every n € N*, we shall denote in
what follows the m® set product of (A, F, ) by (A", F ), where F}' is
the product on A" of F,. By definition, we have:

Fl A" — A" (aq, -, ap) > Flag, -, ay)

= (F(x(al)’ T Fa(an))'

Let £ and n be two natural integers such that £ # 0, n # 0, and k < n.
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Definition 6 ([13]). Let us set C = f(E) the image of f. As f is
injective, fis an m® bijection from E to C. (C, F(:“C) is considered as the

mO® set of all possible m® messages.
(1) An m® code of length n and of alphabet (A, F,), the m® set

(c, Fo?\c ).

(2) Elements of C, m® messages or m® words of the m® code
(€, Fyle).

(8) Elements of C, (C, Fy/|,) = Nyer, Fo'|o(C), messages or words of

the m® code (C, Fy|,).

Proposition 2 ([11]). (C, Fy/|,) is an m® part of (A", F;}).

Proof. [11].

Proposition 3 ([11]). Let (C, F,/|,) be a m® code of length n on
(A, Fy). The set C(C, Fy!|;) = Nger,Fo|o(C) is a classical code of length
non Nuer, FalA) = C(4, F,)

Proof. [11].

Definition 7 ([12]). Let (Fy;, F,) be the m® field with four

elements Va € I, we call:

(1) Hamming o-weight of an element x = (xy,--,x,) of
(V(n, 2Z), F}}) the number of non zero coordinates of F'(x). We denote

it by g, () = o F2 (x)).

op, (¥) = o(Fy(x)) = Card{i| Fy (x;) # 0; i =1, -, n}.
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(2) Hamming m®-weight of an element x = (xq,--,x,) of

(V(n, 2Z), Fy') the number denoted op, (x) and defined as follows:

o(x) x e F3;

OHg (x) = ZGEI o, (x) = Zad o Fl(x)) otherwise.

. . ZpZ
The alphabet used is the m® field (F,; = (——, Fy)).
PZLyyg,

Proposition 4 ([5]). We set E =V(k, pZ) and C = f(E). Let
(E, F(f) be the m® set of mO® message and [ a m® Iinear encoder of
(E, F¥) in (V(n, pZ), F). Then, the m® code (C, Fl.) is an m®
vector subspace of (V(n, pZ), Fy') over (F,z, Fy).

Proof. [5].

Definition 8 ([13]). An m® linear code of m® dimension k& and of

length n on (F,z, F,,) is an m@® vector subspace of m® dimension k of

(V(n, pZ), Fg ).

Proposition 5 ([5]). Let (C, F;‘C) be a linear m® code of m®

dimension k and of length n.

o

Then C(C, Fn‘c ) = Nger, Fy (C) is a linear code of dimension k and of

length n.

Proof ([5]). As C(V(k, pZ), Fgf ). is a F,-vector space of dimension

k, then C(C, F(;L‘ ) is a linear code of dimension & and of length n.
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2.3. The Hamming m® -distance of (C, FO'L"C)

Let (C, FO':‘C) be an m® or a pseudo m® code of length n on (A, F,).

Our purpose is to define for (C, F(;l‘c) a notion of distance which is

compatible with its structure of m® code.

Vo e I, we define dy on A" x A" as follows:

dg, (x, y) = dg(Fgx, Fjly)
=card{i : Fyx; # Foy;;i=1, -, nj,

where x = (xy, -, x,); y= 0, ,y, and dyg is the Hamming

distance on (C(A, F,))".

Proposition 6. If (A, F,) is an m® set and (C, F,) is an m® code

on (A, F,), then Vx, y € A", we define dp, on A" x A™ as follows:

dy(x, y), if x and y € (C(A, F,))";
dg, (x, y) = z dy, (x, )= Z dg(F,x, F,y) otherwise.
ael, aely

Folx = (Foxy, -, Foxp); Fly = (Foyy, -+, Foyy). Then dy is an m©
distance on (A", FJ').

Proof. [11].

Definition 9. dg, will be called the Hamming m® distance on

(A", F}).

Remark 2. dH@\C(A”, ) is the Hamming distance on (C(A, F,))".
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Definition 10. Let (C, F,) be an m® code; dp, is the m®

Hamming distance. We define 3° as follows:
8¢ = min{dg, (x, y): x, y € C; x # y}.

We shall call 8 the minimal m® distance of the m® code (C, F,).

3. The Hamming m® Codes

3.1. Generating and parity check matrices

Let (C, F,) denote a linear m® code in V(n, pZ). Let G be a matrix

whose rows generate (C, F,). The matrix G is called a generating

matrix of (C, F,,). The dual m® code of (C, F,), denoted C=, is defined
to be the set

¢t ={x e V(n, pZ); Vo e I,, <Fax, Fac> =0, Ve € (C, F,)},
where (i, V) i= uyv; + ugVg + - + u,v,. Note that C is clearly also a

linear m® code, and thus has a generating matrix H. By the definition of

C l, it can be seen that
C ={ceV(n, p2)/Va e I, Fa(c)Ht =0}

The matrix H is called a parity check matrix for (C, F,). If an m® word
w 1s received, then it can be verified that w is an m® codeword simply by

checking that wH' = 0, i.e., Vo € I,, Fy(w)H' = 0.
3.2. Hamming codes on V(n, 2Z)

In this paragraph, we introduce the Hamming m® code which is a

linear m® code in V(n, 2Z) for some n > 2.
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Let Fyy, denote the m® field of four elements and let H be the matrix
whose columns are all the non-zero m® vectors of length &k over Fy;, for

some k e N. Note that there will be 2¥ —1 of these. We define the

Hamming m® code as follows:

Definition 11. Fix k£ > 2 and let n = 2¥ —1. Let H denote the k x n

matrix defined above. The Hamming m® code Hamyy(n) is the linear
m® subspace of V(n, 2Z) consisting of the set of all a-vectors, a € I,,

orthogonal to all the rows of H. That is,
Hamgy(n) = {v € V(n, 2Z)/Va € I,, F,(v)x H" = 0}.

Proposition 7. The Hamming m® code Hamgy(n) with kx (28 —1)

parity check matrix is a (2" -1, 2 — k — 1, 3)-code.

Proof 9. That the length of the m® vectors in Hamgy(n) is 2% -1 is
clear. The m® code Hamgy(n) is defined to be the m® subspace of

V(n, 2Z) orthogonal to the rowspace of H, which has dimension %, and

so the dimension of Hamsgy(n) will be 2¥ —k -1 by the rank-nullity
theorem. By definition, no two columns of H are dependent, there exist
three columns in H which are linearly dependent. This implies that the
m® code generated will have minimum m® distance 3. To see this,
recall that for a linear m® code, the minimum m® distance is
equivalent to the minimum weight of an m® codeword. Suppose columns
i, j, and k of H are linearly dependent. Then some linear combination of
those three columns with non-zero coefficients will equal zero, and since

the vectors are taken over Fy;, the coefficients must be 1. So the
a-vector with 1's in the i, j, and k position is in Hamgyy(n), and so the

minimum m® weight of the code is at most 3. It cannot be less than 3, or
else some linear combination of two columns of H would be zero, which

we have ruled out. Thus H will be the parity check matrix for a

(2% -1, 28 =k -1, 3)-code.
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4. The m® Steganographic Protocol F5 and Hamming
m® Codes

4.1. The m® protocol F5

F5 is a steganographic system developed by Westfeld in 2001 [10].
The m® protocol F5 over the m® field Fy; permits to hide m®

messages of length k& (secret m® words) in cover m® words of length
n=2F_1 by partially or totally changing more than one of them (m®
protocol of type (2]f -1, k,1)). Let < Folfm >9 be the binary expression of

m with & bits (so can consider that < m >4 isin V(k, 2N)).

Conversely, for z € V(k, 2N), Va e I, let < Folfz >10 be the integer
which has F'z as binary expression, then 1< < FF(z)><2F 1.
Finally, let e; be the i-th vector of the canonical basis of V(Zk -1, 2);
€ = 0V(2k—1, 2)

Proposition 8. The m® maps v97, eay, and ryy as follows define:

@) yoz : V(28 —1, 22)x V(k, 2Z) » (Nyg, F})

21
(x, m) > (< Fy(m)+ Y Fyl®;) <i >5>10 Joer,
=1

(i) ey : V(2F =1, 22) x V(k, 27) — V(2F -1, 27)
k
(e, m) > (B M)+ eRy (g (e, m) e,

(i) ryy, : V(2F -1, 22) > V(k, 22)

ok 1
x - (Z Fo(x;) <1>9)er,
1

are well defined and m®.
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Proof. (i) e Let (x, m), (x', m) e V(2F -1, 2Z)x V(k, 2Z) let us
suppose that (x, m) = (x', m')(x = x' and m = m’) and let us show that

Y2Z(x’ m) = YZZ(x,’ m,)'

k k
g2, - g2ty

o

k kv
Fim=Fm
VYo e I,;
ok 1 ok 1
Fim+ Y Fyx; <i>p= Fyt+ Y Fyxj <i>
=1 i=1
ok 1 ok 1
=< FFm + Z Fx; <i>9>0=< Ffm'+ Z F x! <i>9>1
i=1 i=1
ok 1
= (< F(fm + Z Fox; <i>9>1 )ad*
=1
ok 1
=(< Folfm’ + Z F x! <i>9>1 )ad*
=1

= yoz(x, m) = yoz (¥, t).

Therefore the map y9y is well defined.
e Let us verify yoy is m® map.

Let (x, m), (x', m') e V(2" =1, 2Z) x V(k, 27)

Ya e I,
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ok k 2F 1 k
V2Z°(Fa l’Fa)(x’ m):VZZ(Fa X, Fam)

k
ok
ko k 2k 4 .
= (< Fi(Fym) + Y Fy(Fg ™0 < i >2>10)ne1,
i=1
2k 4
k 2k 1 -
= (< Fam + Z (F(x x)z) <1 >2>10)(xel*
i=1
2k 1
k . )
= (< Fim + Z Fyx; <i>9>10)gel,3
i=1
2k 1
k .
F(; OVZZ(x: m) = F(;(< F(xm + Z Faxi <1 >2>10)aeI*
i=1
2k 1
k .
=K« F;m+ Z Foyx; <i>9>10)gel, -
i=1

Therefore y97 is an m® map.

(i) o (x, m), (x', m') e V(2¥ -1, 22) x V(k, 2Z) such that (x, m) =

(x', m")(x = x" and m = m’), let’s show that eg; (x, m) = egz(x', m).

2k-1 2k-1
L, F; "x=F; x
(x, m) = (x', m') = Va € I,

Folfm = Fgfm'

k k k k
F2 Y = F2 1y FZ ' = FZ '
Ya € I, = Va € I,,

Fym = Ffm' Yoz (x, m) = yoz(x', m')

k k
= Va e I,

Fyyop(x, m) = Fyyey(x', m')
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Fo%k*lx = Fo?kflx'
= VYa e I,,

€Fyvoz(x, m) = €Fygy(x', m')

k k
= V(Il*; F2 x4 eR = F2 1y 4+ ep

voz(x, m) yoz(x', m')

k k
2" -1 _ 2V =1
= (Fy "x+ CFyygn(x, m) = Fo X'+ eRy 0, (2, m) Jael,
= egy(x, m) = egy(x', m').
Therefore ey is well defined.

o Let us verify egy is an m® map.
Let (x, m) e V(2F -1, 22) x V(k, 27).
k_ k_
esz o (Fy ', Fy)(x, m) = egz(Fy ~'x, Foym)

& k
=(F2 Y F? x)+e :
(o (Fe ) F&Yzz(Fo‘?kflxi F(fm))ad*

2k 1 ~
=(F; “x+ CFy97(x, m) Joer, (Y27 is m© map).

' 2k -
Fg o eZZ(x> m) = Fa(Fa T+ €F, (yaz(x, m)))ael*

2k 1
= (F& 7%+ eqy(y95(x, m)) e,
Therefore,
k_ ’
egz o (Fo ™', Fl) = F} o eyy.

(iii) e Let us show that ry; is well defined.

T L R L R
Let us suppose that x = x' (F; ~x = F7 x') and let us show that

royzX = rZZx’.
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Let a € I;

k_ k_ ’ ’
Fo% 1(x):Fo% 1(x):>Faxi :F(xxi

= Fux; <i>9=F,y; <1>9

ok 1 ok 1
:ZFaxi<i>2:ZFaxé<i>2

i=1 i=1

2k 1 2k 1

= (Z Fox; <i>9)yeq, = (Z Foxi <i>9)yer,
i=1 i=1

= ryz(x) = ryz(x').

Therefore ry; is an m® map.

e Let us show that ry; is m® map.
Let x e V(2" -1, 22), let o e I,.

k_ k_
ryz o Fo Hx) = nyp(F2 'x)

ok 1
k— .
= (Z Fo.((Fo% 1x)i) <1 >2)ael*
i=1

ok 1
= (D] FolFyx;) < i >3)er,
i=1

2F_1
= (Z Faxi <1 >2)OLEI*;
i=1

2k 1
F(; ° ng(x, m) = F(;((Z Fotxi <i >2)ael*)
=1

1=

2k 1

= (Z Faxi <1 >2)0.€I*'
i=1

Therefore ry; is an m® map.
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Proposition 9. (eyy, rp7) before define in the proposition 0.8 is an

m® steganographic protocols.

Proof. Let’s show that (egy, 157 ) is an m® steganographic protocol.
In other words, ryy(egy(x, m))=m, for any m e Fi; and for any
x e V(2F -1, 27).

So, Va € I, FOILC(rZZ(e2Z(x’ m))) = F()Itc(m)

€Y

k7 .
Ff (ryz(egz(x, m))) = iz (FZ ~F o egy(x, m)) (ryz is m® map)

k— .
ryz(egz o (FZ 7Y, FF))(x, m) (egz is m© map)

k7
roz (egz (FZ x, Fim))

ok 1
rZZ(F(x X+ R (voz(x, m)))7

we put
. ’ k_
Jj=Fy(yaz(x, m)) = yoz o (FE 7L, FY)(x, m)

2k 1 k
YZZ(Fa X, Fam)

2k 1

3 k_ .
< Fy(Fym)+ > F,((Fy %)) <i >3>19
=1

ok 1

< FFm + Z F (Fyx;) <i>9>19
i=1

ok 1

=< FFm+ Z F,(x;) <i>9>10,
i=1

2F 1
then < j >o= Frm + Z F (x)<i>y (%).
i=1



42 PEMHA BINYAM GABRIEL CEDRIC

@)
2k
Tzz(Fa lx + e]) = Tzz(Faxl, Fa.’XIQ, ey, Fax] +1, -, Faxn)

ok 1

= Z {Fo(Fyxi) <i>g + (Foxj +1) < j >}
i=1, i#j

2k 1

= Z {Fo(x;) <i>g + (Fuxj +1) < j>9}
i1, i#j

changing < j>9 by expression given in (¥*) we obtain:

k
rog (F2 x4 ej) = Flrm; so

Va e I*’ FOILC(’QZ(eZZ(x’ m))) = F(f(x, m)

Therefore, ryy(eqy(x, m)) = (x, m). Thus m® protocol F5 is an m®
steganographic protocol.
Remark 3. (1) Insert an m® message s by the m® steganographic

protocol F'5 in an m® covering u consists to change the m® coordinate

number yy7(u, s).

(2) m® extraction consists to add all products of each o-component,
Va e I, to the value of the Fy; expression of the index. In other words,

ok 1
roz (u) = Z Fou; <i>g.
i=1

Example 2. The covering radius of [2% —1, 2% — k — 1],,. Hamming
codes 1s one for all integers k£ > 1, which can be used to construct a stego-

code and embed k bits of m® messages into 2k 1 pixels by partially or
totally changing at most one of them. Taking [7, 4],, Hamming code as
an example. How to embed m = 0lg7197 into x = 1971970039,019, by

the mO® steganographic protocol F5.
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Fm =011, F$m = 000, F;'x = 1100001, Fyx = 0000100.

SO, how to calculate €a7 (0122122, 122122003220122).

3
Yo7, (Lo719700357,0197, 0197197) = (< Fy°(0197197)

7
- 3
+ Zlei < i >9>10, < F3'(0197197)
=1

7
: 3
+ ) Fox; <i>3>19) < F1°(01pz197)
i1

+ Fix; <i>9>19 =< 011+1(001)+1(010) + 1(111) >,

7
=1
=1,
and

7
< F3(0197197) + Z Fox; <i>9>19=< 000 +1(101) >,
=1

= 5.
voz(x, m) = (7; 5) = (F{(vaz(x, m)); F3(vaz(x, m))).
22,8, m) = (B + ey(yyx, m)i P2+ €y (s, m))

F'% + €gy(y9y(x, m)) = 1100001 + e = 1100001 + 0000001 = 1100000.

Y27.(

FJ% + €4y, (x, m)) = 0000100 + e5 = 0000100 + 0000100 = 0000000.

ez (xx, m) = (1100000, 0000000)

1715,00000

= 0.
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How to extract the m® message hidden m in the m® message
y = 12zl22000009

In other words, how to calculate ry;(197197,00000)? By applying the

second point of the previous remark, we get that
7 7
roz(y) = (Z Fy; <i>, zeyi <i>9)
i=1 i=1

ryz(y) = (1(001) +1(010); 1(000))
= (011; 000)

0197197
= m.
4.2. The F5 m® algorithm

To increase embedding efficiency, the F5 algorithm introduces for
the first time the concept of matrix embedding technique for embedding
in the context of using Hamming codes.

More formally, the desired purpose of the matrix m® embedding
technique is to communicate an m® message m € V(n — k, pZ) through

the cover m® vector x € V(n, pZ), modifying it as little as possible.

The principle is to change the cover m® vector x to stego m® vector y,
such that:

H(Fay)ael* = (Fam)aef*’

with H € M,_; , the parity check matrix of Hamming m® code. The

m® transformation of the cover m® vector x into y is then carried out by

seeking the m® vector of modification e € V(n, pZ):

(Fud)ger, = (Falx +e€)gey,;

H(Fa(x + e))g_el* = (F(Xm)ael* A H(F(Xe)(xel*

= (F(Xm)g_gl* - H(F(Xx)(xgl*'
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Example 3. Taking [7, 4] Hamming m® code, we explain how to
embed 3 mO® bits of Fy; into 7 pixels. Let m = 0197197 be the mO®

message that we want to insert in the cover m® vector

x = 197197003970195. The parity check matrix is therefore in the

following form:

0
H=\|0 1 1 0 0 1 1.
1

The purpose is to find the a-vector e = (e, e, €3, €4, €5, €g, e7) such
that H(x + e) = m.
Otherwise,
Fi(m)=011, Fy(m)= 000,
Fi(x) =1100001, Fy(x)=0000101.

So,
1
1
0 0 0 0 1 1 1 1 0
F(m)-HxF((x)=[1|-l0 1 1 0 o0 1 1|x|o0
1 1 0 1 0 1 0 1 0
0
1
0 1
={1]-]0
1 0
1
=|1|.
1
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Thus, the modification a-vector is Fj(e) = (0, 0, 0, 0, 0, 0, 1).

0 0 0 0 1 1 1 1
FQ(m)—HXFQ(x)= 0(-|0 1 1 0 0 1 1|x

o o o o

0
1
0) (0
=lo|-|1
o) (o
0
={1].
0

Thus, Fy(e) = (0,1, 0, 0, 0, 0, 0).
e = (Fy(e), Fa(e)) = (0, 39z, 0, 0, 0, 0, 157).
The cover m® vector x is then transformed into
y=x+e=197197,0039,019, + 0397000019,
= 157,00035700.

We have the cover m® vector x = 197197,0039,015;, and the stego m®
vector y = 137,000357,00. When embedding m into x, it appears that 2

pixels of x have been partially damaged, namely the second and the last

component of x. Indeed,
oz = (Folag)ger, = (Filaz, Folgy)=(1,0),

0= (F,0),.;. = (F0, F;0) = (0, 0).
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The passage from 197 to 0 shows that the pixels has been partially

damaged.

5. Conclusion

This note shows that the Hamming m® code is an Fy;-vector

subspace of V(n, 2Z) of dimension n. We have seen that there exists a

close relation between the m® protocols F5 and the Hamming m®

code. The embedding of an m® message of k bits into the cover m®

vector of n pixels changes at the level of the o-modalities because it

partially or totally damages at most one pixel of the cover m® vector.
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