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Abstract 

ZFp  is the prime modal valent-Θ  field with 2p  elements as presented by 

Ayissi Eteme in [5] in order to define on ZFp  a notion of Hamming code which 

respects its structure of Θm  set. We show a relation between Θm  protocol 5F  
and Hamming Θm  code. By using this relation, we give a method to construct 
good Θm  steganographic protocols. 

 

 

 



PEMHA BINYAM GABRIEL CEDRIC 26

1. Introduction 

Steganography [4, 6] is the art and science of invisible communications. 
It is used, sometimes together with cryptography to protect information 
from unwanted third parties. The design of a steganographic system has 
two facets: firstly, the choice of accurate covers and the search for 
strategies to modify them in an imperceptible way; secondly, the design 
of efficient algorithms for embedding and extracting the information. 
Recall that error-correcting codes are commonly used for detecting and 
correcting errors in data transmission. It was first suggested by Crandall 
[9] and later implicitly used by Westfeld in the design of 5F  [10]. 

An Θm  approach of the notion of code [11] has allowed to bring out 
the new classes of codes: Θm  codes. The Θm  codes [2, 12, 13] present an 
enrichment from the logical view-point compared with the classical codes. 
Indeed, with the Θm  codes, we can mathematically express that an 
information is lightly, partially or greatly damaged. 

Let E  be a finite Θm  set, then a non-empty subset C  of E  is called 
an Θm  code. Often E  is the Θm  set of n-tuples from a finite alphabet A 

with 2p  elements. The elements of E are called Θm  words and the 

elements of C  are called Θm  codewords. When A is a Θm  field, E is an 
n-dimensional vector space over A. In this case, C  is called a linear Θm  
code if C  is a linear subspace of E. When ,ZFpA =  the finite Θm  field of 

2p  elements and E  will be denoted ( )., ZpnV  

Section 2 recalls firstly the essential notions of Θm  set, secondly the 

linear Θm  codes and lastly the Hamming distance-Θm  of ( )., nF CC α  

Section 3 presents the Hamming codes on ( ).2, ZnV  Section 4 is devoted 

to the Θm  steganographic protocol 5F  and Hamming Θm  codes. 
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2. Preliminaries 

2.1. The modal valent-Θ  set structure and the algebra of ( )αFp ,ZF  

Θm  sets are considered to be non-classical sets which are compatible 
with a non-classical logic called the chrysippian Θm  logic. 

Definition 1 ([14]). Let E be a non-empty set, I be a chain whose first 
and last elements are 0 and 1, respectively, ( ) ,

∗∈αα IF  where { }0\II =∗  

be a family of applications form E to E. 

A Θm  set is the pair ( ( ) )
∗∈αα IFE,  simply denoted by ( )αFE,  

satisfying the following four axioms: 

• ( ) { ( ) } ;0: /=/∈= α∈ααα ∗
ExxFEF

I
∩∩  

• ,, ∗∈βα∀ I  if ,β=/α  then ;βα =/ FF  

• ;,, ββα∗ =∈βα∀ FFFI  

• ,, Eyx ∈∀  if ( ) ( ),, yFxFI αα∗ =∈α∀  then .yx =  

Theorem 1 ([7]) (The theorem of Θm  determination). Let ( )αFE,  be 

a Θm  set. 

yxEyx Θ=∈∀ ,,  if and only if ( ) ( )., yFxFI αα∗ =∈α∀  

Proof. [7]. 

Definition 2 ([11]). Let ( ) ( )., EFFEC
I α∈αα
∗

= ∩  We call ( )αFEC ,  

the set of Θm  invariant elements of the Θm  set ( )., αFE  
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Proposition 1 ([7]). Let ( )αFE,  be an Θm  set. The following 

properties are equivalent: 

(1)  ( );EFx
I α∈α ∗

∈ ∩  

(2) ( ) ;, xxFI =∈α∀ α∗  

(3) ( ) ( );,, xFxFI βα∗ =∈βα∀  

(4) ( )., xFxI µ∗ =∈µ∃  

Proof. [7]. 

Definition 3 ([1]). Let ( )αFE,  and ( )α′′ FE ,  be two Θm  sets. Let X 

be a non-empty set. We shall call 

(1) ( )α′′ FE ,  is a modal valent-Θ  subset of ( )αFE,  if the structure of 

Θm  set ( )α′′ FE ,  is the restriction to E’ of the structure of the Θm  set 

( ),, αFE  this means: 

• ;EE ⊆′  

• .,:
E

FFI
′αα∗ =′∈αα∀  

(2) X is a modal valent-Θ  subset of ( )αFE,  if: 

• ;EX ⊆  

• ( )
X

FX α,  is an smΘ  which is a modal valent-Θ  subset of ( )., αFE  

In all what follows we shall write xFα  for ( ) EFxF αα ,  for ( ),EFα  etc.  

Let ,N∈p  a prime number. Let us recall that if .ZFpa ∈  

{ ( )( )} { }.1,,2,1,0;mod0: −=≡¬= ppxx ppZpp FFF Z ∪  
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We define the Θm  support of a denoted ( )as  as follows: 

( )
( )( )





≡=

∈
=

.mod0withif

;if

pxxax

aa
as

p

p

Z

F
 

Thus ( ) .pas F∈  

Definition 4 ([14]). Let ⊥  be a binary operation on .pF  So, 

.,, pp baba FF ∈⊥∈∀  Let ., ZFpyx ∈  We define a binary operation 

∗⊥  on ZFp  as follows: 

( ) ( )
( ) ( )( ) ( )

( ) ( )( )








⊥






≡⊥

∈
⊥

=⊥∗

.otherwise
otherwisemod0

,
if

Z

F

p

p

ysxs
pysxs

yx
ysxs

yx  

∗⊥  as defined above on ZFp  will be called an Θm  law on ZFp  for 

., ZFpyx ∈   

Thus we can define ZFpyx ∈+  and ZFpyx ∈×  for every 

,, ZFpyx ∈  where +  and ×  are Θm  addition and Θm  multiplication, 

respectively. 

Theorem 2 ([1]). ( )×+α ,,, FpZF  is an Θm  ring of unity 1 and of 

Θm  unity .1
Zp  

Proof. [1]. 

Remark 1. Since p is prime, ( )αFp ,ZF  is an Θm  field. 

Definition 5 ([5]). x is a divisor of zero in ( )αFp ,ZF  if it exists 

ZFpy ∈  such that .0=× yx  
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Example 1 ([5]). ,2=p  we have { }.3,1,1,0 222 ZZZF =  

The table of Θm  determination and tables laws of :2ZF  

1010
0110

3110

2

1

222

F
F

ZZZF
 

00033
00011
00011

31100
3110

22

22

22

22

ZZ
ZZ

ZZ
ZZ

Θ+

 

ZZZZ
ZZZZ
ZZ

ZZ

2222

2222

22

22

13303
31101
31101

00000
3110Θ×

 

Observation: 

ZF2  has no divisor of zero, is a Θm  ring from four elements, that’s a Θm  

field of four elements. 

2.2. Linear Θm  codes 

Let ( )αFA,  be a finite Θm  set. For every ,∗∈ Nn  we shall denote in 

what follows the Θm  set product of ( )αFA,  by ( ),, nn FA α  where nFα  is 

the product on nA  of .αF  By definition, we have: 

( ) ( )n
n

n
nnn aaFaaAAF ,,,,;: 11 αα →−  

( ) ( )( ).,,1 naFaF αα=  

Let k  and n be two natural integers such that ,0,0 =/=/ nk  and .n≤k  
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Definition 6 ([13]). Let us set ( )Ef=C  the image of .f  As f is 

injective, f is an Θm  bijection from E to ( )nF CCC α,.  is considered as the 

Θm  set of all possible Θm  messages. 

(1) An Θm  code of length n and of alphabet ( ),, αFA  the Θm  set 

( )., nF CC α  

(2) Elements of Θm,C  messages or Θm  words of the Θm  code 

( )., CC nFα  

(3) Elements of ( ) ( ),,, CCC CC
n

I
n FF α∈αα ∗

= ∩  messages or words of 

the Θm  code ( )., CC nFα  

Proposition 2 ([11]). ( )CC nFα,  is an Θm  part of ( )., nn FA α  

Proof. [11]. 

Proposition 3 ([11]). Let ( )CC nFα,  be a Θm  code of length n on 

( )., αFA  The set ( ) ( )CCC CC
n

I
n FF α∈αα ∗

= ∩,  is a classical code of length 

n on ( ) ( )., αα∈α =
∗

FAAFI C∩  

Proof. [11]. 

Definition 7 ([12]). Let ( )αF,2ZF  be the Θm  field with four 

elements ,∗∈α∀ I  we call: 

(1) Hamming weight-α  of an element ( )nxxx ,,1=  of 

( ( ) )nFnV α,2, Z  the number of non zero coordinates of ( ).xF n
α  We denote 

it by ( ) ( ( )).xFx n
H αω=ω
α

 

( ) ( ( )) { ( ) }.,,1;0Card nixFixFx i
n

H ==/=ω=ω ααα
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(2) Hamming weight-Θm  of an element ( )nxxx ,,1=  of 

( ( ) )nFnV α,2, Z  the number denoted ( )xHΘ
ω  and defined as follows: 

( )
( )

( ) ( ( ))





ω=ω

∈ω
=ω

α∈α∈α ∑∑
∗

α
∗

Θ .otherwise

;2

xFx

xx
x n

IHI

n

H
F

 

The alphabet used is the Θm  field ( ( ))., α= Fp p

p
p

Z
Z

Z Z
ZF  

Proposition 4 ([5]). We set ( )ZpVE ,k=  and ( ).Ef=C  Let 

( )kαFE,  be the Θm  set of Θm  message and f a Θm  linear encoder of 

( )kαFE,  in ( ( ) ).,, nFpnV αZ  Then, the Θm  code ( )CC nFα,  is an Θm  

vector subspace of ( ( ) )nFpnV α,, Z  over ( )., αFpZF  

Proof. [5]. 

Definition 8 ([13]). An Θm  linear code of Θm  dimension k  and of 
length n on ( )αFp ,ZF  is an Θm  vector subspace of Θm  dimension k  of 

( ( ) ).,, nFpnV αZ  

Proposition 5 ([5]). Let ( )nF CC α,  be a linear Θm  code of Θm  

dimension k  and of length n.  

Then ( ) ( )CCC C
n

I
n FF α∈αα ∗

= ∩,  is a linear code of dimension k  and of 

length n. 

Proof ([5]). As ( ( ) ).,, kk αFpV ZC  is a vector-pF  space of dimension 

,k  then ( )nFC CC α,  is a linear code of dimension k  and of length n. 
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2.3. The Hamming distance-Θm  of ( )nF CC α,  

Let ( )nF CC α,  be an Θm  or a pseudo Θm  code of length n on ( )., αFA  

Our purpose is to define for ( )nF CC α,  a notion of distance which is 

compatible with its structure of Θm  code. 

,∗∈α∀ I  we define 
αHd  on nn AA ×  as follows: 

( ) ( )yFxFdyxd nn
HH αα=

α
,,  

{ },,,1;:card niyFxFi ii ==/= αα  

where ( ) ( )nn yyyxxx ,,;,, 11 ==  and Hd  is the Hamming 

distance on ( )( ) ., nFA αC  

Proposition 6. If ( )αFA,  is an Θm  set and ( )αF,C  is an Θm  code 

on ( ),, αFA  then ,, nAyx ∈∀  we define 
ΘHd  on nn AA ×  as follows: 

( )
( ) ( )( )

( ) ( )







=

∈
=

αα
∈α∈α

α

∑∑
∗

α
∗

Θ .,,

;,,,
, otherwiseyFxFdyxd

FAyandxifyxd
yxd

H
I

H
I

n
H

H

C
 

( ) ( ).,,;,, 11 n
n

n
n yFyFyFxFxFxF αααααα ==  Then 

ΘHd  is an Θm  

distance on ( )., nn FA α  

Proof. [11]. 

Definition 9. 
ΘHd  will be called the Hamming Θm  distance on 

( )., nn FA α  

Remark 2. ( )nn FACHd
αΘ ,  is the Hamming distance on ( ( )) ., nFA αC  
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Definition 10. Let ( )αF,C  be an Θm  code; 
ΘHd  is the Θm  

Hamming distance. We define Θδ  as follows: 

{ ( ) }.;,:,min yxyxyxdH =/∈=δ
Θ

Θ C  

We shall call Θδ  the minimal Θm  distance of the Θm  code ( )., αFC  

3. The Hamming Θm  Codes 

3.1. Generating and parity check matrices 

Let ( )αF,C  denote a linear Θm  code in ( )., ZpnV  Let G  be a matrix 

whose rows generate ( )., αFC  The matrix G  is called a generating 

matrix of ( )., αFC  The dual Θm  code of ( ),, αFC  denoted ,⊥C  is defined 

to be the set 

{ ( ) ( )},,,0,,;, ααα∗
⊥ ∈∀=∈α∀∈= FcFxFIpnVx CC CZ  

where .:, 2211 nnvuvuvuvu +++=  Note that ⊥C  is clearly also a 

linear Θm  code, and thus has a generating matrix H. By the definition of 

,⊥C  it can be seen that 

{ ( ) ( ) }.0,, =∈α∀∈= α∗
tHcFIpnVc ZC  

The matrix H is called a parity check matrix for ( )., αFC  If an Θm  word 

w is received, then it can be verified that w is an Θm  codeword simply by 

checking that ,0=twH  i.e., ( ) .0, =∈α∀ α∗
tHwFI  

3.2. Hamming codes on ( )Z2,nV  

In this paragraph, we introduce the Hamming Θm  code which is a 
linear Θm  code in ( )Z2,nV  for some .2≥n  
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Let ZF2  denote the Θm  field of four elements and let H be the matrix 

whose columns are all the non-zero Θm  vectors of length k  over ,2ZF  for 

some .N∈k  Note that there will be 12 −k  of these. We define the 
Hamming Θm  code as follows: 

Definition 11. Fix 2≥k  and let .12 −= kn  Let H denote the n×k  
matrix defined above. The Hamming Θm  code ( )nHam Z2  is the linear 

Θm  subspace of ( )Z2,nV  consisting of the set of all ,,vectors- ∗∈αα I  

orthogonal to all the rows of .H  That is, 

( ) { ( ) ( ) }.0,2,2 =×∈α∀∈= α∗
tHvFInVvnHam ZZ  

Proposition 7. The Hamming Θm  code ( )nHam Z2  with ( )12 −× kk  

parity check matrix is a ( ) .-3,12,12 code−−− kkk  

Proof 9. That the length of the Θm  vectors in ( )nHam Z2  is 12 −k  is 

clear. The Θm  code ( )nHam Z2  is defined to be the Θm  subspace of 

( )Z2,nV  orthogonal to the rowspace of ,H  which has dimension ,k  and 

so the dimension of ( )nHam Z2  will be 12 −− kk  by the rank-nullity 

theorem. By definition, no two columns of H are dependent, there exist 
three columns in H which are linearly dependent. This implies that the 
Θm  code generated will have minimum Θm  distance 3. To see this, 

recall that for a linear Θm  code, the minimum Θm  distance is 
equivalent to the minimum weight of an Θm  codeword. Suppose columns 

,, ji  and k  of H are linearly dependent. Then some linear combination of 

those three columns with non-zero coefficients will equal zero, and since 
the vectors are taken over ,2ZF  the coefficients must be 1. So the 

vector-α  with 1′ s in the ,, ji  and k  position is in ( ),2 nHam Z  and so the 

minimum Θm  weight of the code is at most 3. It cannot be less than 3, or 
else some linear combination of two columns of H would be zero, which 
we have ruled out. Thus H will be the parity check matrix for a 

( ) .code-3,12,12 −−− kkk  
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4. The Θm  Steganographic Protocol 5F  and Hamming  

Θm  Codes 

4.1. The Θm  protocol 5F  

5F  is a steganographic system developed by Westfeld in 2001 [10]. 
The Θm  protocol 5F  over the Θm  field ZF2  permits to hide Θm  
messages of length k  (secret Θm  words) in cover Θm  words of length 

12 −= kn  by partially or totally changing more than one of them ( Θm  

protocol of type ( )).1,,12 kk −  Let 2>< αmF k  be the binary expression of 

m with k bits (so can consider that 2>< m  is in ( )).2, NkV  

Conversely, for ( ) ,,2, ∗∈α∀∈ IVz Nk  let 10>< α zF k  be the integer 

which has zF kα  as binary expression, then ( ) .121 10 −≤><≤ α
kk zF  

Finally, let ie  be the i-th vector of the canonical basis of ( );2,12 −kV  

( ).0 2,120 −
= kVe  

Proposition 8. The Θm  maps ,, 22 ZZ eγ  and Z2r  as follows define: 

(i) ( ) ( ) ( )α′→×−γ FVV ,2,2,12: 22 ZZ NZZ kk  

( ) ( ( ) ( ) ) ,, 102

12

1
∗∈αα

−

=
α >><+< ∑ Ii

i
ixFmFmx

k

k  

(ii) ( ) ( ) ( )ZZZZ 2,122,2,12:2 −→×− kk k VVVe  

( ) ( ( ) ( )( ) ) ,, ,
12

2 ∗α ∈αγ′
−

α + ImxFeuFmx Z
k

 

(iii) ( ) ( )ZZZ 2,2,12:2 kk VVr →−  

( ( ) )
∗∈αα

−

=

><∑ Ii
i

ixFx 2

12

1

k

 

are well defined and .Θm  
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Proof. (i) • Let ( ) ( ) ( ) ( )ZZ 2,2,12,,, kk VVmxmx ×−∈′′  let us 

suppose that ( ) ( ) ( )mmxxmxmx ′=′=′′= and,,  and let us show that 

( ) ( ).,, 22 mxmx ′′γ=γ ZZ  

( ) ( )






′=

′=
∈α∀⇒′′=

αα

−
α

−
α

∗
mFmF

xFxFImxmx
kk

kk 1212
,,  

;∗∈α∀ I  

2

12

1
2

12

1
><′+=><+ α

−

=
αα

−

=
α ∑∑ ixFtFixFmF i

i
i

i

kk

kk  

102

12

1
102

12

1
>><′+′=<>><+⇒< α

−

=
αα

−

=
α ∑∑ ixFmFixFmF i

i
i

i

kk

kk  

( )
∗∈αα

−

=
α >><+<⇒ ∑ Ii

i
ixFmF 102

12

1

k

k  

( )
∗∈αα

−

=
α >><′+′<= ∑ Ii

i
ixFmF 102

12

1

k

k  

( ) ( ).,, 22 txmx ′γ=γ⇒ ZZ  

Therefore the map Z2γ  is well defined. 

• Let us verify Z2γ  is Θm  map. 

Let ( ) ( ) ( ) ( )ZZ 2,2,12,,, kk VVmxmx ×−∈′′  

,∗∈α∀ I  

 

 



PEMHA BINYAM GABRIEL CEDRIC 38

( ) ( ) ( )mFxFmxFF kk kk
α

−
αα

−
α γ=γ ,,, 12

2
12

2 ZZ  

(
∗∈α

−
αα

−

=
αα >><+<= ∑ Ii

i
ixFFmFF )))(()( 102

12
12

1

k
k

kk  

(
∗∈α

−
α

−

=
α >><+<= ∑ Ii

i
ixFmF )))( 102

12
12

1

k
k

k  

( ;)102

12

1
∗∈αα

−

=
α >><+<= ∑ Ii

i
ixFmF

k

k  

( )
∗∈αα

−

=
ααα >><+<′=γ′ ∑ Ii

i
ixFmFFmxF )(, 102

12

1
2

k

k
Z  

.)( 102

12

1
∗∈αα

−

=
α >><+<= ∑ Ii

i
ixFmF

k

k  

Therefore Z2γ  is an Θm  map. 

(ii) • ( ) ( ) ( ) ( )ZZ 2,2,12,,, kk VVmxmx ×−∈′′  such that ( ) =mx,  

( ) ( ),and, mmxxmx ′=′=′′  let’s show that ( ) ( ).,, 22 mxemxe ′′= ZZ  

( ) ( )








′=

′=
∈α∀⇒′′=

αα

−
α

−
α

∗

mFmF

xFxF
Imxmx

kk

kk 1212
,,,  

( ) ( )






′′γ=γ

′=
∈α∀⇒









′=

′=
∈α∀

−
α

−
α

∗

αα

−
α

−
α

∗

mxmx

xFxF
I

mFmF

xFxF
I

,,
,,

22

12121212

ZZ

kkkk

kk
 

( ) ( )






′′γ′=γ′

′=
∈α∀⇒

αα

−
α

−
α

∗

mxFmxF

xFxF
I

,,
,

22

1212

ZZ

kk
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( ) ( )








=

′=
∈α∀⇒

′′γ′γ′

−
α

−
α

∗

αα mxFmxF ee

xFxF
I

,,

1212

22

,

ZZ

kk

 

( ) ( )mxFmxF
I exFexF ′′γ′

−
αγ′

−
αα αα

∗ +′=+∀⇒ ,
12

,
12

22; ZZ
kk

  

( ( ) ( ) ) ∗αα ∈α′′γ′
−

αγ′
−

α +′=+⇒ ImxFmxF exFexF ,
12

,
12

22 ZZ
kk

  

( ) ( ).,, 22 mxemxe ′′=⇒ ZZ   

Therefore Z2e  is well defined. 

• Let us verify Z2e  is an Θm  map. 

Let ( ) ( ) ( ).2,2,12, ZZ kk VVmx ×−∈  

( ) ( ) ( )mFxFemxFFe kk kk
α

−
αα

−
α = ,,, 12

2
12

2 ZZ  

   ( ( )
( )

)
∗

α
−

αα
∈α

γ′

−
α

−
α += ImFxFF

exFF
kk

kk

,
1212

12
2Z

 

   ( ( ) ) ( ).mapis2,
12

2 Θγ+=
∗α ∈αγ′

−
α mexF ImxF ZZ
k

 

   ( ) ( ( ( ) ) ) ∗α ∈αγ′
−

ααα +′=′ ImxFexFFmxeF ,
12

2 2, ZZ
k

 

   ( ( ( ) ) ) .,
12

2 ∗α ∈αγ′
−

α += ImxFexF Z
k

 

Therefore, 

( ) ., 2
12

2 ZZ eFFFe αα
−

α ′=kk
 

 (iii) • Let us show that Z2r  is well defined. 

Let us suppose that ( )xFxFxx ′=′= −
α

−
α

1212 kk
 and let us show that 

.22 xrxr ′= ZZ  
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Let ;∗∈α I  

( ) ( ) ii xFxFxFxF ′=⇒′= αα
−

α
−

α
1212 kk

 

22 ><=><⇒ αα iyFixF ii  

2

12

1
2

12

1
><′=><⇒ α

−

=
α

−

=
∑∑ ixFixF i
i

i
i

kk

 

( ) ( )
∗∗ ∈αα

−

=
∈αα

−

=

><′=><⇒ ∑∑ Ii
i

Ii
i

ixFixF 2

12

1
2

12

1

kk

 

( ) ( ).22 xrxr ′=⇒ ZZ  

Therefore Z2r  is an Θm  map. 

• Let us show that Z2r  is Θm  map. 

Let ( ),2,12 Z−∈ kVx  let .∗∈α I  

( ) ( )xFrxFr 12
2

12
2

−
α

−
α =

kk
ZZ  

 ( (( ) ) )
∗∈α

−
αα

−

=

><= ∑ Ii
i

ixFF 2
12

12

1

k
k

 

 ( ( ) )
∗∈ααα

−

=

><= ∑ Ii
i

ixFF 2

12

1

k

 

 ( ) ;2

12

1
∗∈αα

−

=

><= ∑ Ii
i

ixF
k

 

( ) (( ) )
∗∈αα

−

=
αα ><′=′ ∑ Ii

i
ixFFmxrF 2

12

1
2 ,

k

Z  

  ( ) .2

12

1
∗∈αα

−

=

><= ∑ Ii
i

ixF
k

 

Therefore Z2r  is an Θm  map. 
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Proposition 9. ( )ZZ 22 , re  before define in the proposition 0.8 is an 
Θm  steganographic protocols. 

Proof. Let’s show that ( )ZZ 22 , re  is an Θm  steganographic protocol. 

In other words, ( ( )) ,,22 mmxer =ZZ  for any k
ZF2∈m  and for any 

( ).2,12 Z−∈ kVx  

So, ( ( )( )) ( ).,, 22 mFmxerFI kk
αα∗ =∈α∀ ZZ  

(1) 

( ( )( )) ( ( )) ( )mapis,, 22
12

222 Θ= −
αα mrmxeFrmxerF ZZZZZ
kk  

 ( ( )) ( ) ( )mapis,, 2
12

22 Θ= α
−

α memxFFer ZZZ
kk

 

 ( ( ))mFxFer kk
α

−
α= ,12

22 ZZ  

 ( ( ( ) ) ),,
12

2 2 mxFexFr ZZ γ′
−

α α
+=

k
 

we put 

( ( )) ( ) ( )mxFFmxFj ,,, 12
22

kk
α

−
αα γ=γ′= ZZ  

 ( )mFxF kk
α

−
αγ= ,12

2Z  

 ( ) (( ) ) 102
12

12

1
>><+<= −

αα

−

=
αα ∑ ixFFmFF i

i

k
k

kk  

 ( ) 102

12

1
>><+<= αα

−

=
α ∑ ixFFmF i

i

k

k  

 ( ) ,102

12

1
>><+<= α

−

=
α ∑ ixFmF i

i

k

k  

then ( ) 2

12

1
2 ><+=>< α

−

=
α ∑ ixFmFj

i

k

k  ( ).∗  
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(2) 

( ) ( )njj xFxFxFxFrexFr αααα
−

α +=+ ,,1,,, 212
12

2 ZZ
k

 

 { ( ) ( ) }22

12

,1
1 ><++><= ααα

−

=/=
∑ jxFixFF ji

jii

k

 

 { ( ) ( ) }22

12

,1
1 ><++><= αα

−

=/=
∑ jxFixF ji

jii

k

 

changing 2>< j  by expression given in ( )∗  we obtain: 

( ) ;12
2 mFexFr j

kk
α

−
α =+Z  so 

( )( )( ) ( ).,,, 22 mxFmxerFI kk
αα∗ =∈α∀ ZZ  

Therefore, ( )( ) ( ).,,22 mxmxer =ZZ  Thus Θm  protocol 5F  is an Θm  

steganographic protocol. 

Remark 3. (1) Insert an Θm  message s by the Θm  steganographic 
protocol 5F  in an Θm  covering u consists to change the Θm  coordinate 
number ( ).,2 suZγ  

(2) Θm  extraction consists to add all products of each ,component-α  

,∗∈α∀ I  to the value of the Z2F  expression of the index. In other words, 

( ) .2

12

1
2 ><= α

−

=
∑ iuFur i
i

k

Z  

Example 2. The covering radius of [ ] .12,12 2Z−−− kkk  Hamming 

codes is one for all integers ,1≥k  which can be used to construct a stego-

code and embed k  bits of Θm  messages into 12 −k  pixels by partially or 
totally changing at most one of them. Taking [ ] Z24,7  Hamming code as 

an example. How to embed ZZ 22 101=m  into ZZZZ 2222 0100311=x  by 

the Θm  steganographic protocol .5F  
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.0000100,1100001,000,011 7
2

7
1

3
2

3
1 ==== xFxFmFmF  

So, how to calculate ( ).0100311,101 2222222 ZZZZZZZe  

( ) ( ( )ZZZZZZZZZ 22
3

12222222 101101,0100311 F<=γ  

( )ZZ 22
3
21021

7

1
101, FixF i

i
<>><+ ∑

=

 

) ( )ZZ 22
3

11022

7

1
101FixF i

i
<>><+ ∑

=

 

( ) ( ) ( ) 101021

7

1
111101010011011 >+++<=>><+ ∑

=

ixF i
i

 

,7=  

and 

( ) ( ) 101022

7

1
22

3
2 1011000101 >+<=>><+< ∑

=

ixFF i
i

ZZ  

.5=  

( ) ( ) ( ( )( ) ( )( )).,;,5;7, 22212 mxFmxFmx ZZZ γ′γ′==γ  

( ) ( ( )( ) ( )( ) ).;, ,
7
2,

7
12 2221 mxFmxF exFexFmxe ZZZ γ′γ′ ++=  

( )( ) .1100000000000111000011100001 7,
7

1 21 =+=+=+ γ′ eexF mxF Z  

( )( ) .0000000000010000001000000100 5,
7
2 22 =+=+=+ γ′ eexF mxF Z  

( ) ( )0000000,1100000,2 =mxe Z  

0000011 22 ZZ=  

.v=  
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How to extract the Θm  message hidden m in the Θm  message 
?0000011 22 ZZ=y  

In other words, how to calculate ( )?0000011 222 ZZZr  By applying the 
second point of the previous remark, we get that 

( ) ( )22

7

1
21

7

1
2 , ><><= ∑∑

==

iyFiyFyr i
i

i
i

Z  

( ) ( ) ( ) ( ))0001;01010011(2 +=yr Z  

 ( )000;011=  

 ZZ 22 101=  

 .m=  

4.2. The 5F  Θm  algorithm 

To increase embedding efficiency, the 5F  algorithm introduces for 
the first time the concept of matrix embedding technique for embedding 
in the context of using Hamming codes. 

More formally, the desired purpose of the matrix Θm  embedding 
technique is to communicate an Θm  message ( )ZpnVm ,k−∈  through 
the cover Θm  vector ( ),, ZpnVx ∈  modifying it as little as possible. 

The principle is to change the cover Θm  vector x to stego Θm  vector ,y  
such that: 

( ) ( ) ,
∗∗ ∈αα∈αα = II mFyFH  

with nnH ,k−∈M  the parity check matrix of Hamming Θm  code. The 

Θm  transformation of the cover Θm  vector x into y is then carried out by 
seeking the Θm  vector of modification ( ):, ZpnVe ∈  

( ) ( )( ) ;
∗∗ ∈αα∈αα += II exFyF  

( )( ) ( ) ( )
∗∗∗ ∈αα∈αα∈αα ⇔=+ III eFHmFexFH  

 ( ) ( ) .
∗∗ ∈αα∈αα −= II xFHmF  
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Example 3. Taking [7, 4] Hamming Θm  code, we explain how to 
embed 3 Θm  bits of ZF2  into 7 pixels. Let ZZ 22 101=m  be the Θm  

message that we want to insert in the cover Θm  vector 
.0100311 2222 ZZZZ=x  The parity check matrix is therefore in the 

following form: 

.
1010101
1100110
1111000
















=H  

The purpose is to find the ( )7654321 ,,,,,,vector- eeeeeeee =α  such 

that ( ) .mexH =+  

Otherwise, 

( ) ( )

( ) ( )





==

==

.0000101,1100001

,000,011

21

21

xFxF

mFmF
 

So, 

( ) ( )



































×


















−


















=×−

1

0

0

0

0

1

1

1010101

1100110

1111000

1

1

0

11 xFHmF  



















−


















=

0

0

1

1

1

0

 

.

1

1

1



















=  
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Thus, the modification vector-α  is ( ) ( ).1,0,0,0,0,0,01 =eF  

( ) ( )



































×



















−



















=×−

1

0

1

0

0

0

0

1010101

1100110

1111000

0

0

0

22 xFHmF  



















−


















=

0

1

0

0

0

0

 

.

0

1

0



















=  

Thus, ( ) ( ).0,0,0,0,0,1,02 =eF  

( ) ( )( ) ( ).1,0,0,0,0,3,0, 2221 ZZ== eFeFe  

The cover Θm  vector x is then transformed into 

ZZZZZZ 222222 00001030100311 +=+= exy  

 .0000031 22 ZZ=  

We have the cover Θm  vector ZZZZ 2222 0100311=x  and the stego Θm  

vector .0000031 22 ZZ=y  When embedding m into ,x  it appears that 2 

pixels of x have been partially damaged, namely the second and the last 
component of .x  Indeed,  

( ) ( ) ( )

( ) ( ) ( )





===

===

∗

∗

∈αα

∈αα

.0,00,000

,0,11,111

21

222122

FFF

FFF

I

I ZZZZ
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The passage from Z21  to 0 shows that the pixels has been partially 

damaged. 

5. Conclusion 

This note shows that the Hamming Θm  code is an vector-2ZF  

subspace of ( )Z2,nV  of dimension .n  We have seen that there exists a 

close relation between the Θm  protocols 5F  and the Hamming Θm  
code. The embedding of an Θm  message of k  bits into the cover Θm  
vector of n pixels changes at the level of the α-modalities because it 
partially or totally damages at most one pixel of the cover Θm  vector. 
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