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Abstract 

Two isothermal unsteady motions of the incompressible Burgers fluids between 
infinite horizontal parallel plates are analytically and numerically investigated 
when a differential expression of the shear stress is prescribed on the lower 
plate. Closed-form expressions are established for the dimensionless permanent 
velocity fields and the corresponding shear stresses. They seem to be the first 
exact solutions for such motions of Burgers fluids. The corresponding 
permanent solutions for Oldroyd-B, Maxwell, second grade and Newtonian 
fluids performing similar motions can immediately be obtained as limiting cases 
of general solutions. The obtained velocity fields are used to determine the 
needed time to reach the steady state for the respective motions. It was found 
that the steady state for such isothermal motions of the incompressible non-
Newtonian fluids is earlier obtained for the Burgers fluids in comparison with 
Oldroyd-B or Maxwell fluids. 

1. Introduction 

One-dimensional viscoelastic fluid model proposed by Burgers [1] was 
often used to describe the behaviour of different materials such as food 
products (like cheese), soil and asphalt [2, 3]. Saal and Labout [4] shown 
that the mechanical behaviour of asphalt of different compositions can be 
well enough described by this model. A good agreement between the 
predictions of Burgers’ model and the behaviour of asphalt and sand-
asphalt specimens was noted by Lee and Markwick [5]. The transient 
creep properties of the earth’s mantle and high temperature 
viscoelasticity of fine-grained polycrystalline olivine were modelled by 
Peltier et al. [6] and Yuen and Peltier [7], respectively Chopra [8] and 
Tan et al. [9] using the same model. 
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The extension of Burgers linear model to a frame-indifferent three-
dimensional form was realized by Krishnan and Rajagopal [10] and the 
first exact steady solutions for the motion of such a fluid seem to be those 
of Ravindran et al. [11] in an orthogonal rheometer. Along the time many 
interesting solutions corresponding to isothermal motions of the 
incompressible Burgers fluids have been determined. Among them we 
remember the most recent results of Akram et al. [12], Fetecau et al. [13], 
Hussain et al. [14] and Fetecau et al. [15] whose solutions are related to 
the present results. However, none of the above mentioned studies refers 
to motions of incompressible Burgers fluids between parallel plates when 
a differential expression of the shear stress is given on a part of the 
boundary. 

Relatively recent, Renardy [16, 17] noted that boundary conditions 
containing differential expressions of stresses must be considered for rate 
type fluids in order to get well-posed boundary value problems for some 
motions of such fluids. In this note, the first dimensionless exact 
permanent (steady state or long time) solutions for some isothermal 
unidirectional motions of incompressible Burgers fluids between infinite 
horizontal parallel plates are provided when a differential expression of 
the non-trivial shear stress is given on a part of the boundary. They can 
easily be particularized to give permanent solutions for incompressible 
Oldroyd-B, Maxwell, second grade and Newtonian fluids performing 
similar motions. The obtained solutions, which are presented in simple 
forms, are used to determine the required time to reach the steady or 
permanent state for the respective motions. It was found that the steady 
state for such motions of incompressible fluids is rather obtained for 
Newtonian as compared with non-Newtonian fluids. 
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2. Problem Presentation and Governing Equations 

Consider an incompressible Burgers fluid (IBF) at rest between two 
infinite horizontal parallel flat plates at the distance d apart. Its 
constitutive equations are given by the following relations [11]: 

δ δ δ = − + + + = µ + δ δ δ

2

2
ˆ , ,p p q rt tt

S S AT I S S A   (1) 

where T is the Cauchy stress tensor, S is the extra-stress tensor, I is the 
unit tensor, A is the first Rivlin-Ericksen tensor, p̂  is the hydrostatic 
pressure, µ  is the fluid viscosity, ,p q  and ( )r p≤  are material constants 

and / tδ δ  denotes the well known time upper-convected derivative. Since 

the incompressible fluids undergo isochoric motions only, the continuity 
equation 

=tr 0A  or equivalent =div 0,w  (2) 

has to be identically satisfied. In the last equality w  is the velocity 
vector. 

It is worth to point out the fact that the fluids characterized by the 
constitutive equations (1) contain as special cases the incompressible 
Oldroyd-B, Maxwell and Newtonian fluids if 0, 0,q q r= = =  

respectively, 0.p q r= = =  For some motions, like those to be here 
considered, the governing equations corresponding to the incompressible 
second grade fluids can also be obtained as particular cases of the present 
equations. In the following, as well as in the references [12-15], we shall 
consider isothermal motions of IBFs for which the velocity field w  and 
the extra-stress tensor S are given by the relations 

( ) ( ) ( )w= = =e, , , , ,xy t y t y tS Sw w  (3) 

where xe  is the unit vector along the x-direction of a convenient 

Cartesian coordinate system x, y and z having the y-axis perpendicular to 
plates. 
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Substituting ( ),y tw  and ( ),y tS  from Equations (3) in the second 

equality from (1) and bearing in mind the fact that the fluid has been at 
rest up to the initial moment 0,t =  it can be proven that the components 

, , ,yy yz zzS S S  and zxS  of the extra-stress tensor S are zero while the 

non-trivial shear stress ( ) ( ), ,xyy t S y tη =  has to satisfy the next partial 

differential equation 

( ) ( )w  ∂∂ ∂ ∂ + + η = µ + < < >   ∂ ∂ ∂ ∂ 

2

2
,1 , 1 ; 0 , 0.y tp q y t r y d tt t yt

  (4) 

For these motions the continuity equation is identically satisfied and 
the balance of linear momentum, in the presence of conservative body 
forces but in absence of a pressure gradient in the flow direction, reduces 
to the next partial differential equation [13, 15] 

( ) ( ) ,0,0;,,
><<

∂
η∂

=
∂

∂
ρ tdyy

ty
t

tyw   (5) 

where ρ  is the constant density of the fluid. The appropriate initial 

conditions are 

( ) ( ) ( ) ( ) ( ) ;0,0,;0,,0,
00

2

2

0
=

∂
η∂

=η=
∂

∂
=

∂
∂

=
=== ttt t

tyy
t

ty
t

tyy www  

.0 dy ≤≤   (6) 

In the following we investigate motions of IBFs with the next 
boundary conditions 

( ) ( ) ( ),cos,1,01
02

2
tSy

ty
trt

t
qtp

y
ω=

∂
∂







∂
∂+µ=η









∂

∂+
∂
∂+

=

w  

( ) ,0;0, >= ttdw   (7) 
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or 

( ) ( ) ( ),sin,1,01
02

2
tSy

ty
trt

t
qtp

y
ω=

∂
∂







∂
∂+µ=η









∂

∂+
∂
∂+

=

w  

( ) .0;0, >= ttdw   (8) 

In above relations S  is a constant shear stress and ω  is the frequency of 
the oscillations. 

Introducing the next dimensionless functions, variables and 
parameters 

,,,, tStd
yySS µ

==η=ηρ= ∗∗∗∗ ww  

=
µ

= ∗∗ qpSp , ,,,2

2
wSrSrqS µ=ω

µ
=

µ
∗∗   (9) 

and abandoning the star notation, the governing equations (4) and (5) 
take the non-dimensional forms 

( ) ( ) ,0,10;,1
Re
1,1 2

2
><<

∂
∂








∂
∂+=η









∂

∂+
∂
∂+ tyy

ty
trty

t
qtp w  

(10) 

( ) ( ) ,0,10;,
Re
1,

><<
∂

η∂
=

∂
∂ tyy

ty
t

tyw   (11) 

in which the Reynolds number Re is defined by 

,Re
2

ν
Vd

ν
Sd =
µ

=   (12) 

and µ= SdV  is a characteristic velocity. 
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The corresponding dimensionless initial and boundary conditions are 

( ) ( ) ( ) ( ) ( ) ;0,0,;0,,0,
00

2

2

0
=

∂
η∂

=η=
∂

∂
=

∂
∂

=
=== ttt t

tyy
t

ty
t

tyy www  

,10 ≤≤ y   (13) 

( ) ( ) ( ),cos,1
Re
1,01

02

2
ty

ty
trt

t
qtp

y
ω=

∂
∂







∂
∂+=η









∂

∂+
∂
∂+

=

w  

( ) ,0;0,1 >= ttw   (14) 

or again the initial conditions (13) together with the following boundary 
conditions: 

( ) ( ) ( ),sin,1
Re
1,01

02

2
ty

ty
trt

t
qtp

y
ω=

∂
∂







∂
∂+=η









∂

∂+
∂
∂+

=

w  

( ) .0;0,1 >= ttw   (15) 

Dimensionless starting solutions ( ) ( )tyty cc ,,, ηw  and ( ) ( )tyty ss ,,, ηw  

corresponding to the two motion problems in discussion have to satisfy 
the governing equations (10) and (11) and the initial and boundary 
conditions (13), (14), respectively (13), (15). The form of the boundary 
conditions (14) and (15) and the fact that the fluid was at rest at the 
initial moment ,0=t  suggest us the fact that both motions becomes 

steady in time. Generally, the starting solutions corresponding to such 
motions of incompressible fluids can be written as sums of their steady 
state (permanent or long time) and transient components, namely, 

( ) ( ) ( ) ( ) ( ) ( ),,,,,,,, tytytytytyty ctcpcctcpc η+η=η+= www  (16) 

respectively, 

( ) ( ) ( ) ( ) ( ) ( ).,,,,,,, tytytytytyty stspsstsps η+η=η+= www   (17) 
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Of course, some time after the motion initiation, the fluid moves 
according to the starting solutions ( ) ( )tyty cc ,,, ηw  or ( ) ( ).,,, tyty ss ηw  

After this time, when the transients disappear or can be neglected (the 
magnitude of the transient components ( ) ( ),,,, tyty ctct ηw ( ) ( )tyty stst ,,, ηw  

being zero or small enough), the fluid behaviour can be characterized by 
the steady state or permanent solutions ( ) ( ) ( ) ( ).,,,,,,, tytytyty spspcpcp ηη ww  

This is the time to touch the steady or permanent state. From 
mathematical point of view, it is the time after which the diagrams of 
starting solutions superpose over those of their steady state components. 
In practice, this time is very important for the experimental researchers 
that have to know the moment after which the fluid moves according to 
the steady state solutions. In order to determine it, it is sufficient to know 
the steady state solutions which are independent of the initial conditions 
but satisfy the boundary conditions and governing equations. This is the 
reason, that in the following section, we shall determine closed-form 
expressions only for the steady state solutions ( ) ( ) ( ),,,,,, tytyty spcpcp ww η  

and ( )., tyspη  

3. Closed-form Expressions for the Steady State Solutions 

In order to provide closed-form expressions for the dimensionless 
steady state solutions ( ) ( )tyty cpcp ,,, ηw  and ( ) ( )tyty spsp ,,, ηw  of the 

two isothermal motions of IBFs we use the complex velocity and shear 
stress fields ( )typ ,w  and ( )typ ,η  defined by 

 ( ) ( ) ( ),,,, tyityty spcpp www +=  

 ( ) ( ) ( ) ,,0;,,, Rtytyityty spcpp ∈>η+η=η   (18) 
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where i is the complex unit. The two complex entities have to satisfy the 
following partial differential equations (see Equations (10) and (11)) 

( )
( )

,,10;
,

1
Re
1,1 2

2
Rtyy

ty
trty

t
qtp p

p ∈<<
∂

∂







∂
∂+=η









∂

∂+
∂
∂+

w
 

(19) 

( ) ( )
.,10;

,
Re
1,

Rtyy
ty

t
ty pp ∈<<

∂
η∂

=
∂

∂w
  (20) 

Eliminating ( )typ ,η  between Equations (19) and (20) and bearing in 

mind the boundary conditions (14) and (15), it result that ( )typ ,w  has to 

satisfy the next boundary value problem 

( ) ( )
;

,
1Re

1,
1 2

2

2

2

y
ty

trt
ty

t
qtp pp

∂

∂







∂
∂+=

∂
∂










∂

∂+
∂
∂+

ww
 

,,10 Rty ∈<<   (21) 

( )
( ) .;0,1,eRe

,
1

0
Rtty

ty
tr p

ti

y

p ∈==
∂

∂







∂
∂+ ω

=
w

w
  (22) 

Now, bearing in mind the linearity of the governing equations (19)-
(21) and the nature of the boundary conditions (22), we are looking for 
solutions of the forms 

( ) ( ) ( ) ( ) ,,10;e,,e, RtyyTtyyWty ti
p

ti
p ∈<<=η= ωωw   (23) 

where ( )⋅W  and ( )⋅T  are complex functions. Direct computations show 

that 

( ) ( )[ ]
( ) ( ) ,,10;1

e
cosh

1sinhRe, Rtyir
yty

ti
p ∈<<

ω+γγ
−γ=

ω
w   (24) 

( ) ( )[ ]
( ) .,10;

1
e

cosh
1cosh, 2 Rty

ipq
yty

ti
p ∈<<

ω+ω−γ
−γ=η

ω
  (25) 
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Simple computations show that ( )typ ,w  and ( )typ ,η  given by Equations 

(24), respectively (25) satisfy the governing equations (19)-(21) and the 
boundary conditions (22). 

Consequently, the dimensionless steady state solutions ( ),, tycpw  

( ) ( ),,,, tyty spcp wη  and ( )tysp ,η  corresponding to the two motions of 

IBF are given by the simple relations 

( ) ( )[ ]
( ) ( ) ,,10;1

e
cosh

1sinhRe, Rtyir
yety

ti
cp ∈<<









ω+γγ
−γ=

ω
w   (26) 

( ) ( )[ ]
( ) ,,10;

1
e

cosh
1cosh, 2 Rty

ipq
yety

ti
cp ∈<<









ω+ω−γ
−γ=η

ω
   (27) 

( ) ( )[ ]
( ) ( ) ,,10;1

e
cosh

1sinhImRe, Rtyir
yty

ti
sp ∈<<









ω+γγ
−γ=

ω
w   (28) 

( ) ( )[ ]
( ) ,,10;

1
e

cosh
1coshIm, 2 Rty

ipq
yty

ti
sp ∈<<









ω+ω−γ
−γ=η

ω
  (29) 

where e  and Im denote the real, respectively the imaginary part of that 
which follows and the complex constant γ  is given by the relation 

.1
)1Re( 2

ω+
ω+ω−ω=γ ir

ipqi   (30) 

Finally, it is worth to point out that the corresponding solutions for 
incompressible Oldroyd-B, Maxwell and Newtonian fluids performing 
similar motions can immediately be obtained making ,0,0 === rqq  

respectively, 0=== rqp  in the relations (26)-(29). Taking 0== rq  

in these equalities, for instance, we find the corresponding solutions for 
the upper-convected Maxwell fluids performing similar motions, namely, 
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( ) ( )[ ]
( ) ,,10;e

cosh
1sinhRe, Rtyyety

ti
Mcp ∈<<









δδ
−δ=

ω
w   (31) 

( ) ( )[ ]
( ) ,,10;1

e
cosh

1cosh, Rtyip
yety

ti
Mcp ∈<<









ω+δ
−δ=η

ω
   (32) 

( ) ( )[ ]
( ) ,,10;e

cosh
1sinhImRe, Rtyyty

ti
Msp ∈<<









δδ
−δ=

ω
w   (33) 

( ) ( )[ ]
( ) ,,10;1

e
cosh

1coshIm, Rtyip
yty

ti
Msp ∈<<









ω+δ
−δ=η

ω
 (34) 

where ( ).1Re ω+ω=δ ipi  The solutions ( ) ( )tyty McpMcp ,,, ηw  and 

( ) ( ),,,, tyty MspMsp ηw  given by Equations (31), (32) and (33), (34), 

respectively satisfy the boundary conditions 

( ) ( ) ( ) ( ) ,;0,1,cos,
Re
1,01

0
Rttty

tyttp
y

∈=ω=
∂

∂
=η







∂
∂+

=
ww   (35) 

respectively, 

( ) ( ) ( ) ( ) .;0,1,sin,
Re
1,01

0
Rttty

tyttp
y

∈=ω=
∂

∂
=η







∂
∂+

=
ww   (36) 

As it was to be expected, the dimensional forms of ( ) ( )tyty McpMcp ,,, ηw  

( ),, tyMspw  and ( )tyMsp ,η  from Equations (31)-(34) are identical to the 

dimensional forms of the corresponding solutions obtained by Fetecau et 
al. [18, Equations (48)-(51)]. 

The similar solutions for incompressible second grade fluids, namely, 

( ) ( )[ ]
( ) ( ) ,,10;1

e
cosh

1sinhRe, Rtyir
yety

ti
SGcp ∈<<









ω+ββ
−β=

ω
w   (37) 

( ) ( )[ ]
( ) ,,10;ecosh

1cosh, Rtyyety ti
SGcp ∈<<









β
−β=η ω   (38) 
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( ) ( )[ ]
( ) ( ) ,,10;1

e
cosh

1sinhImRe, Rtyir
yty

ti
SGsp ∈<<









ω+ββ
−β=

ω
w   (39) 

( ) ( )[ ]
( ) ,,10;ecosh

1coshIm, Rtyyty ti
SGsp ∈<<









β
−β=η ω   (40) 

where ( )ω+ω=β iri 1/Re  are immediately obtained making 0== qp  

in Equations (26)-(29). As expected, the dimensional forms of these 
solutions are identical to those obtained by Fetecau and Vieru [19, 
Equations (45) and (46)] in the absence of magnetic and porous effects. 
Unfortunately, the denominator of the constant γ from this last reference 
has been omitted. Interesting steady solutions for flows of incompressible 
second grade fluid in a plane channel have been recently obtained by 
Baranovskii and Artemov [20, 21]. 

The corresponding dimensionless steady state Newtonian solutions, 
namely, 

( ) ( ) ,,10;e
)Recosh(

]Re1sinh[, Rty
ii

iyety
ti

Ncp ∈<<








ωω
ω−=

ω
w   (41) 

( ) ( ) ,,10;e
)Recosh(

]Re1cosh[, Rty
i

iyety ti
Ncp ∈<<









ω
ω−=η ω   (42) 

( ) ( ) ,,10;e
)Recosh(

]Re1sinh[Im, Rty
ii

iyty
ti

Nsp ∈<<








ωω
ω−=

ω
w   (43) 

( ) ( ) ,,10;e
)Recosh(

]Re1cosh[Im, Rty
i

iyty ti
Nsp ∈<<









ω
ω−=η ω   (44) 

are also obtained making 0=== rqp  into Equations (26)-(29) or 

0=p  in Equations. (31)-(34). They correspond to isothermal motions of 

incompressible Newtonian fluids induced by the lower plate that applies 
an oscillatory shear stress ( )tS ωcos  or ( )tS ωsin  to the fluid. We also 

mention the fact that the dimensional forms of the velocity fields 
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( )tyNcp ,w  and ( )tyNsp ,w  given by Equations (41) and (43), respectively, 

have opposite signs to the dimensional forms of the similar solutions 
obtained by Maria Javaid et al. [22, Equations (42)]. This is due the fact 
that the first boundary conditions have opposed signs in the two works. 

Now, taking the limit of Equations (41) and (42) when ,0→ω  one 

obtains the solutions 

( ) ( ) ( ) ,Re1,lim
0

−==
→ω

ytyy NcpNp ww  

 ( ) ,,10;1,lim
0

RtytyNcpNp ∈<<=η=η
→ω

  (45) 

corresponding to the steady motion of incompressible Newtonian fluids 
produced by the lower plate that applies a constant shear stress S to the 
fluid. Here, a surprising result is the fact that the shear stress 
corresponding to such a motion of incompressible Newtonian fluids is 
constant on the entire flow domain although the fluid velocity is a 
function of the spatial variable y. Furthermore, this constant is just the 
shear stress applied by the lower plate to the fluid. In addition, the 
dimensional forms of these last steady solutions ( )yNpw  and Npη  are in 

accordance with the similar solutions resulting from the relations (28) of 
the reference [22]. 

4. Numerical Results and Applications 

In this work, two mixed initial-boundary value problems are 
analytically and numerically investigated. Their solutions describe 
isothermal unsteady motions of IBFs between infinite horizontal parallel 
plates when a differential expression of the shear stress ( )ty,η  different 

from zero is prescribed on a part of the boundary. Closed-form 
expressions are determined for the dimensionless steady state velocities 

( ) ( )tyty spcp ,,, ww  and the corresponding non-trivial shear stresses 

( ) ( ).,,, tyty spcp ηη  The obtained results can easily be particularized to 
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give dimensionless steady state solutions for incompressible Oldroyd-B, 
Maxwell, second grade and Newtonian fluids performing similar motions. 
For validation, the solutions corresponding to incompressible Maxwell, 
second grade and Newtonian fluids performing similar motions have 
been provided and compared with known solutions from the existing 
literature. 

Now, as application, the dimensionless steady state solution ( )tycp ,w  

given by Equation (26) is used in Figures 1-3 to determine the required 
time to touch the steady or permanent state for motions of the 
incompressible Burgers, Oldroyd-B and Maxwell fluids. As we already 
have mentioned, this is the time after which the diagrams of starting 
solution ( )tyc ,w  superpose over those of its steady state component 

( )., tycpw  

From these graphical representations, which clearly show the 
convergence of the starting solutions ( ) ( ) ( )tytyty McOcc ,,,,, www  to their 

steady state components ( ) ( ),,,, tyty Ocpcp ww  and ( ),, tyMcpw  respectively 

for increasing values of the time t, it clearly results that the required 
time to touch the steady state for such isothermal unsteady motions of 
the incompressible non-Newtonian fluids diminishes for increasing 
values of the material parameters qp,  or r. Furthermore, bearing in 

mind the values that have been ascribed to these parameters, it also 
results that the steady state is earlier obtained for motions of Burgers 
fluids in comparison with Maxwell or Oldroyd-B fluids. It also results 
that this state is rather touched for motions of Maxell fluids in 
comparison with Oldroyd-B fluids. 
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(a) 1.0=q  

 
 (b) 9.0=q  

Figure 1. Required time to touch the steady state for the motion of 
incompressible Burgers fluids when a differential expression of the shear 
stress on the lower plate is equal to ( )tS ωcos  at two distinct values of q 

and .100Re,12/,7.0,8.0 =π=ω== rp  
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(a) 1.0=r   

 
(b) 7.0=r  

Figure 2. Required time to touch the steady state for the motion of the 
incompressible Oldroyd-B fluids when a differential expression of the 
shear stress on the lower plate is equal to ( )tS ωcos  at two distinct values 
of r and .100Re,12/,8.0 =π=ω=p  
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(a) 1.0=p  

 
(b) 8.0=p  

Figure 3. Required time to touch the steady state for the motion of 
incompressible Maxwell fluids when a differential expression of shear 
stress on the lower plate is equal to ( )tS ωcos  at two distinct values of p 
and .100Re,12/ =π=ω  
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Convergence of the dimensionless Newtonian starting solutions 
( )tyNc ,w  and ( )tyNs ,w  to their steady state components ( ),, tyNcpw  

respectively ( )tyNsp ,w  for increasing values of the time t is graphically 

proved in Figures 4(a) and 4(b). 
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(a) cosine oscillations  

 
(b) sine oscillations 

Figure 4. Required time to touch the steady state for motions of 
Newtonian fluids due to cosine or sine oscillations of the shear stress on 
the boundary when 12/π=ω  and .100Re =  
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From these figures it also results that need time to reach the steady 
state for such motions of incompressible Newtonian fluids is much 
shorter when the lower plate applies the shear stress ( )tS ωcos  instead of 

( )tS ωsin  to the fluid. Consequently, the steady state for such motions of 

the incompressible Newtonian fluids is earlier obtained for cosine 
oscillations in comparison with sine oscillations of the shear stress on the 
boundary. This is obvious because, in the second case, the shear stress 
applied by the plate to the fluid is zero at the initial moment .0=t  In 
addition, the steady state for isothermal unsteady motions of the 
incompressible fluids is rather obtained for motions of Newtonian fluids 
in comparison with the non-Newtonian fluids. 

5. Conclusions 

Isothermal unsteady unidirectional motions of IBFs between infinite 
horizontal parallel plates are first time investigated when a differential 
expression of the non-trivial shear stress is prescribed on the lower plate 
as being equal to ( )tS ωcos  or ( ).sin tS ω  Closed form-expressions are 

established for the non-dimensional steady state velocity fields ( ),, tycpw  

( )tysp ,w  and the corresponding shear stresses ( )tycp ,η  and ( ),, tyspη  

respectively. In some particular cases, as expected, the dimensional forms 
of these solutions are identical to known results from the existing 
literature. The obtained solutions, presented in the simplest forms, are 
used to determine the required time to reach the steady state. This time, 
after which the fluid behaviour is characterized by the steady state 
solutions, is very important in practice for the experimental researchers. 

The main conclusions of this study are: 

(i) First exact expressions are provided for steady state solutions 
corresponding to two isothermal unidirectional motions of IBFs between 
infinite horizontal parallel plates when a differential expression of the 
non-trivial shear stress is prescribed on the lower plate. 
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(ii) These expressions can easily be particularized to give exact steady 
state solutions for Oldroyd-B, Maxwell, second grade and Newtonian 
fluids performing similar motions. 

(iii) The convergence of the dimensionless starting velocities 
(numerical solutions) ( )tyc ,w  and ( )tys ,w  to their steady state 

components ( ),, tycpw  respectively ( )tysp ,w  for increasing values of the 

time t could be a certainty for the correctness of obtained results. 

(iv) Steady state for such isothermal motions of incompressible non-
Newtonian fluids is rather obtained for the Burgers fluids in comparison 
with Oldroyd-B or Maxwell fluids. 

(v) Steady state for motions of incompressible Newtonian fluids is 
much later obtained when the lower plate applies the shear stress 

( )tS ωsin  instead of ( )tS ωcos  to the fluid. 
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