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2 O. R. SAYED and N. H. SAYED

Abstract

The present paper is devoted to study some completeness properties of
transitive binary relational set, i.e., a set together with a transitive binary
relation (so called ¢-set). We hope that the results of our paper will be a starting
point for a sufficiently general but simple theory of objects that are suitable for
modelling various aspects of computation and useful in modern applications of
domain theory to general topology and mathematical analysis.

1. Introduction

Abramsky and Jung [1] introduced a method to construct a canonical
partially ordered set from a pre-ordered set and said: “Many notions
from the theory of order sets make sense even if reflexivity fails”. Finally,
they sum up these considerations with the slogan: “Order theory is the
study of transitive relations”. Heckmann [3] and others introduced and
studied the concepts of bounded complete poset, bounded complete
domain, finitely complete poset, complete domain, finitarily complete
poset, strongly compactly complete domain and compactly complete
domain. In [4], the authors introduced and studied the concepts of
bounded completeness and finitely completeness on continuous
information system. Further more compactly completeness, finitarily
completeness and strongly compactly completeness for continuous
information system were given. Also, some interactions between these
concepts are investigated. Further, some corresponding results in posets
and domains due to Hechmann [3] were generalized. In [10], the concept
of continuity of some types of fuzzy directed complete posets was studied.
Recently in [11], the authors introduced and studied the continuity for a
set equipped with a transitive fuzzy binary order relation which they
called a f-toset. This paper is divided into seven sections. In Section 2,
some definitions and results concerning some completeness properties of
poset and domain were presented. In Section 3, bounded complete ¢-sets
and bounded complete domain f-sets were introduced and studied. In
Section 4, finitely complete t-sets and complete domain t-sets were
introduced and studied. In Section 5, we extend the concept of finitary

sets in transitive binary relational sets and then introduced and study
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the concept of finitarily complete ¢-sets. Finally, in Section 6, strongly
compactly complete ¢-sets and compactly complete ¢-sets were introduced
and studied. We conclude this paper in Section 7 by pointing the reader

to possible future directions and posing some open questions.
2. Preliminaries

For basic concepts of the poset, we refer to [6]. The concepts of
directed subset, domain (directed complete poset), upper cone, upper
closure etc., the reader is referred to [1, 3].

Definition 2.1. Let X be a nonempty set with a binary relation “<”

on X. The pair (X, x) is called:

(1) a partially ordered set (poset for short) [6] if “<” is reflexive,

antisymmetric and transitive;

”»

(2) a pre-ordered (quasi ordered) set [6] if “<” is reflexive and

transitive;

(8) an equivalence set [6] if “=<” 1is reflexive, symmetric and

transitive;

”»

(4) a continuous information system [5, 8] if “<” is transitive and
interpolative (if Vx, z € X with x < z there exists y € X such that

X<y z);
(5) an abstract base [9] if “<” is transitive and for every x € X and

every finite subset A of X, if for every y € A, y < «x, there exists z ¢ X

such that y < z < x for any y € A.
Definition 2.2. A poset (X, <) is a domain [7] if for every directed
subset A of X, sup(A) exists.

Definition 2.3. Let (X, <) be a domain. A subset A of X is called
strongly compact [3] if for every O € g with A C O there exists a
finitary set F' with A C F C O, where 1g is the Scott-topology on X.
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3. Bounded Complete ¢t-Sets and Bounded

Complete Domain ¢-Sets

Definition 3.1. A transitive binary relational set (¢-set for short) is a

”»

pair (X, <), where X is a non-empty set and “<” is a transitive binary

relation on X.

Example 3.1. Partially ordered sets, pre-ordered sets, equivalence

sets, continuous information system, and abstract bases are ¢-sets.

Remark 3.1. Any abstract base is a continuous information system
but the converse need not be true as we illustrate by the following
example.

Example 3.2. Let X = {a, b, x} and < = {(a, a), (b, b), (a, x), (b, x)}.
Then “<” is transitive and interpolative. Furthermore, if A = {a, b},

then (X, <) is not an abstract base.

Remark 3.2. Every pre-ordered set is an abstract base (Indeed,
suppose that A is a finite subset of a pre-ordered set X and such that for

every x € X and for every ye A, y<x. Then y <x < x.). The
converse need not be true as we illustrate by the following example:

Example 3.3. Let X = {a, b, ¢, d, e} and < = {(a, a)}. Then (X, <) is

”»”

an abstract base. It is clear that “<” is not reflexive. Hence (X, <) is

not a pre-ordered set.

Definition 3.2. Let (X, <) be a t-set and A C X.

(1) The subset of lower (resp., upper) bounds of A is denoted by Ib(A)
(resp., ub(A)) and defined as follows:
Ib(A)={x e X:Vye A, x <y} (resp.,, ub(A)={x e X : Vy e A, y < x}).

Each element in [b(A) (resp., ub(A)) is called a lower (resp., an upper)
bound of A.
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(2) The subset of least (resp., largest) elements of a subset A is
denoted by le(A) (resp., la(A)) and defined as follows:

lef(A)={xe A:Vye A,x <y} (resp., la(A)={x e A:Vye A, y < x}).
Each element in le(A) (resp., la(A)) is called a least (resp., a largest)

element of A.

(8) The infimum (resp., supremum) subset in X of A is denoted by
inf(A) (resp., sup(A4)) and defined as follows:

inf(A) = la(lb(A)) (resp., sup(A) = le(ub(A))). Each element in inf(A)

(resp., sup(4)) is called an infimum (resp., a supremum) of A.

(4) The lower (resp., upper) closure in X of A is denoted by | (A)
(resp., T(A)) and defined as follows:

J(A)={x e X : there exists ye A, x < y} (resp.,, T (A)={x e X :
there exists y € A, y < x}).

Definition 3.3. Let (X, <) be a t-set and A C X. Then A is called:

(1) a directed subset if A # ¢ and for every distinct elements x, y in A,
there exists z € A N ub({x, y});
(2) an upper cone if there exists x € A such that A =T .

Definition 3.4. A t-set (X, <) is called bounded complete if X is an

upper cone and for every x, y € X, ub({x, y}) is empty or an upper cone.

Theorem 3.1. For a t-set (X, <), the following statements are

equivalent:
(1) X is a bounded complete t-set.
() le(X) # ¢ and forevery x, y € X with ub({x, y}) # ¢, sup({x, y}) # ¢.
(3) If A is a finite bounded subset from above, then sup(A) # ¢.

(4) If A is a finite subset of X, then ub(A) is either ¢ or an upper cone.
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Proof. (1) = (2): Since X is an upper cone, then there exists a € X
such that T a = X. So, {a} C le(X). If ub({x, y}) # ¢, then ub({x, y}) is
an upper cone. Hence there exists b e ub({x, y}) such that

T b = ub({x, y}). So b e le(ub({x, y})). Therefore sup({x, y}) # ¢.

(2) = (38): Now ¢ 1is a finite bounded set from above since
ub(¢) = X # ¢. Since le(X) = le(ub(9)) # ¢, then sup(d) # ¢. Let A be a
non-empty finite bounded subset from above. If A = {z} and ub({z}) # ¢,
then sup(A)# ¢. Suppose A = {xq, x9, X3, ..., x,} and ub(A) # ¢.
Now Ay = {x, x5} and ub(Al,z) # ¢, then sup(Al,z) # ¢. Take
U g € sup(A1’2) and consider A; g3 = {u1’2, x3}. Then sup(ALg’g) #¢
because ub(Al’gyg) #¢. We can proceed until consider the set
B= {u1,2 _____ n1>%p . Since ub(B) # ¢, then sup(B) # ¢. Now, for every
l € sup(B), I € ub(A). Since m € ub(A), one can deduce that [ < m.
Then [ € sup(A). So, sup(A) # ¢.

(8) = (4): Let A be a finite subset of X. If A is not bounded from

above, then ub(A) = ¢. Let A be finite bounded subset from above. Then

sup(A) = le(ub(A)) # ¢. Then there exists x € ub(A) such that T x = ub(A).

(4) = (1): Now, X = ub(¢) and so X is an upper cone. Since for
every x, y € X, {x, y} is finite. Then ub({x, y}) = ¢ or ub({x, y}) is an

upper cone. O

Lemma 3.1. For a t-set (X, <), the following statements are

equivalent:

(1) If A is bounded subset from above, then sup(A) # ¢.

(2) If A is a non-empty subset of X, then inf(A) # ¢.
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Proof. (1) = (2): Let A be non-empty subset of X and B = [b(A).
Now, ub(B) D A # ¢. Then sup(B) # ¢. Let x € sup(B). Now, x € ub(B).
Then for every a e A, x < a. Then «x e la(lb(A)) = inf(A). Hence
inf(A) # ¢.

(2) = (1): Suppose that A is a bounded subset of X from above and
B = ub(A) # ¢. Then inf(B) # ¢. Let x € inf(B). Since A C Ib(B) and

x € inf(B), then for every a € A, a < x. Thus x e le(ub(A)) = sup(A).
Therefore sup(A) # ¢. O

Definition 3.5. A ¢-set (X, <) is called a bounded complete domain if
it 1s bounded complete and domain.

Theorem 3.2. For a domain t-set (X, <), the following statements are

equivalent:
(1) X is a bounded complete t-set.
(2) le(X) # ¢ and Vx, y € X with ub({x, y}) # ¢, sup({x, y}) # ¢.
(3) If A is a finite bounded subset from above, sup(A) # ¢.
(4) If A is a finite subset of X, ub(A) is either ¢ or an upper cone.
(5) If A is bounded subset from above, sup(A) # ¢.
(6) If A is a non-empty subset of X, inf(A) # ¢.

Proof. From Theorem 3.1 and Lemma 3.1, it rests to prove that (3)
and (5) are equivalent.

(8)= (5): Let A be a bounded subset of X from above and
D = {x : x is a fixed element of sup(F') for every finite subset F of A}.
Since sup(¢) # ¢ and for every y € sup(F; U Fy), y € ub(sup(F;) U sup
(Fy)), where F; and Fy are finite subsets of A, then D is directed.
Thus sup(D) # ¢. Now, for every [ e sup(D), [ € ub(A). Suppose that
z € ub(A). Then for all m € A, m < z sothat z € ub(A). Thus [ < z so
that [ € sup(A). Hence sup(D) C sup(A). Therefore sup(A) # ¢.

(5) = (3): Obvious. O
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4. Finitely Complete z-Sets and Complete Domain #-Sets

Definition 4.1. A ¢-set (X, <) is called finitely complete if X is an
upper cone, and for all x, y € X, ub({x, y}) is an upper cone. One can

easily deduce that any finitely complete ¢-set is a bounded complete ¢-set.

Theorem 4.1. For a t-set (X, <), the following statements are

equivalent:
(1) X is a finitely complete t-set.
(2) X has a least element and for all x, y € X, sup({x, y}) # ¢.
(3) If A is a finite subset of X, then sup(A) # ¢.
(4) If A is a finite subset of X, then ub(A) is an upper cone.

Proof. (1) = (2): Since X is an upper cone, then there exists a € X
such that T a = X. So, a € le(X). Suppose that x, y € X. Then there

exists z € ub({x, y}) such that T z = ub({x, y}). Therefore z € sup({x, v}).

(2) = (3): First, the empty set is finite. Since there exists x e le(X),
then there exists x € sup(¢). Suppose that A = {z}. Now, we have that
sup({z}) = sup({z, z}) # ¢. Let A = {x;, x9, x3, ..., x,,}, 1L.e., A is a finite
set. Now, A;g = {x;, x5}, then there exists u; o € sup(ALQ). Put
Al g3 = {u1’2, x3} so that there exists u; 93 € Sup(A1’2,3). We can
proceed until consider the set B = {ul,z ..... n_ls xn} so that there exists

l € sup(B). Then [ e ub(A). Let m € ub(A). One can deduce that
I < m. Therefore [ € sup(A).

(3) = (4): Let A be a finite set. Then sup(A) # ¢. Thus, there exists
I € le(ub(A)) so that T I = ub(A). Therefore ub(A) is an upper cone.
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(4) = (1): Since ¢ is finite and ub(¢) = X, then X is an upper cone.
Since the set {x, y} is finite for every x, y € X, then ub({x, y}) is an

upper cone. U

Definition 4.2. (X, <) is called a complete domain ¢-set if it is finitely

complete ¢-set and domain ¢-set.

Theorem 4.2. For a t-set (X, <), the following statements are

equivalent:
(1) X is a complete domain t-set.
(2) X is a bounded complete domain t-set with la(X) # ¢.
(3) If A is a subset of X, inf(A) # ¢.
(4) If A is a subset of X, sup(A) # ¢.
(5) If A is a finite subset of X or a directed subset of X, sup(A) # ¢.

Proof. (1) = (2): Any complete domain ¢-set is bounded complete
domain. Now, since for all x, y € X, ub({x, y}) is an upper cone, then

ub({x, y}) # ¢. Hence X is directed. Therefore la(X) = sup(X) # ¢.

(2) = (3): Let A be a subset of X. First, if A = ¢, then X = Ib(9).
Since le(X) # ¢, then there exists [ € inf(¢). Second, if A # ¢, then from
Theorem 3.2(6), inf(A) # ¢.

(3) = (4): Let A be a subset of X. Since inf(¢) # ¢, then there exists
I € la(X) so that every subset of X is bounded from above. From Lemma

3.1, sup(A) # ¢.

(4) = (5): Obvious.
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(6) = (1): Since for every directed subset A of X, then sup(A) # ¢.

Hence X 1is a domain ¢-set. From Theorem 4.1(3), X 1is a finitely

complete ¢-set. O
5. Finitarily Complete t-Sets
Definition 5.1. Let (X, <) be a ¢-set. A subset A of X is called
finitary if there exists a finite subset F of A with A C T (F).
Proposition 5.1. Let (X, <) beat-setand {A; : j e {1, 2, ..., n}} bea

family of finitary subsets of X. Then U;l:l Aj is a finitary subset.

Proof. The proof is straightforward. O

Definition 5.2. A t-set (X, <) is called finitarily complete if X is
finitary, Vx, y € X, ub({x, y}) is finitary.

Theorem 5.1. Let (X, <) be a t-set. Then the following statements are
equivalent:

(1) X is finitarily complete.

(2) X is finitary and if A and B are finitary upper sets, then A N B is
finitary.

3) If Ay, ..., A, are finitary subsets of X, then ﬂ;:l Aj is finitary.

(4) If B is finite subset of X, then ub(B) is finitary.

Proof. (1) = (2): If X is finitarily complete, then X is finitary. If A is
finitary upper set, then there exists a finite set F; C A such that
ACT(F)and T (A) C A. Hence A =T (F,) and if B is finitary upper

set, then there exists a finite set F, C B such that B CT (F,) and
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T (B) C B. Hence B =1 (F,). Thus An B =" ()N T (F,) = (U%F1

(t a))ﬂ(Uber(T b)) = UaEF1 bely (Tan Tb). So, AN B is a finite

union of finitary sets. Therefore A N B 1is finitary.
(2) = (3): By indication. The empty intersection is X.

(8) = (4): If B is finite, then ub(B) = UeeB(T e) upper cones are
finitary. This is finite intersection of finitary sets.

(4) = (1): X is the set of upper bounds of ¢, and T xn T y is the set

of upper bounds of {x, y}. O

Theorem 5.2. (1) Every finite pre-ordered set (X, <) is finitarily

complete.

(2) Every bounded complete (X, <) pre-ordered set is finitarily

complete.

Proof. (1) Since X is finite and ub({x, y}) for each x, y € X is finite

also, then one can easily deduce that X 1is finitarily complete.

(2) Since X is upper cone, then X =T {x} for some x € X. Hence X
is finitary. Also, one can deduce that ub({x, y}) for each x, y e X is a
finitary subset of X because ub({x, y}) is empty or upper cone.
Therefore, X is finitarily complete. ]

The following two examples illustrate that the concepts of bounded
completeness and finiteness are independent notions for ¢-sets (moreover
for posets).

Example 5.1. Let X = {a, b, ¢, d} and < = {(a, a), (b, b), (c, ¢), (d, d)}.

Then (X, <) is finite poset but not bounded complete.
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Example 5.2. Let N ={1,2,3,...} and < be the usual partially

ordered relation on N. Then (N, <) is bounded complete but not finite.

6. Strongly Compactly Complete t-Sets

Definition 6.1. A triple (X, <, 7) is called a topological ¢-set, where

(X, <) is a t-set and (X, 7) is a topological space.

Definition 6.2. Let (X, <, 7) be a topological ¢-set. A subset A of X
is called strongly compact if for all O € T such that A C O, there exists
a finitary subset F' of X suchthat A C F C O.

Theorem 6.1. Let (X, <, T) be a topological t-set such that each

member of T is an upper subset. If a subset A of X is strongly compact,

then A is compact.
Proof. Let R be an open cover of A, 1.e., A C UBemB and R C 1.

Put UBem B =G. Then A C G € 7. Since A is strongly compact, then
there exists a finitary subset K of G such that A € K C G so that there
exists a finite subset F of K such that K C T (F). Then for every x € F

there exists B, € ® such that x € B,. So, F C UxeF B,. Hence

ACKcT(F)c? (UxeFBx) = UxeFBx Therefore, A is compact.

O

Corollary 6.1. (1) If A is strongly compact subset of X with respect to
the topological t-set (X, <, Tz ), then A is compact, where T, is the

Alexandroff topology induced by “=<”.

(2) If A is a strongly compact subset of X with respect to the topological

t-set (X, <, 'rs*) then A is compact, where T _. is the Scott™-topology

S
induced by “<x”.
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Theorem 6.2. Let (X, <) be a t-set and {A; : je {1,2,..., n}} bea

family of finitary subsets of X. Then U;l:l A; is a finitary subset.

Proof. Since for every j € {1, 2, ..., n} there exists a finite subset K j
n n n
such that Kj QA] QT(K]), then U]:lKJ gU]ZlAJ QUFlT(K])

c? (U;LZIK]-). Since U;l:l K is finite, then it is clear that U;'L:1 Aj is
finitary. ]

Theorem 6.3. Let (X, <, T) be a topological t-set and {A;:je
{1, 2, ..., n}} be a family of strongly compact subsets. Then U;L:lAj is

strongly compact subset.

Proof. Suppose O e 7 such that U;.LzlAj C O. Then for all jeJ

there exists a finitary subset Bj such that Aj - Bj C O so that

i-1 Aj - Uj=1 Bj C O. From Theorem 6.2, Uj:le is finitary. Hence

U;.L: 1 A; 1s strongly compact. O

Definition 6.3. Let (X, <, 7) be a topological t-set. X 1is called

strongly compactly complete ¢-set if X is strongly compact and for every

x, vy € X, ub({x, y}) is strongly compact.

Theorem 6.4. Let (X, <, T) be a topological t-set. Consider the
following statements:

(1) X is strongly compactly complete.

(2) X is finitary and the intersection of two finitary upper sets is

strongly compact. Then:
@) 1)=(2);

(B) If “<” is reflexive, then (2) = (1).
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Proof. (A) Since X is strongly compact and open, then there exists a
finitary set B of X such that X C B C X. So, X is finitary. Suppose A

and B be two finitary upper sets. Then there are finite sets £ and F

such that A CT (E)C?1 (A)C A and B C® (F) C? (B) C B. Hence, we

have A =T (E) and B =T (F). Now, AN B =T (E)n T (F) = UeeE feF

(T en T f). Therefore, from Theorem 6.2, A N B is strongly compact.
(B) Since X is finitary and the only open set containing X is X

itself, then X 1is strongly compact. Let x, y € X. Since “<” is reflexive,

then for every x € X, T {x} is finitary and since “<” is transitive, then

T x is upper set. Hence T {x} N T {y} is strongly compact. O

Definition 6.4. Let (X, <, 7) be a topological t-set. X 1is called
compactly complete if X is compact and for all x, y € X, ub({x, y}) is

compact.

Definition 6.5. A topological ¢-set (X, <, 7) has the property F if and

only if every compact open set in X is finitary.

Theorem 6.5. Let (X, <, T) be a topological t-set. Consider the

following statements:
(1) X is compactly complete.

(2) X is finitary and the intersection of two finitary upper sets is

compact. Then:

(A) If T has the property F, then (1) = (2);

B) If “x” is reflexive, and each member of T is an upper set then

@)= @.
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Proof. (A) Since T has the property F, then X 1is finitary. Let U and
V' Dbe two finitary upper sets. Then there are finite sets £ and M such
that UCT(E)cT(U)CUandVC T (M)CT(V)CV.So, U="(E)

and V =T (M). Now, UNnV =T (E)n T (M) =] y(TenTm).

ecE,me
Therefore U N V 1is compact because a finite union of compact subsets is

compact.
(B) Since X 1is finitary, then X is strongly compact.

From Theorem 6.1, X is compact. Since “<” is reflexive, then for all
x € X, x €T x. Thus, we have Tx 1is finitary. Furthermore, for all

x € X, T x is an upper set. Therefore, T xN T y is compact for all

x, y e X. O

7. Conclusion

We believe that it would be interesting to study Theorems 3.1, 3.2, 4.1,
4.2,5.1, 6.1, 6.2, 6.3, 6.4, Proposition 5.1, Lemma 5.1 and Corollary 6.1 if
we replace the condition of ¢-set by a pre-ordered set (resp., abstract base,
continuous information system). We intend to investigate all these issues
in future research works. Also, a new kind of compactness will be defined
using t-sets and a characterization of Alexandroff-continuous functions
between t-sets will be given (good willing). Further, we intend to

investigate all above issues in fuzzy setting in future research works.
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