IJAMML 17:1 (2023) 43-81 March 2023
ISSN: 2394-2258

Available at http://scientificadvances.co.in

DOI: http://dx.doi.org/10.18642/ijamml_7100122268

ADEQUATE INTELLIGENT CONSTRUCTING
PREDICTIVE OR OPTIMAL STATISTICAL
DECISIONS UNDER PARAMETRIC UNCERTAINTY
OF APPLIED STOCHASTIC MODELS

N. A. Nechval?, G. Berzins?, K. N. Nechval®
and M. Moldovanc

aBVEF Research Institute, University of Latvia, Riga, 1586, Latvia

bDepartment of Aviation, Transport and Telecommunication Institute, Riga,
1019, Latvia

¢Department of Biometry, University of Adelaide, Adelaide, 5005, State of South
Australia, Australia

Abstract

The method used here focuses on the basic quantities and supporting statistics needed to
construct prediction limits or optimal solutions for expected outcomes under the parametric
uncertainty of applied stochastic models. It is applicable whenever the statistical problem is
invariant under a group of transformations acting transitively on the parameter space. This

“Corresponding author.
E-mail address: nechval@telenet.lv (N. A. Nechval).

Copyright © 2022 Scientific Advances Publishers
2020 Mathematics Subject Classification: 60, 62.
Submitted by Jiangiang Gao.
Received December 22, 2022

This work is licensed under the Creative Commons Attribution International License
(CC BY 3.0).
http://creativecommons.org/licenses/by/3.0/deed.en US

(OO




44 N. A. Nechval et al. / IJAMML 17:1 (2023) 43-81

method does not require any tabulation and is applicable whether the statistics are
complete or Type II censored. The exact prediction limits of the order statistics associated
with a sample of basic distributions can be found quickly and easily, making tables,
simulations, Monte Carlo estimated percentiles, special computer programs, and
approximations unnecessary. The proposed technique is based on the transformation of
probabilities and the averaging of reference values. It is conceptually simple and easy to
use. The discussion is limited to one-sided prediction limits. Finally, we provide practical
numerical examples where the proposed analytical methodology is illustrated in terms of
the one-parameter (or two-parameter) exponential distribution. Applications to other log-
location-scale distributions can follow directly.

Keywords: anticipated outcomes, parametric uncertainty, unknown
(nuisance) parameters, elimination, pivotal quantities, ancillary

statistics, prediction limits, tolerance limits, optimal decisions.

1. Introduction

Statistical forecasting and optimization (under parametric
uncertainty) based on past and present knowledge is a fundamental
problem in statistics that arises in many contexts and leads to different
solutions. Statistical forecasting is the process by which values of
unknown observables (potential observations yet to be made or past
observations that are no longer available) are inferred from current
observations and other available information. The approach used here is
a special case of more general considerations applicable whenever the
statistical problem is invariant under the group of transformations acting

transitively on the parameter space [1-11].

1.1. Computational intelligence method for removing unknown

(nuisance) parameters from the base model

Removing unknown (nuisance) parameters from the base model includes
the following 3 steps: (1) invariant embedding of sample statistics into
the base model, (2) averaging the base model over the probability
distribution of the pivotal quantity, and (3) finding an effective statistical

decision.
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2. Preliminaries

2.1. Adequate transformation of the distribution of the order
statistic

Theorem 1 (Adequate transformation of the distribution of the order
statistic). Let us assume that there is a random sample of m ordered
observations Y; £ ...<Y,, from a known distribution with probability
density function fo(y), probability distribution function Fy(y), where 0
is the parameter (in general, vector), then the adequate transformation of
the cumulative distribution function of the I[-th order statistic
Y;,,le{l,2 ..., m}, is given by

Go(yim) = Py(Y) < yi|m) = Z[ }[Fem)]f 1 - Fo(y)I"

=\
Fy(y1)
= | fimeratadn, M
0
where
g (@) = T ) m I  g y cq @)
ym—itl B(l,m—1+1) ’ ’

is the probability density function (PDF) of the beta distribution
(Beta(l, m — 1 + 1)) with shape parameters [ and m — 1 + 1.

Proof. On the one hand, it follows from (1) that

2o Golnlm) = 5 Py(¥; < ylm) = %,Z[ ][Fe(yl)]j[l - Byl
J

dy; =

=D [y B - Ry
J=l\J

=3 [y - B By
J=l\J

— (m - DFo(n Y (A - Fyly)™  Fy(yy)]
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= Z{ J [er(yl)j_l(l - Fe(yz))m_j
J=t\J
— (m - Doy (- Foly)™ o)

B Z#(:71—1)' Fy(y ) 7 (= Fy(y)™ ™ Fy(1)
=

m-1

< v(m -1 Fy(9) = Fo ()" fo ()

- ey Fol) = Ry ho()

Z WFM)’ M- Fo(r)™ ™ folon)

j=l+1

m—1

= 2 Pl 0= R ()

j=l

m!

= B T P = B fo(n) = go(lm).

3)

If j =i+1, we have that

Z WFG(”)] M= Fy ()" foo)

Jj=l+1

m-1

= Z#:l),l%(yz) M- Fy()" " fol). (4)

1=
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Thus, it follows from (3) that

d
o Colyi|m) = - (¥, < yilm)

- m Fo(y) @ = Fyr)™ D o (1)

= go(yilm). (5)
On the other hand, it follows from (1) that

d d Fo(y1)
D Go(yyIm) = —Pe(Yz < ym) = Dy _([ fi,m-11 (w)du

Fy(y1)
1

__@ b 1 \(m=l+1)-
Ty ) Bim-1+n% ¥ du

= BT P Falon) ™ Y ()
= ge(yl|m). (6)

Thus, Fy(y;) is the generalized pivotal quantity:

1 _ _l+1)=
Fo(y;) =u ~ fl,m—l+1(u) = mul 1(1 - u)(m b 1, O<u<l

(7)
This ends the proof.

2.2. Conditional probability density function of the order statistic

Theorem 2. Let Y] < ... <Y, be the first k ordered observations (order

statistics) in a sample of size m from a continuous distribution with some

probability density function fy(y) and distribution function Fy(y), where

0 is a parameter (in general, vector). Then the conditional probability
density function of Y;(1 <k <1< m) given Y, =y, is determined as

follows.
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The joint density of Y] < ... <Y, and Y] is given by

k
oV - V> V1) = =% _f)L: ) l;lfe(yi)[Fe(yz)

— Fyy N o () [L = Fo o)™

k
=&;@%ﬁ[lﬁwﬂﬂ-ﬂﬂwwiq(u—JTﬁél—D’

y [Fe(yl) - Fe(yk)}l_k_l[l - Fe(yz)r_l fo(y1)
1 - Fy(yi) 1 - Fy(yi) 1 - Fy(ye)

= (801, ---» yis m))(go(yi|yk; m)). 8

It follows from (8) that

_ ge(yl, s Vi Vs m)

goWilyrs s vk m)
0 Zl 1 k ge(yh v Yies m)

_ 8o, - yis m)ge(i|ye: m)
ge(y17 s ks m)

= 8ok m)

_ (m — k)! [Fe(yl) - Fe(yk)}lkl[l - Fe(yz)}ml fo1)
(-k-Dtm =D 1-Fy(y) 1-Fo(y)]  1-Foly)

_ (m —k)! [1—Fe(yk)—(1—Fe(yl)}l_k_l[l—Fe(yz)}m_l
I

1 - Fy(yx) 1 - Fy(yx)
folv) __ (m-h)! P_EmﬁkTEwﬂmlmm
1-Fy(ye) (k=1 (m =) Fo(ve) Fo(y) Fo(ye)

©)
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y
Go(y]yes m) = Po(Y; < 3|Yy = yis m) = | go(yyi; m)dy
Yk
_ yf (m — £ {1 R T“‘_E)(y) rl AW g,
5 =k =1)!(m-1)! Fo(yg) | Fo(ye) Fo(yr)

Y Ik=1(1—k -1 = m-l+j =
__ (m — k)! _ il Fe) Fy(y)
- J; (= k=Dt(m = D)! jzo { j J( 1)]{%(3’1{)} d(ﬁe(yk)j

J

S {l o ‘1] 1y Fewk)r‘““"

:B(l—k,m—l+1) = i m—1+1+j| Fy(y;)

. < [1 ke 1} (1) [Feuz)r‘““"

B(l-k,m-1+1) ~ i m-1l+1+j Fe(yk)
“k-1(] -k — . — I+

1. 1 RN )’ [Ee(yz)r e

B(l-k,m-1+1) ~ j m—1+j+1|Fy(y;)

k (m—k = i = k-
_ Z " {1_ Ee(yz)T[fe(yz)r ’ (10)
j=l—k j Fo(yi)] [ Fo(x)

where
lk=1(l—k -1 o= 1414
1 (-1 {ie(yk)}m o -1

B(l-k,m-1+1) ~ . m—1+1+j| Fy(y;)

(11
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2.3. Adequate transformation of the conditional cumulative

distribution function of the order statistic

Theorem 3 (Adequate transformation of the conditional cumulative
distribution function (cdf) of the [-th order statistic). Let us assume that

there is a random sample of m ordered observations Y; < ... <Y, from a
known distribution with probability density function fy(y), cumulative
distribution function Fy(y), where 0 is the parameter (in general, vector),

then the adequate transformation of the conditional cumulative

distribution function of the Il-th order statistic Y;(1 < k <1< m) given

Y, = y; is determined as

Go(yi|yks m) = Po(Y; < y|Yy = yg; m)

m—k (m—k - ro= m-k—j
B fe(yz)} {fe(yl)}
2 {1 o) | | Fol)

= fii,m-1+1(W)du, (12)

O ey

where Fy(y) =1 - Fy(y),

1

—k— -1 —
fl—k,m—l+1(u) = B(l—k m—l+1) ul k 1(1 - u)(m +1) ldu’ O <u< 1,

(13)

is the probability density function (PDF) of the beta distribution
(Beta(l — k, m — 1 + 1)) with shape parameters | —k and m —k + 1.
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Proof. On the one hand, it follows from (12) that
d—ylGe(yzlyk; m) = diylpe(Yz < ylYx = yg; m)

A S A Fe(yz)}j{ﬁe(yz)}m_k_j
dy, jzzl_:k[ j J_l Fo(yi) | [ Folos)

(R e [1_ Ee<yl>}’{§e<yl>r"”
Al Fy(vi)] L Fo(vi)

R (mk ,{1_ Ee(yz)}j_l{fe(yl)}m_k_j
P Fy(vy) Fo(yi)

Cmek-p1- Fe(yz)}j[fe(yz)r_k_j_l foln)
Fy(vi) ] [ Fo(vi) Fo(yi)

K by {1_ zje<yl)}f‘1[§e<yz>r‘k‘f fon)
i U= Dim -k = j)! Fy(vr) Fy(vy) Fo(yi)
’”Z“ (m ~ ) {1_ Ee(yz)}j[fe(yz)r_k_jﬂ fol)

farn? Jtm—k—j-1) Fo(yr)] LFo(yx) Fo(ye)

_ (m-hy {1_ Ee(yl)}l_k_l{fe(yz)}m_l fo)
=k =1)!(m - D)! Fo(yi) Fy(vi) Fy(vi)

LK (m-k {1_ Ee(yl)}“{lfe(yl)r"f foln)
i (=D m -k =) Fo(yi) Fo(yi) Fo(yi)
SN ) {1_ Ee(yz)}j{fe(yz)rkjl fol)

i JHm—k—j-1) Fo(yi)] [ Fo(vr) Fo(yy)

51
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52
o (m—k P‘§MW+T@WWHEM)
(=k=DHm =D Fy(y) Folye)]  Folyx)
_ 1 {1 _ fe(yl)}l_k_l{fe(w)}m_l foly) (14)
Bl =k, m=1+1)[" Fo(y) Fy(vr) Fy(vr)
If j =i+1, we have that
Y (m-w P_@mq“@ymr”fggg
=D m=k=D'" Folye)] [ Fol) Fo (i)

Jj=l-k+1

Solon) 45
Fo(yx)

S (k! P_RoJTﬂmqu“
1—

" 2 T i1 Row) B
Thus, it follows from (14) that

d d
—G im)=—=—PFPy(Y; < y|Y, = y,.;m
&, o(vilyi; m) &, o (Y7 < 3i|Yy = yis m)

d & {m - k} {1 N Fe(yl)}j{pe(yl)r—k_j

" dy Fo)) [ Folre)
_ 1 {1 B Ee(yl)}l_k_l{fe(yl)r—l fo(y1)
Bl -k m-1+1) Fo(yr) Fo(y) Fo(y)
(16)

= g(y1|yx; m).

On the other hand, it follows from (12) that

d d
= G sm)=—=—PFPy(Y; < y|Yr = yi; m
O, o(vilyis m) d, o (Y7 < 3i|Ye = yi; m)
1 Fon)
J Fy (k)
= d_yl j fk,m—k+1(u)du



ADEQUATE INTELLIGENT CONSTRUCTING .../ IJAMML 17:1 (2023) 43-81 53

1 Fon)
4 Fo (k) 1 ( :
__a I-k-1 _  \(m=I+1)-1
Ty Bl-km-1+1)" (t-u) du

_ 1 {1 B Ee(yz)}l_k_l{fe(yl)r—l foly1)
Bl -k, m—1+1) Fo(yr) Fo(yr) Fo(yr)
= g(vilyes m). 1

F, . . . .
Thus, 1 - ﬂ 1s the generalized pivotal quantity:
Fo(yx)

L Fon)

Fe(yk) =u~ fl—k,m—l+1(u)

1
CB(l-k,m-1+1)

u ) Dgy 0 <w <1

(18)
This ends the proof.
2.4. One-parameter exponential distribution

This distribution is one of the most commonly used models in
different situations of life-testing and reliability studies. Let

X =(X; €... < X;) be the first k ordered observations (order statistics)

in a sample of size m from the exponential distribution with the

probability density function
fy(x) = B~ exp(~x/B), B >0, x>0, (19)
and the cumulative probability distribution function
Fp(x) =1 - exp(-x/B), (20)

where B is the scale parameter. It is assumed that the parameter B is

unknown. In Type II censoring, which is of primary interest here, the
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number of survivors is fixed and X is a random variable. It is known

that

k
Si = D Xj+(n-k)Xy, 21)
=1

is the complete sufficient statistic for B. The probability density function
of S; is given by
_ 1 k-1 Sk
fo(silk) = —— sk~ expl ——- |, ¢ 20, (22)
r(k)p
Vi = S; /B, (23)
is the pivotal quantity, the probability density function of which is given
by

fvilk) = ﬁvk_l exp(—vg), v = 0. (24)

2.5. Statistical pivot-based estimation of probability distribution

Suppose X is a future observation from the same distribution (19),
independent of X = (X; < ... < X;). Then the pivot-based estimate of

(20) can be determined as follows:

Step 1. Invariant embedding of S; in (20) to isolate unknown parameter

B from the problem through V,,

Fy(x) =1 —exp(-x/B) =1~ exp(— i%‘)

Sk
x X
= l—exp(—gvkj = Fﬁ(gvkj, (25)
where
X
W = o (26)

1s an ancillary statistic.
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Step 2. Averaging (25) over the probability distribution of the pivotal

quantity Vj to eliminate unknown parameter  from the problem. It

follows from (25) and (24) that the pivot-based estimate of the cumulative
distribution function (25) (through the pivot-based approach) is given by

Fy (x) = ]? Fﬁ(% Vi jf("klk)dvk
0

Ot—— 8

Cexpl = Xy || L L exn(—
[1 exp( 5 vkﬂ F(k)vk exp(— vy )dvy

o1
(1+w)k'

Fw)=1 @7

x !
o)

Sk
The pivot-based estimate of the probability density function (19) is given
by

dF (x) k X k-
fo, (x) = d"y = 5(1 + Qj ,x 20, (28)
and
Fsk(x)zl—Fsk(x)Z(l'f'g\J . (29)

The probability density function of the I-th order statistic Y; in a sample

of size m is given by
gply; m) = #M[Fﬁ(yl)]l_l[l - Fﬁ(yl)]m_lfﬁ(yl)

1 ' R P y N1
ZWZ{ (—1)Jexp(—#(m—l+l+])j§,

J=0\ J

y; € (0, ). (30)
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The cumulative probability distribution function of the I-th order statistic

Y; in a sample of size m is given by

Gyl m) = [ gp(r)dy
0

-1(1] - ; y o
IWZ[ ; J(—l) exp(—ﬁ(m—l+1+])jﬁdy

L ll(l— J(_l)j exp(—?(m—l+1+])j‘

B(lm—l+1)z m-1+j+1

(31)

The cumulative probability distribution function of the ancillary statistic

=Y;/S, (32)

1s given by

Glwr) = [ Gyl m) Fe )y
0

o0

= .([GB(‘?Z séc jf(vklk)dvk = IGﬁ(wlvk, m)f(vk|k)dvk

1 1 lzl:l_ ][1+(m l+]+1)wl]k
7 B(l,m-1+1) -l+j+1 ’

(33)
where S; is given by (21).

l -
[ J( 1)
dG(w)) '

dwll st) = g7 m—l+1)Z e G0

L+(m-1+j+1uwy

is the probability density function of the ancillary statistic W;.
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Let Y] < ... <Y} be the first & ordered observations (order statistics)
in a sample of size m from the exponential distribution with the
probability density function f3(y) and distribution function Fg(y), where
B 1s a parameter. Then it follows from (10) that the conditional
probability distribution function of Y;(1 < k <1< m) given Y; = y; is

determined as

Gg(ilyrs m) = By(Y; < |V = yis m)

k=11 = k — . = —l+j+1
L 1 I-k-11 -k -1 (_1)] I:Fﬁ(yl):|m +j+
B(l-k,m-1+1) = i m—1l+j+1| Fy(y)
L 1 k=1l -k -1 (_1)]'
" B(l-k,m-1+1) = i m—-Il+1+j
xexp(—yl_Tyk(m—l+1+j)j. (35)

The conditional probability density function of Y;(1 < k <1 < m) given

Y, = y; is determined as

il m) = dGp (il v m) 1
EpLYIYi ™) = dy, TBU-km-1+1)
k-1l —k -1 , B 1
x Z (-1y exp(—u(m—l+1+j))—.
=0\ P P

(36)

It follows from (36) that the cumulative probability distribution function

of the ancillary statistic

_ Y -Y
- Ak 37

Wi
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is given by
Gwy) =1- .
B(l-k,m-1+1)
k11 -k -1 , _ . —k
y Z[ J(_ 1y [1+(m l+1+])Wlk] ’ 38)

, . m-Il+1+]

j=0 J
where

k
Sk = DY +(m - k)Y (39)
i=1

The probability density function of the ancillary statistic Wy, is given by

_dGwy) k
glwy) = dwy — B(l-k,m-1+1)

I-k=1(1 — k — 1 ,
x Z 1YL+ (m-1+1+ Hwy*t,  wy = 0. (40)
Jj=0 J

3. Constructing Exact Statistical New-Sample Prediction Limits

for Anticipated Outcomes under Parametric Uncertainty

Example 1. Let X; < ... < X, be the first £ = 4 ordered observations of

lifetimes from the past sample of size m =10 from the exponential

distribution (19) and Y; be the /-th order statistic in a set of m future
ordered observations of lifetimes Y] < ... <Y, also from the distribution

(19), where [ = m =10. Consider a life test where the above m units,
whose lifetimes are distributed according to the same exponential
distribution (19), are put on test simultaneously, and where all units are
observed until failure. It is necessary to construct prediction limit for the

lifetime Y;(/ = m) on the basis of the past k smallest lifetimes

X1 <...=Z Xk’ where X1 = 33, X2 = 87, X3 = 125, and X4 = 165.
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The problem considered in this example is to find the lower
(1 - a)-prediction  limit yl(= Ll—a;l) for Y;,le{5 6,78, 9,10},

satisfying

By(Y, > 3 m) = [ gy(s mdy = Gylons m) =1 -, (41)
i

and the upper (1 — a)-prediction limit yl(= Ui_q: l) for Y;,1e{5,6,7,

8, 9, 10}, satisfying

i
B(Y; < yp3m) = I gy m)dy; = Gg(y;; m)=1-a, (42)
i

where the parameter B is unknown, o = 0.05. The complete sufficient

statistic for B is given by

k
Sk = D X;+(m—k)X; = 33+87+125+165 + 6 x 165 = 1400.  (43)
i=1

Solution. Since the parameter B is unknown, we transform (41) as

follows:

Y, S y; 8 —(y; s
P —l—k>—l—k;mj:G(—l—k;mj
B(Sk B~ sk B s B

-1(1-1 _eXp(—ﬂs—k(m—HlJrj)]
1 { J(— 1)/ Sk P —1-a. (44)
j

:B(l,m—l+1)]_z(; m-1l+j+1

It follows from (32) and (44) that

Pr(W,V, > wpvy; m) = G(wpvy; m)

(1 -1 .
B 1 v expCwpy(m—1+1+j)
_B(l,m—l+1)j§0[j]( 1) m—1+j+1 =1l-o (45
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To eliminate the unknown parameter B from the problem, (45) is

transformed as follows:

Pr(W; > wy; m) = J.Pr(Wle > wyvi; m)f(vi|k)dvy
0

G (wpvg; m) == r(k) vit exp(— vy )dvy

O'—;S

I-1(1] - . —k
1 [1+(m I+1+ jw]
=mjzo[ ] J( T s

=Gw;)=1-a (46)
It follows from (32) and (46) that
Ly o1 = Y1 = wisg, (47)

where

I-1(1] - .
w; = arg mm[m Z{ J (-1

2
[1+(m—l+1+j)wl]7k
* m-Il+1+]j _(1_(1)}’ (48)

In a similar way it can be shown that

Ui_o: 1 = Y1 = Wisg, (49)

where
1 -1(1-1 .
S S _1y
wl—argmln B(lm—l+1)z ; (-1)

(50)

2

[1+(m—l+1+j)wl]_k J

x d ol .
m-1l+1+]
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If 1 = 5, it follows from (47) that the exact lower (1 — a)-prediction limit

yl(: Ly l) for Y; is given by
Li_o.1 =y = wis, = 0.05206 x 1400 = 72.88; (51)

it follows from (49) that the exact upper (1 — a)-prediction limit

yl(: Ui_o: l) for Y; is given by
Uy_g:1 = 31 = wys; = 0.54215 x 1400 = 759.014. (52)

If [ = 10, it follows from (47) that the exact lower (1 — a)-prediction limit

yi(= Ly, ;) for Y; is given by
Li_g.; = 31 = s, = 0.265 x 1400 = 370.7; (53)

it follows from (49) that the exact upper (1 — o)-prediction limit

yl(z Ui_o: l) for Y; is given by

Ul_g:1 = ¥ = wisy = 2.418 x 1400 = 3386. (54)

4. Constructing Exact Statistical Within-Sample Prediction

Limits for Anticipated Outcomes under Parametric Uncertainty

Example 2. Consider a life test where m units, whose lifetimes are
distributed according to the same exponential distribution (43), are put
on test simultaneously, and where all units are observed until failure. It
is necessary, to construct prediction limit for the lifetime

Y;(1 <k <1< m) given Y, = y, on the basis of the k smallest lifetimes
Y] £...<Y;. Suppose that m =10 items, whose lifetimes are

distributed according to the same exponential distribution, are on test

simultaneously, and that the first four items (k = 4) to fail do so at times

Yl = 33, Y2 = 87, Y3 = 125, and Y4 = 165.
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The problem considered in this example is to find the lower

(1 - a)-prediction  limit yl(z Ly l) for Y,le{5 6,17 8, 9,10},

satisfying

By(Y; < 3|Yy = yps m) = Igﬁ(ylyk; m)dy = Gp(y|lys: m) =1-0, (55)
Yl

and the wupper (1- a)prediction limit y(= Ul—a;l) for Y,

le{5 6,7, 8,9, 10}, satisfying

Xl
By(Yy < Yy = w3 m) = J gp(ilyis m)dy; = Gp(yilye; m) =1 - a, (56)
Yk

where the parameter B is unknown, o = 0.05. The complete sufficient

statistic for B is given by

k
Sk = D Yi +(m —k)Y; = 33+ 87 +125 +165 + 6 x 165 = 1400. (57)
=1

Solution. Since the parameter B is unknown, we transform (55) as

follows:

Y,-Y. S Y — Vi S —( ¥ =Y, S
P(—l k Pk 2L Tk k—kYzy;msz(—l k 2k 1y :m
PUSe B Sk ﬁlk , Sk ﬁlk

) 1 lfll—k—l (_1)]'
S B(l-k,m-1+1) = i m—-Il+1+j

xexp(—%(m—l+1+j)):1—a. (58)
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It follows from (37) and (58) that

Pr(Wy Vi > wyvi Ve = i3 m) = G(wyve|ygs m)

) 1 l—kz—ll—k—l (_1)]'
Bk, m-1+1) = j m—-1l+1+j

x exp(-wyve(m-1+1+j)=1-o. (59)

To eliminate the unknown parameter B from the problem, (59) is

transformed as follows:

Pr(Wy > wy|Yy = yi; m) = IPT(Wlka > wyv|yis m)f(vi|k)dvy
0

Ot—— 8

o~ 1 _
G (wyevie| v m)@ vi ! exp(~ v )dv,

) I-k=1(1 -k —1 .
— J
_B(l—k,m—l+1)jz;4[ ; J(_l)

y [1+(m—l+1+j)wlk]_k

g =Gwy)=1-a. (60)
It follows from (37) and (60) that
Li_a;1 =1 = Yk + WiSks (61)

where

. k(1 -k -1 ,

_ : — 1\

wy = argmin pr—— s > ||
Jj=0 ]

. —k 2
><[1+(m—l+1+])wlk] —(l—ot)], (62)

m-Il+1+j
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In a similar way it can be shown that
Ula;1 = Y1 = Yk + WSy, (63)

where

. k=11 —k -1 _

_ : _ 1\

Wik = 38T BU—k, m—1+1) Z e
j=0 J

. —k 2
><[1+(m—l+1+])wlk] —a], 64)

m-Il+1+]

If 1 =5, it follows from (61) that the exact lower (1 — a)-prediction

limit yl(: L. l) for Y; is given by
Li_o.1 =51 = yi +wysg =165+ 0.002151 x 1400 = 168.0114;  (65)

it follows from (63) that the exact upper (1 — a)-prediction limit

yl(: Ui_q: l) for Y; is given by
Uil_g:1 = Y1 = Yk + wysp =165+ 0.185791 x 1400 = 425.1067. (66)

If [ =10, it follows from (61) that the exact lower (1 — a)-prediction

limit y;(= Ly_q, ;) for Y; is given by
Li_o:1 = 1 = ¥ +wysg = 165 +0.192433 x 1400 = 434.4062;  (67)

it follows from (63) that the exact upper (1 — a)-prediction limit

yl(z Ui_q: l) for Y; is given by

Ui_g.1 = Y1 = ¥ + W0ps = 165 + 2.098182 x 1400 = 3102.455.  (69)
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4.1. Estimating the unknown parameter [ under parametric
uncertainty

It follows from (57) that the maximum likelihood estimate of the
unknown parameter B is given by

k=4
ZYi +(m - k)Y

B _i_izl _ 1400
ML=, 4 T4

= 350. (69)

Let us assume that the unknown parameter B is equal to B;s, Then it
follows from (12) that the upper (1 — a)-prediction limit y, (: Up_q: l) for

y; can be found as follows. Minimize

ot (m =k {1_ @u»}f{@w»r“ N
Py Fy(yi) | | Fp(vr)

) ?
Fy (k) — 2
Fp()
= j‘ fl—k,m—l+1(u)du - (1 - OL) = (1 - FB L QI—G;(Z—k,m—l+1)J
0 p(vk)
B 2
= ([1 - ‘h—a;(lfk,m—lﬂ)] - exp(— ”Tykj) > (70)

subject to y; € (0, ).

If m=10,1=10,k = 4, o = 0.05, y, = 165, p = Pazz, = 350, it
follows from (70) that the upper (1 — a)-prediction limit U;_,.; for ¥; is

given by
1
Ui =51 =9 +BmL 111(1 — ]
A1-o; (I-k, m-1+1)
1
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It follows from (68) that the exact upper (1 — a)-prediction limit
yl(: Ui_q: l) for Y; is equal to 3102.455. Then it follows from (70) that

the adequate value of the unknown parameter B is given by
Y1~ Yk _ 3.102.455 - 165

B = 1
ln( - J ln(1 0 991488)
1-q91_¢; (I—k,m-1+1) T

= 616.3063. (72)

Relative efficiency. The relative efficiency of B, as compared with f

is given by
Ui—a;1(Bmr)
rel.eff.U{Ul_a;z(BML)y Ul—a;l(B)} = U'OL
l—a;l(B)
~1833.179

5. Finding Order Quantity to Maximize an Expected Profit in
Single-Period Decision-Making Models

The single-period decision-making models are phrased as the
Newsboy Problem, where a newsboy determines the optimal order
quantity to maximize the expected profit. For the newsboy who sells
newspapers, the demand 1s uncertain, and the newsboy must decide how
many newspapers to buy from his supplier. If he buys too many
newspapers he is left with unsold newspapers that have no value at the
end of the day; if he buys too few newspapers he has lost the opportunity
of making a higher profit.

The newsboy problem is a well-known single-item and single-period

inventory problem in which the following is given:
Y : quantity demanded (random variable),

fB(y): the exponential probability density function of Y (when the

parameter B is known) (1),
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fs, (y): the statistical pivot-based estimate of f3(y) (when the

parameter B is not known) (20),

u: the order quantity (decision variable) to satisfy the demand Y,

Q(Y|u): the profit (random variable) which depends on the demand Y

and the order quantity u,
¢, : unit cost price,
¢, : unit selling price (cy > cu),
¢, unit salvage cost (cu > ¢y ),
¢, : unit shortage penalty.

When a quantity u is ordered and Y is the demand (random variable),

the profit @(Y|u) (random variable) is determined by

c,Y +c,w-Y)-cuu, Y<u
Q(Y|u) =

cyu—cy(Y-u)-cu, Y>u

(cy —c, )Y (e —c)u, Y <u
= (74)
(cy +cy —c)u—c)Y, Y >u,

where Q(Y|u) increases for Y <u and decreases for Y > u. To

demonstrate how to solve a typical newsboy problem with continuous

demand (random variable), we formulate a problem as follows:

Maximize the expected profit

Ep @Y1} = [(ey - )Y = (e — e ulf(y)dy
0

+ [lley +¢5 = e u =Y fy(v)dy
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u u
=(cy —cp )I yip(¥)dy = (cy - C;)UI fp(2)dy
0 0
+(cy +cy ¢, )u_[ fp(y)dy - c;_[ yip(y)dy
u u
u u u
= (ey — )| 0y + &5 [ oA 0)dy = &5 [ sy ()l
0 0 0

0

- & [ o)y = (e, —ca >uI )y (e, ~ <, )”T fo(9)dy
+(ey — ¢y )MT fo(¥)dy +(cy + ¢ — ¢y )”T fa(y)dy
=(cy +cy —¢y )]: ¥p(¥)dy — ¢y EgiY} — (¢, — ¢ u
+(cy +cy - C;)uT fa(y)dy
= (ey + ¢y~ g )T W)y - ey E{Y} = (e = g u
0

+ ey + &5 - e uf )y

=(cy +¢y —c,)

~uFy () + jFB(y)dy} e By~ (e, e
0
+(cy +cy - c;)uF‘B(u)

=(cy +cy —cy )J. F’B(y)dy —cyEg{Y} — (¢, — ¢, )u (75)
0
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subject to
u > 0. (76)
Solution.
dE (Q(Y]) L ]
T ey 65 - ) By (e i) = 0, )
It follows from (77) that
J— 07
(u) - eXp(— u/B) = —u_ . (78)
Cy +Cy —Cy

It follows from (78) that the optimal order quantity is given by

_Blnw

Cy —Cy

(79)

It follows from (75) and (79) that the maximum expected profit, which

can be realized, is given by

*

%www»—@+c—uﬁ%Qch%W}@ ' (80)

If the parameter B is unknown, then, using (74) and (27), we obtain

dE;, {Q(Y|u)}

au = (c, —¢,)F, (W)= (c, —¢,)=0. (81)
It follows from (81) and (27) that
* Cy — CL:
(u)— 1+ =—4 & (82)
Sk Cy tCy —cy
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It follows from (81) that the optimal order quantity (based on S; (27))

under parametric uncertainty is given by
Nk
c,+c, —c
u' = Sk [M] —11. (83)

It follows from (75) and (80) that the maximum expected profit (based on

S, (27)) under parametric uncertainty, which can be realized, is given by

Eg 1Q(Y[u")j = (cy +cy - CJ)J Fy (y)dy - ¢ Eg (Y}~ (e, — ¢ )u®. (84)
0

5.1. Generalized single-period decision-making model

The model described above can be generalized as follows. Consider n
different items (say, newspapers) that are bought and sold. Here we have
to determine the optimal order quantity for each of n different items in
order to maximize the expected total profit. It is assumed that the volume
level of the total order quantity is limited by the available monetary

resource (c).

To demonstrate how to solve a generalized newsboy problem with n
continuous demands (random variables), we formulate a problem as

follows.

Maximize the expected total profit

n

Zn:EBi{Q(YiWi)} = Z (cy, +cy —cy )f Fsi (i) dy;
i-1 3

=1

- c;iEBi {Yz} - (Cui - c;l- )uL] (85)
subject to

Zcul.ui =c, u; 20, i=1,...,n (86)
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Solution.

Using the Lagrange multiplier method, the Lagrange function is

determined as
n n
L(ul’ cees Ups 7\') = Z Eﬁi {Q(Yllul )} - 7\'(2 Cy Ui — CJ’ (87)
1=1 i=1
where a new variable (L) called a Lagrange multiplier is introduced.

Then

oL I )
1

= (cy, + ¢y —c;i)FBi(ui)— [ +1)ey,; —cp]1=0, i=1,...,n, (88)

n
oL _ Zcuiui -c=0. (89)

It follows from (88) that

Cy. +C,. —Cy.
wp = Biln—2— K i1 n, (90)
(n+ 1)cui —Cy
Substituting (90) into (89), we have that
. Z Cy, +Cy —Cp
A = arg Zcui[}i In —+—"—" =¢|,
he(—o0,0) 1 (X + 1)Cui —Cy;

or

2
& Cy. +Cy. —Cyp
A= arg min[z cuBi IHM—C] . 91)

re(o) (G (1 + ey, - i
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Substituting (91) into (90), we determine the optimal order quantity for
each from n different items to maximize the expected total profit,
Cy; +Cy ~

n—: -
(x +1)cui - ¢y,

u; =p;1 ,i=1,..,n. (92)

It follows from (85) and (92) that the maximum expected total profit,
which can be realized, is given by

n

ZEﬁl {Q(Yllul* )} = Z (Cyi + C;i - c;i )J Fﬁl (yl)dyl
=1 0

1=1

- C;i EB; {YL} - (Cui - cL;i )u:‘ . (93)

Similarly, it can be considered the Generalized Single-Period
Decision-Making Model under parametric uncertainty. In this case we

have the following:

tem — 1/ki
u; = s, S T T ~1l (94)
T+ ey, —cy

Substituting (94) into (89), we have that

1 c,. +C,. —Cp, 1k
o g | Yege|| T | ),
he(—o0, ) = (7\,+1)Cui —Cy;

or

n c - .o 1/k;
A= arg min Cp Sy || 0 -1|-c]|. (95)
he(—o0,00) Z “ {(X+1)c _c;



ADEQUATE INTELLIGENT CONSTRUCTING .../ IJAMML 17:1 (2023) 43-81 73

Substituting (95) into (94), we determine the optimal order quantity for
each from n different items to maximize the expected total profit under

parametric uncertainty,

_ _ \UK

uh = s || 2 T “1li=1,...,n (96)

! 1= : , sy T
e +1)cy; — ¢y

It follows from (85) and (96) that the maximum expected total profit,

which can be realized under parametric uncertainty, is given by

DB QU )} = Y (ey, + 5, — i) | By, ()
i=1 ] 0

1=1
- C;i Eski {YvL} - (Cui - C;i )u;k . (97)

6. Two-Parameter Exponential Distribution

Let Z =(Z; <...< Z,) be the first r ordered observations (order

statistics) in a sample of size m from the two-parameter exponential

distribution with the probability density function

x—90

folx) =97t exp(— ) 9$>0,x>0, (98)

and the cumulative probability distribution function

Fy(x)=1- exp(— X g 8), F,(x)=1-F(x) = exp(— x_§8), (99)

where o = (5, 9), is the shift parameter and 9 is the scale parameter. It
is assumed that these parameters are unknown. In Type II censoring,
which is of primary interest here, the number of survivors is fixed and

Z is a random variable. In this case, the likelihood function is given by
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L(S’ 9) = wa(zi)(Fw(zr))m_r
i=1

= irexp - Z(Zi -8)+(m-r)(z, —8)]/9]
9 =

r

:éexp - Z(zi—zl +21-8)+(m-r)(z, —21 + 7 _5)}/9]

Li=1
- Srl_l exp[— LZ:;(ZL- —z))+(m-1r)(z, — 2 )}/9] y %exp(— m(zl\g— 8))
= 9;«1—1 exp(— %’"j X % eXp(— @j, (100)
where

32[51 =71, 5, :Z(Zi_zl)'*'(m_r)(zr_zl)]’ (101)
)

is the complete sufficient statistic for ®. The probability density function

of S = (S, S,) is given by

fw(sl’ Sr) = 9 -
1 ; r 1 m m(Sl — 8)
— J. 1 exp(— F)dsr X Ej-ge ( 3 dsy
4 9 0
r 1 m(sl — 6)
P 0 o Y
a r(r-1) 1
si2 m

e e - P (). 102
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where
fols1) = ﬂeXp(— M] s 25, (103)
9 9
1 - S
fo(sy) = WS: 2 eXp(— T’"), s, 2 0. (104)
r f—
v = 319_6, (105)

is the pivotal quantity, the probability density function of which is given
by

fi(vy) = mexp(-mv;), v 20, (106)
S,
Vr‘ - T ’ (107)

is the pivotal quantity, the probability density function of which is given
by

) = gy exple ). vy 2 0. (108)

6.1. Constructing one-sided y-content tolerance limit with a

confidence level

Theorem 4. Let Z; < ... < Z, be the first r ordered observations from the

preliminary sample of size m from a two-parameter exponential
distribution defined by the density function (98). Then the lower one-sided
y-content tolerance limit with a confidence level B, L, = L;(S) (on the k-th

order statistic Y, from a set of n future ordered observations ¥; < ... <Y,

also from the distribution (98)), which satisfies

E{Pr(P,(Y; > Lg|n) > )} = B, (109)
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is given by
_ 1
5+ 50 L[f’i_iﬁr—l im0
L - L P (110)
S, —% (f’{}é]r_l 1|, if m< —llnn(lAI[i)
where

A1y = 1= Q(k n-k+1),1-y (Betalk,n -k +1),1~y quantile).  (111)

Proof. It follows from (1), (99) and (109) that

Fm(Lk)
Pr(P, (Y, > Ly|n) > y) = Pr|1- _[ fe,n—k1(w)du >y
0
Fm(Lk)
= Pr J fin-ks1(@)du <1 -y
0

L, -5

= Pr(F,(L;) < qk,n—k+1;1—y) = Pr(l - eXp(— j < Qk,n—k+1;1—yj

L, -3
=Pr eXp(— ks j >1- Qk,n—k+1;1—V\J

L,-8S S S; -8
:Pr( kSr IT’+ 18 S_ln(l_Qk,n—kﬂ;l—y)j

s L,-5 S
L kSr 1Tr_1n(1—qk,nk+1;1v))

*TlLerfln Ay
= Pr(V; < - g,V —In A1—1/) = j fi(v)dvy, (112)
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where

S; -9 L, -S
Vl - 18 s nLk = %, Vr = T, Al_Y =1- Ak, n-k+1;1-y- (113)
r

It follows from (109) and (112) that

L Vy—In Ay
EPr(P (Y > L)z = BL [ Ailn)dw

-nr;, Vr -Ina;_,

=E m exp(— mv; )dv;

= E{1 - exp(- m[- T]Ler —-1In Al—y])}

= B{1 - explmny, V, Jexp(In A7, )} = E{1 - A7, explmny, V. )

- a7, explmng, V, ). (v, )dv,

S8

(1 ~ AT, exp(mnz, V, ))ﬁ vy~ exp(= v, )dv,

St 38

m
AT

=1 = B. (114)

) [1 - ank ]V—l

It follows from (114) that

1 AT, |71
nLk:—1-[ V} ) (115)
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There are two possible cases here:

1
1- [ATv]r_l < O[if m > Mj,

1- B In Al—’y
or
L
AT, |t . In(1 - p)
1_|:1—B] >0(lfm<m . (116)

Then (110) it follows from (116), (115) and (113). This ends the proof of
Theorem 4.
Corollary 4.1. Let Z; < ... < Z, be the first r ordered observations from

the preliminary sample of size m from a two-parameter exponential
distribution defined by the probability density function (98). Then the
upper one-sided vy-content tolerance limit with a confidence level

B, Uy = Ui(S) (on the k-th order statistic Y, from a set of n future

ordered observations Y; < ... <Y, also from the distribution (98), which

satisfies
E{Pr(P,(Yy < Ugln) 2 v)} =B, (117)
is given by
_ 1
51 +% 1_[%}"—1 i m2 ILHABY !
U, = L 1T (118)
where

Ay =1=q(k, n-k+1),y(Betalk,n — k +1), v quantile). (119)



ADEQUATE INTELLIGENT CONSTRUCTING .../ IJAMML 17:1 (2023) 43-81 79

6.2. Numerical practical example

Let us assumethat k =1, r =m =n =15,y = B = 0.95,

r=m
S=|81=2 =98 =Y (Z-2Z)+m-r)(Z - 2Z) = 192.2508 |
i=1

(120)

Then the lower one-sided y-content tolerance limit with a confidence level
B, Ly—; = L;_;(S) can be obtained from (110). Since

m=15 <00 -B) _ In1 - p) - 876, (121)
In Al—y ln(l ~ 9k, n—k+1),1-y

where the quantile of Beta(k, n — k +1), 1 — v is given by
Q(k,n,kJrl),l,y = 0.003414. (122)
It follows from (121) and (110) that

1

L(S) = S, —% (AHJH ~1|-9-3-8. (123)

1-B

Statistical inference. From (123), it follows that there is a 95%

certainty that failures will not occur in the proportion y = 0.95 or more

of a set of n selected items before the end of the lower one-sided y-content

tolerance limit L;(S) = 6 monthly intervals.

7. Conclusion

The new intelligent computational method proposed in this article is
a conceptually simple, efficient and useful method for constructing exact
statistical prediction (or tolerance) limits and optimal (or improved)
statistical decision rules under the parametric uncertainty of applied

stochastic models. This technique is based on the constructive use of the
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principle of invariance in mathematical statistics. We have illustrated a

technique for the exponential distribution. Applications to other log-

location-scale distributions can follow directly.
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