A CHRYSIPPIAN MODAL θ-VALENT VIEW OF AN ATOM IN QUANTUM PHYSICS

JEAN ARMAND TSIMI
Department of Mathematics and Computer Sciences
Faculty of Sciences
The University of Douala
P.O. Box 24157, Douala
Cameroon
e-mail: tsimije@yahoo.fr

Abstract

In this note, we intend to propose a chrysippian modal θ-valent view of the hydrogen atom in quantum physics.

1. Introduction

Orbitals are specific regions of space where electrons may exist. The hydrogen atomic orbitals depend upon three quantum numbers n, l and m, the principal quantum number $n=1,2, \ldots$ specifies the energy of an electron 2020 Mathematics Subject Classification: 06D30, 03G99, 81P99, 81V99.
Keywords and phrases: chrm θ quantum of hydrogen atom, chrm θ logic of energy level, $\operatorname{chrm} \theta$ quantum states, $\operatorname{chrm} \theta$ atom, $\operatorname{chrm} \theta$ quantum bit.
Received July 17, 2022
© 2022 Scientific Advances Publishers
This work is licensed under the Creative Commons Attribution International License (CC BY 3.0).
http://creativecommons.org/licenses/by/3.0/deed.en_US
Open Access
and the size of the orbital; the secondary quantum number $l=0, \ldots, n-1$ specifies the shape of an orbital with a particular principal quantum number; the magnetic quantum number $m=-1, \ldots, 0, \ldots, l$ specifies the orientation in space of an orbital of a given energy n and shape l.

For a hydrogen atom, with $n=1$, the electron is in its ground state; if $n=2$ the electron is an excited state. The total number of orbitals for a given value n is n^{2}.

According to what proceeds, it appears that quantum numbers are elements of the chains $(\mathbb{N}, \leq),(\mathbb{Z}, \leq), \ldots,(\mathbb{C}, \leq)$. From a given closed chain I of ordinal θ, one can define the canonical θ-valent LuKasiewicz algebra defined by I denoted $I_{\theta}=\left(I, \Phi_{\alpha}\right)$. In [1], F. Ayissi Eteme defines the θ-valent chrysippian ring as the modal θ-valent chrysippian completion of a θ-valent LuKasiewicz algebra. The θ-valent chrysippian ring is a algebraic representation of a non classical chrysippian multivalued logic named the modal θ-valent chrysippian logic [1].

From the modal θ-valent chrysippian logic F. Ayissi Eteme defines in [1] the notions of $m \theta$ sets, of $m \theta$ algebraic structures which allow to define in $[3,4,5,6,7,8, \ldots]$ the notions of $m \theta$ codes. In this note, we intend to look the quantum numbers as elements of the $m \theta$ sets $\left(\mathbb{N}_{p \mathbb{Z}}, F_{\alpha}\right),\left(\mathbb{Z}_{p \mathbb{Z}}, F_{\alpha}\right),\left(\mathbb{Q}_{p \mathbb{Z}}, F_{\alpha}\right),\left(\mathbb{R}_{p \mathbb{Z}}, F_{\alpha}\right),\left(\mathbb{C}_{p \mathbb{Z}}, F_{\alpha}\right)$ and then give a definition of a modal θ-valent chrysippian (chrm θ) quantum bit which would allow the implementation of the applications that come from $m \theta$ chrysippian logic as soon as $m \theta$ algebraic structures. In the Section 2, we present the modal θ-valent chrysippian completion of a Lukasiewicz algebra. In the Section 3, we present the intrinsic natural quantum logic of the hydrogen atom. In the Section 4, we define the intrinsic anatomy of the $m \theta$ set $\left(Q S H_{p \mathbb{Z}}, F_{\alpha}\right)$. In the Section 5 , we give the intrinsic $m \theta$ algebraic structure of the hydrogen atom H. Finally in Section 6, we give a conclusion of this paper.

2. The $\boldsymbol{\theta}$-Valent Chrysippian Completion of a LuKasiewicz θ-Valent Algebra

2.1. The θ-valent Lukasiewicz algebra and the θ-valent chrysippian ring (ach θ)

Definition 2.1.1. Let J be a closed chain of ordinal θ and $J_{\star}=J \backslash\{0\}$.
A θ-valent Lukasiewicz algebra is a structure $\left(L, \vee, \wedge, 1,0,\left(\Phi_{\alpha}\right)_{\alpha \in J_{\star}}\right)$, where
(1) $(L, \vee, \wedge, 1,0)$ is a closed distributive latice.
(2) $\forall \alpha \in J_{\star}, \Phi_{\alpha}$ is an endomorphisme such that $\Phi_{\alpha}(0)=0$ and $\Phi_{\alpha}(1)=1$.
(3) $\forall \alpha, \beta \in J_{\star}, \Phi_{\alpha} \circ \Phi_{\beta}=\Phi_{\beta}$.
(4) $\forall \alpha, \beta \in J_{\star},\left(\alpha \leq \beta \Rightarrow \Phi_{\beta} \leq \Phi_{\alpha}\right)$.
(5) $\left(\forall \alpha \in J_{\star}, \Phi_{\alpha}(x)=\Phi_{\alpha}(y)\right) \Rightarrow x=y$.
(6) $\forall \alpha \in J_{\star}, \Phi_{\alpha}$ is an chrysippian operator (i.e., $\forall x \in L, \Phi_{\alpha}(x)$ is an chrysippian element, i.e., $\exists!y \in L$ such that $\Phi_{\alpha}(x) \wedge y=0$ and $\left.\Phi_{\alpha}(x) \vee y=1\right)$.

Definition 2.1.2. One calls a θ-valent chrysippian ring a tuple $\left(A,\left(\Omega_{\alpha}\right)_{\alpha \in I_{*}}\right)$ denoted $\left(A, \Omega_{\alpha}\right)$ for short, where
(1) A is a boolean ring.
(2) I is a closed chain 0,1 of ordinal θ and $I_{*}=I \backslash\{0\}$.
(3) $\forall \alpha \in I_{*}, \Omega_{\alpha}$ is a boolean endomorphism of A such that $\forall \alpha, \beta \in I_{*}$, $\left(\alpha \neq \beta \Rightarrow \Omega_{\alpha} \neq \Omega_{\beta}\right)$.
(4) $\forall \alpha, \beta \in I_{*}, \Omega_{\beta} \circ \Omega_{\alpha}=\Omega_{\alpha}$.
(5) $\left(\forall \alpha \in I_{*}, \Omega_{\alpha}(x)=\Omega_{\alpha}(y)\right) \Rightarrow x=y$.

Definition 2.1.3. Let $\left(A, \Omega_{\alpha}\right)$ be a θ-valent chrysippian ring.
(1) An element $x \in A$ is said θ-invariant if $\forall \alpha \in I_{*}, \Omega_{\alpha}(x)=x$.
(2) Let B be a sub set of A, B is said θ-invariant if $\forall x \in B, x$ is θ-invariant.

Proposition 2.1.1. Let $\left(A, \Omega_{\alpha}\right)$ be a θ-valent chrysippian ring. An element $x \in A$ is θ invariant if $\exists \mu \in I_{*}, \Omega_{\mu}(x)=x$.

Proof. Let $x \in A$, if $\exists \mu \in I_{*}$ such that $\Omega_{\mu}(x)=x$. Let $\alpha \in I_{*}$, $\Omega_{\alpha}(x)=\Omega_{\alpha}\left(\Omega_{\mu}(x)\right)=\Omega_{\mu}(x)=x$.

Theorem 2.1.1. Let $\left(A, \Omega_{\alpha}\right)$ be a θ-valent chrysippian ring.
Let $L A=\left\{x \in A / \forall \alpha, \beta \in I_{*},\left(\alpha \leq \beta \Rightarrow \Omega_{\beta}(x) \leq \Omega_{\alpha}(x)\right)\right\}$.

If $\forall \alpha, \beta \in I_{*},\left(\alpha \neq \beta \Rightarrow \Omega_{\alpha} \neq \Omega_{\beta}\right)$, then $\left(L A,\left.{ }^{\Omega}\right|_{L A}\right)$ is a θ-valent LuKasiewicz algebra.

Proof. $0_{A}, 1_{A}, \Omega_{\alpha}(x) \in L A$ for every $\alpha \in I_{*}, x \in A$; thus $L A \neq \varnothing, L A$ is a sub distributive latice of A

$$
\forall \alpha, \beta \in I_{*}, \Omega_{\alpha} \neq\left.\Omega_{\beta} \Rightarrow^{\Omega_{\alpha}}\right|_{L A} \neq\left.{ }^{\Omega_{\beta}}\right|_{L A}
$$

2.2. The $m \theta$ chrysippian completion of a θ-valent LuKasiewicz algebra

Let $\left(L, \Omega_{\alpha}\right)$ be a θ-valent LuKasiewicz algebra. Let $B=C(L)$ the boolean ring of chrysippian elements of L.

For $x \in L$, let set $x_{\Phi}=\left(\Phi_{\alpha}(x)\right)_{\alpha \in I_{*}}$ a family of elements of $B: x_{\Phi} \in B^{I_{*}}$. The map $x \mapsto x_{\Phi}$ injects L in $B^{I_{*}}$.
$B^{I_{*}}$ is a boolean ring for its product laws:
$-\left(थ_{\alpha}\right)_{\alpha} \wedge\left(V_{\alpha}\right)_{\alpha}=\left(थ_{\alpha} \wedge V_{\alpha}\right)_{\alpha}$
$-\left(थ_{\alpha}\right)_{\alpha} \vee\left(V_{\alpha}\right)_{\alpha}=\left(थ_{\alpha} \vee V_{\alpha}\right)_{\alpha}$
$-7\left(U_{\alpha}\right)_{\alpha}=\left(7 थ_{\alpha}\right)_{\alpha}$.
Thus $1_{\Phi}=\left(1_{\alpha}\right)$ and $0_{\Phi}=\left(0_{\alpha}\right)$.
For $\alpha \in I_{*}, 1_{\alpha}=1$ and $0_{\alpha}=0$.
We then write $1=1_{\Phi}$ and $0=0_{\Phi}: B \subseteq B^{I_{*}}\left(B^{I_{*}}, \Omega_{\alpha}\right)$ is a θ-valent chrysippian ring $\forall \alpha \in I_{*}, \forall \mathscr{U}=\left(\mathscr{U}_{\alpha}\right)_{\alpha} \in B^{I_{*}}, \Omega_{\alpha}(\mathscr{U})=\mathscr{U}_{\alpha}$.

Definition 2.2.1. ($B^{I_{*}}, \Omega_{\alpha}$) is called the $m \theta$ chrysippian completion of the θ-valent LuKasiewicz algebra (L, Ω_{α}) denoted $B^{\theta}(L)$.

$$
B^{\theta}(L)=\left(B^{I_{*}}, \Omega_{\alpha}\right) .
$$

Example 2.2.1. Let I be closed chain 0,1 of ordinal θ. Let $x \in I$, $\alpha \in I_{*}$ and $\Phi_{\alpha}(x)=\left\{\begin{array}{ll}1 & \text { if } \alpha \leq x \\ 0 & \text { if not }\end{array} \quad I_{\theta}=\left(I, \Phi_{\alpha}\right)\right.$ is the canonical θ-valent LuKasiewicz algebra defined by I.

$$
C(I)=\{0,1\} .
$$

Notation. The $m \theta$ chrysippian completion of $I_{\theta}=\left(I, \Phi_{\alpha}\right), B^{\theta}\left(I_{\theta}\right)$ will be denoted in what follows 2^{θ} or $2^{\theta_{n}}$ if I is an n-valent chain with $n>2$.

3. The Intrinsic Natural Quantum Logic of the Hydrogen Atom

In what follows, H represents the hydrogen atom, one of those atoms known as the simplest; $Q S H$ the set of its quantum states; $\mathbb{N} Q S H$ that of its natural energy levels: its principal quantum numbers. It is assumed that $\mathbb{N} Q S H \cong \mathbb{N}$. Let $p \in \mathbb{N}^{*}, \theta=\theta_{p}$ its ordinal, p taken say, as the limit visible energy level of the spectrum of H.

Psychologically note $S H_{0}$ or $S H_{Z}$ the set that I call the Z-quantum states of $H: S H_{Z}$, any state when H does not longer exist from a quantum point of view : the ∞-excitation states of $H ; S H_{1}$ is the set of ground states of H, say the least excited states of $H ; S H_{2}$ that of the first excited states after $S H_{1}, \ldots, S H_{p-1}$ the last excited states of H before SH_{Z}.

Let $I_{p}=\{0,1, \ldots, p-1\}$

$$
I_{H_{p}}=\left\{S H_{0}, S H_{1}, \ldots, S H_{p-1}\right\} .
$$

Proposition 3.1. Let $h: \begin{gathered}I_{p} \rightarrow I_{H_{p}} \\ j \mapsto S H_{j}\end{gathered}$ be a map. Let $(i, j) \in\{1 ; \ldots ; p-1\}$ $\times\{0 ; 1 ; \ldots ; p-1\}$ and $\varphi_{i}(j)= \begin{cases}p-1 & \text { if } i \leq j, \\ 0 & \text { if not. }\end{cases}$
(1) $\left(I_{p} ; \varphi_{i}\right)$ is a θ-valent LuKasiewicz algebra that h-induces a θ-valent same structure on $I_{H_{p}}$ as follows:
$\forall(\alpha, \beta) \in\{1 ; \ldots ; p-1\} \times\{0 ; 1 ; \ldots ; p-1\}, \varphi_{\alpha}\left(S H_{\beta}\right)=\left\{\begin{array}{lc}S H_{p-1} & \text { if } \alpha \leq \beta, \\ S H_{0} & \text { if not. }\end{array}\right.$
(2) $\left(I_{H_{p}} ; \varphi_{\alpha}\right)$ is a θ-valent LuKasiewicz chain.

A CHRYSIPPIAN MODAL θ-VALENT VIEW OF AN ATOM ...

Proof. h bijects the natural order of I_{p} over $I_{H_{p}}$, and then the proof results.

Definition 3.1. $\left(I_{H_{p}} ; \varphi_{\alpha}\right)$ is called the Moisil θ-valent chain of energy levels of H.

Notation. Let denote $M_{I_{H_{p}}}=\left(I_{H_{p}} ; \varphi_{\alpha}\right)_{\alpha=1 ; \ldots ; p-1}$.
Proposition 3.2. Let $\operatorname{chrm} \theta I_{H_{p}}=\left(B^{\theta}\left(I_{H_{p}}\right), \omega_{\alpha}\right)$ the $m \theta$ chrysippian completion of $M_{I_{H_{p}}} \operatorname{chrm} I_{H_{p}} \stackrel{\theta}{\cong} 2^{\theta}$.

Proof. It comes by definition.
Definition 3.2. chrm $\theta I_{H_{p}}$ is called the chrm θ completion of natural chrm θ energy levels of H : The intrinsic natural logic of energy levels of H.

Proposition 3.3. (1) $x \in M_{I_{H_{p}}} \Rightarrow\left(\alpha \leq \beta \Rightarrow \varphi_{\beta}(x) \leq \varphi_{\alpha}(x)\right)$.
(2) $x \in \operatorname{chrm} \theta I_{H_{p}} \backslash M_{I_{H_{p}}} \Rightarrow \exists \mu \nsupseteq \mu^{\prime}$ in $\{1, \ldots, p-1\}, \omega_{\mu}(x) \nsupseteq \omega_{\mu^{\prime}}(x)$.

Proof. Results from the definition of $M_{I_{H_{p}}}$ and $\operatorname{chrm} \theta I_{H_{p}}$.
Remark. With $Q S H$ the set of all quantum states of H; the $\operatorname{chrm} \theta$ logic of energy levels of H :

$$
\operatorname{chrm} \theta I_{H_{p}}=B^{\theta}\left(\left(I_{H_{p}}\right), \omega_{\alpha}\right) \stackrel{\theta}{\cong} 2^{\theta} \text { associates an intrinsic natural }
$$ $\operatorname{chrm} \theta$ set structure $Q S H_{p \mathbb{Z}}$, the $m \theta$ set of $m \theta$ quantum states of H, better say of $H_{p Z}:\left(Q S H_{p \mathbb{Z}}, F_{\alpha}\right)$ about what structure very many observations should worth making.

4. The Intrinsic Anatomy of $\left(Q S H_{p \mathbb{Z}}, F_{\alpha}\right)$

If it is admitted that an energy state x_{H} in $Q S H$ of H is known if its electronic layer repaired by $n \in \mathbb{N}$, its sub layer l of the layer n, $0 \leq l \leq n-1$, and its state m in the sub layer
$l: m=-l,-l+1, \ldots,-1,0,1, \ldots, l$ are all known, one defines:

$$
\begin{aligned}
& Q S H \rightarrow I_{p} \\
& \mathscr{V}_{H}: \begin{array}{l}
\text { a }
\end{array} \quad, \text { where } n \text { is the principal quantum } 0 \mathscr{V}_{H}\left(x_{H}\right)=n
\end{aligned}
$$

number of x_{H},

$$
\begin{array}{rlc}
y_{H}^{2}: Q S H & \rightarrow & I_{p}^{2} \\
x_{H} & \mapsto & \left(\mathscr{V}_{H}(x), l\right)=\mathscr{y}_{H}^{2}\left(x_{H}\right)
\end{array} \quad ; 0 \leq l \leq n-1 .
$$

The following diagrams are commutative:

By definition $\mathscr{V}_{H}\left(\mathscr{V}_{H}^{2}, \mathscr{V}_{H}^{3}\right)$ is surjective and $\widetilde{\mathscr{V}}_{H}\left(\widetilde{\mathscr{V}}_{H}^{2}, \widetilde{\mathscr{V}}_{H}^{3}\right)$ injective by construction. Thus $\widetilde{\mathscr{V}}_{H}\left(\widetilde{\mathscr{V}}_{H}^{2}, \widetilde{\mathscr{V}}_{H}^{3}\right)$ bijects $Q S H / V_{H}\left(Q S H /{\underset{V}{H}}_{2}^{2}, Q S H /_{V_{H}}^{3}\right)$ $\operatorname{over} I_{p}\left(I_{p}^{2}, I_{p}^{3}\right)$.

Therefore since the $\operatorname{chrm} \theta$ extension of I_{p} is $\operatorname{chrm} \theta I_{p} \stackrel{\theta}{\cong} 2^{\theta}$, then $\operatorname{chrm} \theta^{Q S H} / \mathscr{V}_{H}\left(Q S H /_{V_{H}^{2}}, Q S H /_{V_{H}^{3}}\right)$ thus is well defined and then, say: $\operatorname{chrm} \theta^{Q S H} / V_{H} \stackrel{\theta}{\cong} 2^{\theta}\left(\widetilde{\mathscr{V}} H_{p}\right) ; \operatorname{chrm} \theta^{Q S H} /_{V_{H}} \stackrel{\theta}{\cong} 2^{\theta^{2}}\left(\widetilde{\mathscr{V}}_{H_{p}}^{2}\right) ; \operatorname{chrm} \theta^{Q S H} /$

$$
\begin{aligned}
& \stackrel{V_{H}^{3}}{\stackrel{\theta}{=}} 2^{\theta^{3}}\left(\widetilde{\mathscr{V}}_{H_{p}}^{3}\right) \\
& \quad \widetilde{\mathscr{V}}_{H_{p}}\left(\widetilde{\mathscr{V}}_{H_{p}}^{2}, \widetilde{\mathscr{V}}_{H_{p}}^{3}\right) \operatorname{spec}_{p_{\mathbb{Z}}} m \theta \text { extends to respectively: } \\
& \quad \widetilde{\mathscr{V}}_{H_{p \mathbb{Z}}}:{ }^{Q S H_{p \mathbb{Z}}} /_{V_{H_{p \mathbb{Z}}}} \rightarrow\left(2^{\theta^{p-1}}\right)^{p-1} \\
& \widetilde{\mathscr{V}}_{H_{p \mathbb{Z}}}^{2}: Q S H_{p \mathbb{Z}} /_{\mathscr{V}_{H_{p \mathbb{Z}}}^{2}} \rightarrow\left(2^{\theta^{p-1}}\right)^{2(p-1)} \\
& \quad \widetilde{\mathscr{V}}_{H_{p \mathbb{Z}}}^{3}: Q S H_{p \mathbb{Z}} /_{\mathscr{H}_{p \mathbb{Z}}^{3}} \rightarrow\left(2^{\theta^{p-1}}\right)^{3(p-1)}
\end{aligned}
$$

as follows.
If $\mathscr{y}_{H}\left(x_{H}\right)=n=\sigma_{n}=\left(\begin{array}{c}1 \\ 1 \\ \vdots \\ 1 \\ 0 \\ \vdots \\ 0\end{array}\right)$-times, $\sigma_{n} \in 2^{\theta}$. Identifying 1 to
$1_{I_{p}}=p-1$, thus $\sigma_{1}=\left(\begin{array}{c}1 \\ 0 \\ \vdots \\ 0\end{array}\right), \sigma_{2}=\left(\begin{array}{c}1 \\ 1 \\ 0 \\ \vdots \\ 0\end{array}\right), \ldots, \sigma_{p-1}=\left(\begin{array}{c}1 \\ 1 \\ 1 \\ \vdots \\ 1\end{array}\right) \in 2^{\theta}, n \in I_{p} \Leftrightarrow n_{p \mathbb{Z}}$
$\in\left(I_{p}\right)_{p \mathbb{Z}}=\left\{0,1_{p \mathbb{Z}}, \ldots,(p-1)_{p \mathbb{Z}}\right\}$. Define $\sigma_{n_{p \mathbb{Z}}}$ as $\sigma_{n_{p \mathbb{Z}}}=\left(\begin{array}{c}1_{p \mathbb{Z}} \\ \vdots \\ 1_{p \mathbb{Z}} \\ 0 \\ \vdots \\ 0\end{array}\right) n$-times after what, observe that so written, $\sigma_{n_{p \mathbb{Z}}}$ economically should really be identified to $\sigma_{n_{p \mathbb{Z}}}=\left(\begin{array}{c}1_{p \mathbb{Z}} \\ \vdots \\ 1_{p \mathbb{Z}}\end{array}\right) n$-times and this way

$$
\begin{aligned}
\sigma_{1_{p \mathbb{Z}}} & =\left(1_{p \mathbb{Z}}\right)=(1,2, \cdots, p-1) \\
& =\left(\sigma_{1}, \sigma_{2}, \cdots, \sigma_{p-1}\right) \in 2^{\theta^{p-1}} \\
\sigma_{2_{p \mathbb{Z}}} & =\left(\begin{array}{ccc}
\sigma_{1} & \cdots & \sigma_{p-1} \\
\sigma_{1} & \cdots & \sigma_{p-1}
\end{array}\right) \in\left(2^{\theta^{p-1}}\right)^{2} \\
\sigma_{n_{p \mathbb{Z}}} & =\left(\begin{array}{ccc}
\sigma_{1} & \cdots & \sigma_{p-1} \\
\vdots & & \vdots \\
\sigma_{1} & \cdots & \sigma_{p-1}
\end{array}\right) \in\left(2^{\theta^{p-1}}\right)^{n} \subseteq\left(2^{\theta^{p-1}}\right)^{p-1} .
\end{aligned}
$$

Thus, $\forall n \in I_{p}, \sigma_{n_{p \mathbb{Z}}} \in\left(2^{\theta^{p-1}}\right)^{p-1}$, indeed if $\widetilde{\mathscr{V}}_{H_{p}}\left(x_{H}\right)=n=\sigma_{n} \in 2^{\theta}$, then $\widetilde{\mathscr{V}}_{H_{p \mathbb{Z}}}\left(x_{H_{p \mathbb{Z}}}\right)=n_{p \mathbb{Z}}=\sigma_{n_{p \mathbb{Z}}} \in\left(2^{\theta^{p-1}}\right)^{p-1}$.

If $\mathscr{V}_{H}^{2}: Q S H \rightarrow I_{p}^{2}: \widetilde{\mathscr{V}}_{H_{p}}^{2} \quad\left(x_{H}\right)=(n, l)=\left(\sigma_{n}, \sigma_{l}\right) \in 2^{\theta^{2}} ; 0 \leq l \leq n-1$,
then

$$
\begin{aligned}
& \widetilde{V}_{H_{p \mathbb{Z}}}^{2}\left(x_{H_{p \mathbb{Z}}}\right)=\left(\sigma_{n_{p \mathbb{Z}}}, \sigma_{l_{p \mathbb{Z}}}\right) \\
& =\left(\left(\left(\begin{array}{cc}
\sigma_{1} & \sigma_{p-1} \\
\vdots & \vdots \\
\sigma_{1} & \sigma_{p-1}
\end{array}\right) n \text {-times, }\left(\begin{array}{cc}
\sigma_{1} & \sigma_{p-1} \\
\vdots & \vdots \\
\sigma_{1} & \sigma_{p-1}
\end{array}\right) l \text {-times }\right) \in\left(2^{\theta^{p-1}}\right)^{n+l} \subseteq\right. \\
& \left(2^{\theta^{p-1}}\right)^{2(p-1)} .
\end{aligned}
$$

If

$$
\begin{aligned}
\widetilde{\mathscr{V}}_{H_{p}}^{3}\left(x_{H}\right) & =(n, l, m), 0 \leq l \leq n-1 ; m=-l,-l+1, \ldots,-1,0,1, \ldots, l \\
& =\left(\sigma_{n}, \sigma_{l}, \sigma_{m}\right) \in 2^{\theta^{3}}
\end{aligned}
$$

then $\quad \widetilde{\mathscr{V}}_{H_{p \mathbb{Z}}}^{3}\left(x_{H_{p \mathbb{Z}}}\right)=\left(\sigma_{n_{p \mathbb{Z}}}, \sigma_{l_{p \mathbb{Z}}}, \sigma_{m_{p \mathbb{Z}}}\right) \in\left(2^{\theta^{p-1}}\right)^{n+l+m}$, thus $\widetilde{\mathscr{V}}_{H_{p \mathbb{Z}}}^{3}$ $\left(x_{H_{p \mathbb{Z}}}\right) \in\left(2^{\theta^{p-1}}\right)^{3(p-1)}$.

Theorem 4.1. The following diagrams are commutative:

Proof. Results from the fact $\widetilde{\mathscr{V}}_{H_{p}}, \widetilde{\mathscr{V}}_{H_{p}}^{2}, \widetilde{\mathscr{V}}_{H_{p}}^{3}, \widetilde{\mathscr{V}}_{H_{p \mathbb{Z}}}, \widetilde{\mathscr{V}}_{H_{p \mathbb{Z}}}^{2}, \widetilde{\mathscr{V}}_{H_{p \mathbb{Z}}}^{3}$ are the chrm θ isomorphisms.

Definition 4.1. $\forall x_{H} \in Q S H, \forall x_{H_{p \mathbb{Z}}} \in Q S H_{p \mathbb{Z}}$.
(1) Call $\mathscr{V}_{H_{p}}\left(x_{H}\right)\left(\mathscr{V}_{H_{p}}^{2}\left(x_{H}\right), \mathscr{V}_{H_{p}}^{3}\left(x_{H}\right)\right)$ the quantum value (degree) of the quantum state x_{H} of $H: \mathscr{V}_{H_{p}}\left(x_{H}\right) \in 2^{\theta}, \mathscr{V}_{H_{p}}^{2}\left(x_{H}\right) \in 2^{\theta^{2}}, \mathscr{V}_{H_{p}}^{3}\left(x_{H}\right) \in 2^{\theta^{3}}$.
(2) Call $\mathscr{V}_{H_{p \mathbb{Z}}}\left(x_{H_{p \mathbb{Z}}}\right)\left(\mathscr{V}_{H_{p \mathbb{Z}}}^{2}\left(x_{H_{p \mathbb{Z}}}\right), \mathscr{V}_{H_{p \mathbb{Z}}}^{3}\left(x_{H_{p \mathbb{Z}}}\right)\right)$ the chrm θ quantum state $x_{H_{p \mathbb{Z}}}$ of $H_{p \mathbb{Z}}$. Therefore;

If $\mathscr{V}_{H}\left(x_{H}\right)=n \in I_{p}, \widetilde{\mathscr{V}}_{H_{p}}\left(x_{H}\right) \in 2^{\theta}$, then $\widetilde{\mathscr{V}}_{H_{p \mathbb{Z}}}\left(x_{H_{p \mathbb{Z}}}\right) \in\left(2^{\theta^{p-1}}\right)^{n}$ $\subseteq\left(2^{\theta^{p-1}}\right)^{p-1}$.

If $\mathscr{V}_{H}^{2}\left(x_{H}\right)=(n, l) \in I_{p}^{2}, \widetilde{\mathscr{V}}_{H_{p}}^{2}\left(x_{H}\right) \in 2^{\theta^{2}}$, then $\widetilde{\mathscr{V}}_{H_{p \mathbb{Z}}}^{2}\left(x_{H_{p \mathbb{Z}}}\right) \in\left(2^{\theta^{p-1}}\right)^{n+l}$ $\subseteq\left(2^{\theta^{p-1}}\right)^{2(p-1)}$.

If $\mathscr{V}_{H}^{3}\left(x_{H}\right)=(n, l, m) \in I_{p}^{3}, \widetilde{V}_{H_{p}}^{3}\left(x_{H}\right) \in 2^{\theta^{3}}$, then $\widetilde{\mathscr{V}}_{H_{p \mathbb{Z}}}^{3}\left(x_{H_{p \mathbb{Z}}}\right) \in$ $\left(2^{\theta^{p-1}}\right)^{n+l+m} \subseteq\left(2^{\theta^{p-1}}\right)^{3(p-1)}$.
(3) Define a $\operatorname{chrm} \theta$ quantum bit as the atom of $\operatorname{chrm} \theta$ quantum value (degree) of $\operatorname{chrm} \theta$ quantum states: any σ of 2^{θ}.
(4) Define a chrm θ-quantum bit as any $\sigma \in 2^{\theta^{p-1}}$, with $\forall \alpha, \omega_{\alpha}^{p-1}(\sigma) \in 2^{\theta}$.

Observation

Let $M \underset{Q S H}{\theta}$ the Moisil θ-valent set of all quantum states of H and $\operatorname{chrm} \theta Q S H$ the set of chrm θ quantum states of H.

Obviously any quantum state is a chrm θ quantum state. Nevertheless any $\operatorname{chrm} \theta$ quantum state that is not in $M_{Q S H}^{\theta}$ is not a natural quantum state, but its modalities are quantum states.

There should be as number chrm θ quantum values all σ of any of $2^{\theta}, 2^{\theta^{2}}, 2^{\theta^{3}},\left(2^{\theta^{p-1}}\right)^{n},\left(2^{\theta^{p-1}}\right)^{n+l},\left(2^{\theta^{p-1}}\right)^{n+l+m} ; 0 \leq l \leq n-1 ;-l \leq m \leq l ;$ $n \in I_{p}$.

Definition 4.2. Let $q_{H_{p \mathbb{Z}}}$ be a chrm θ quantum state. One calls negation of $q_{H_{p \mathbb{Z}}}$, notation $\rceil q_{H_{p \mathbb{Z}}}$, any element of $Q S H_{p \mathbb{Z}}$ with chrm θ quantum value $\left.\left.\rceil \widetilde{\mathscr{V}}_{H_{p \mathbb{Z}}}\left(q_{H_{p \mathbb{Z}}}\right)(\rceil \widetilde{\mathscr{V}}_{H_{p \mathbb{Z}}}^{2}\left(q_{H_{p \mathbb{Z}}}\right),\right\rceil \widetilde{\mathscr{V}}_{H_{p \mathbb{Z}}}^{3}\left(q_{H_{p \mathbb{Z}}}\right)\right)$.

Remark. Let $\left.\left.q_{H} \in M \underset{Q S H}{\theta},\right\rceil q_{H} \in \operatorname{chrm} \theta Q S H \backslash M \underset{Q S H}{\theta}:\right\urcorner q_{H}$ is not a natural quantum state.

Theorem 4.2 (Characterization of a $\operatorname{chrm} \theta$ quantum state x). Let $x \in Q S H_{p \mathbb{Z}}$,
(1) $\quad x \in M \underset{Q S H}{\theta} \Rightarrow\left(\forall \alpha, \beta \in\{1, \ldots, p-1\}, \alpha \leq \beta \Rightarrow \omega_{\beta}\left(\mathscr{V}_{H_{p \mathbb{Z}}}(x)\right) \leq \omega_{\alpha}\right.$ $\left.\left(\mathscr{V}_{H_{p \mathbb{Z}}}(x)\right)\right)$.
(2) $x \in Q S H_{p \mathbb{Z}} \backslash M_{Q S H}^{\theta} \Rightarrow\left(\exists \mu \ngtr \mu^{\prime} ; 1, \ldots, p-1: \omega_{\mu}\left(\mathscr{V}_{H_{p \mathbb{Z}}}(x)\right) \nRightarrow \omega_{\mu^{\prime}}\right.$ $\left.\left(\mathscr{V}_{H_{p \mathbb{Z}}}(x)\right)\right)$.

Proof. It comes by the definition of 2^{θ} and of $\left(2^{\theta^{p-1}}\right)^{k}, k \in \mathbb{N}^{*}$.

5. The Intrinsic Algebraic Structure of \boldsymbol{H}

Let denote by $\left(D_{2}\right)$ the following diagram:

The commutativity of $\left(D_{2}\right)$ is presented in [2] (P.1).
Let $q_{H} \in Q S H$, thus $q_{H_{p \mathbb{Z}}} \in\left(Q S H_{p \mathbb{Z}}, F_{\alpha}\right)$. If $\left.\mathscr{V}_{H_{p}}^{3}\left(q_{H}\right)\right)=$ $\left(\sigma_{n}, \sigma_{l}, \sigma_{m}\right) \in 2^{\theta^{3}}, n \in I_{p} ; l \in\{0,1, \ldots, m-1\} ; m=-l, \ldots, 0,1, \ldots, l$, then $\left.\mathscr{V}_{H_{p \mathbb{Z}}}^{3}\left(q_{H_{p \mathbb{Z}}}\right)\right)=\left(\sigma_{n_{p \mathbb{Z}}}, \sigma_{l_{p \mathbb{Z}}}, \sigma_{m_{p \mathbb{Z}}}\right) \in\left(2^{\theta^{p-1}}\right)^{n+l+m}$.
$\forall \alpha \in\{1, \ldots, p-1\}, F_{\alpha}\left(n_{p \mathbb{Z}}\right)$ represents the quantum energy of an electron and the size of the orbital, $F_{\alpha}\left(l_{p \mathbb{Z}}\right)$ represents the shape of an orbital with a particular principal quantum number $F_{\alpha}\left(n_{p \mathbb{Z}}\right)$ and $F_{\alpha}\left(m_{p \mathbb{Z}}\right)$ specifies the orientation in space of an orbital of a given energy $F_{\alpha}\left(n_{p \mathbb{Z}}\right)$ and shape $F_{\alpha}\left(l_{p \mathbb{Z}}\right)$.

It then appears that the following diagram:

formally from a quantum point of view, may be taken as a quantum commutative diagram.

Definition 5.1. (1) Call chrm θ monoïd of chrm θ natural quantum states of the atom H the chrm θ structure $H_{p \mathbb{Z}}=\left(Q S H_{p \mathbb{Z}}, F_{\alpha}\right)$.
(2) Call chrm θ atom with the frame the atom H, the following couple of $\operatorname{chrm} \theta$ structures $H_{\theta}=\left(\left(\left(2^{\theta^{p-1}}\right)^{3(p-1)}, \omega_{\alpha}^{3(p-1)^{3}}\right), H_{p \mathbb{Z}}\right)$.

6. Conclusion

According to all what proceeds we can conclude that the atom H has as an intrinsic natural logic, the chrm θ logic whose $\left(2^{\theta}, \omega_{\alpha}\right)$ is its algebraic representation : its natural intrinsic quantum logic that induces $Q S H_{p \mathbb{Z}}$ its chrm θ structure of quantum values.

References

[1] F. A. Eteme, Logique et algèbre de structures mathématiques modales θ-valents chrysippiennes, Edition Hermann, 2009.
[2] F. A. Eteme, Chrysippian $m \theta$ Valent Introducing Pure and Applied Mathematics, Lambert Academic Publishing, 2015.
[3] F. A. Eteme and J. A. Tsimi, A modal θ-valent approach of the notion of code, Journal of Discrete Mathematical Science and Cryptography 14(5) (2011), 445-473. DOI: https://doi.org/10.1080/09720529.2011.10698348
[4] F. A. Eteme and J. A. Tsimi, A $m \theta$ approach of the algebraic theory of linear codes, Journal of Discrete Mathematical Sciences and Cryptography 14(6) (2011), 559-581. DOI: https://doi.org/10.1080/09720529.2011.10698356
[5] F. A. Eteme and J. A. Tsimi, $m \theta$ cyclic codes on an $m \theta$ field, Chapter, 2017.
[6] J. A. Tsimi and Pemha Binyam Gabriel Cedric, A $m \theta$ spectrum of reed-Muller codes, Journal of Discrete Mathematical Sciences and Cryptography 25(6) (2021), 1791-1807.

DOI: https://doi.org/10.1080/09720529.2020.1814489
[7] J. A. Tsimi, A. K. Ketchandjeu and L. Um, On a class of modal θ-valent convolutional codes, Journal of Information and Optimization Sciences 42(5) (2021), 995-1026.

DOI: https://doi.org/10.1080/02522667.2020.1835036

JEAN ARMAND TSIMI

[8] J. A. Tsimi and R. C. Youdom, The modal θ-valent extensions of BCH codes, Journal of Information of Information and Optimization Sciences 42(8) (2021), 1723-1764.

DOI: https://doi.org/10.1080/02522667.2021.1914364
[9] J. A. Tsimi, On the category of m日 sets, Journal of Discrete Mathematical Sciences and Cryptography, 2021.
[10] S. M. Blinder, The hydrogen atom and atomic orbitals, Chapter, 2004.
[11] Sumio ToKita, Visualization of Hydrogen Atomic orbital classification according to the Node type Forma, 32, SII3-SII10, 2017.

