IJAMML 17:1 (2023) 1-26 March 2023
ISSN: 2394-2258

Available at http://scientificadvances.co.in
DOI: http://dx.doi.org/10.18642/ijjamml_7100122261

AN MODAL 6-VALENT APPROACH OF THE RSA
CRYPTOSYSTEM

Jean Armand Tsimi

Department of Mathematics and Computer Sciences, Faculty of Sciences,
University of Douala, PO Box: 24157 Douala, Cameroon

Abstract

In this note, from the appropriate modal ©-valent mathematical notions, we define a
modal @-valent view of the RSA cryptosystem, and then, we propose an practical

application.
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1. Introduction

In 1976, Diffie and Hellman introduced in [3] the concept of the
public-key cryptosystem. Since then, a number of public-key
cryptosystems have been proposed. The RSA cryptosystem was proposed
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in 1978 by Ronald Rivest et al. in [4] as an example of public-key system.
This means that everyone can know the encryption key, but it is
computationally infeasible for an unauthorized person to deduce the
corresponding decryption key. In the RSA cryptosystem, the public

modulus N = pq is a product of two primes of the same bit size. The

public and private exponent e and d satisfy the congruence
ed = 1(mod ¢(N)), where O(N)=(p-1)(g—-1) is the FEuler totient

function. Encryption, decryption, signature and signature-verification in
RSA require the computation of heavy exponentiations. Although the
RSA algorithm is indeed among the strongest, the question that arises is
whether it could withstand the test of time. But, as without a doubt
nothing can withstand the test of time, we intend to present a modal

®-valent view of the RSA cryptosystem in order to improve its
robustness. We understand by the modal ©-valent view that we will

present the RSA cryptosystem from the mathematical algebraic
structures specific to a new logic defined by Eteme in [1] named the

modal @®-valent chrysippian logic which appears as a modal ®-valent
chrysippian extension of the boolean logic. The modal ©-valent

chrysippian logic admits states of truth other than true and false, and has

as algebraic representation the modal ®-valent chrysippian ring
introduced in [1]. From the modal ®-valent chrysippian logic, the notions
of modal ®-valent (m®) sets, of m® algebraic structures as soon as the
notions of the modal ®-valent congruence, the formal modal ®-valent
exponentiation, the formal modal ©-valent Euler’s function, and the
modal ®@-valent Fermat-Euler theorem are defined in [1]. In this note, we
intend to propose a modal ®-valent view of the RSA cryptosystem. The

rest of the paper is structured as follows: In the Section 2, we will present

the basic necessary modal ®-valent mathematical notions useful for our
purpuse. In the Section 3, we will present a modal ®-valent approach of

the RSA cryptosystem. A practical application will be presented in the

Section 4.
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2. The Modal ®-Valent Sets

2.1. Generalities
2.1.1. The notion of modality over a classical set
Let E be a non empty set.

Definition 2.1. One calls structure of modalities over E, every tuple
(E, (fy )(XEI* ) such that:

(1) Iis a closed chain 0,1 and I, = I'\{0}.

(2) Vo e I\{0}, fy : E - E is a map fulfulling:

b ﬂ foc(E) + 0

oe I,
evVo,Be L, a#p = fy #/p;
* Vo, Be L, fgofy = fo-

Notation 2.1. We write (E, f,) instead of (E, (fy) ) for short.

oe I,

Remark 2.1. If O (resp., ®,) is the ordinal of I (resp., I.), then the
chain I is said ©-valent and (E, f,) is called an m® structure of

modalities over the set E.

Proposition 2.1. Let (E, f,) be an m® structure of modalities over E.

For every a € I, let R, be the equivalence relation defined on E by:

xRyy & folx) = fo(¥).
Let Rg be the binary relation over E defined by:
xRgy & Vo e I, fo(x) = fu(¥)
o VYae I, xRy

Rg is an equivalence relation on E.
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Proof ([1]). Rg = A R, by definition.

oe I,

Proposition 2.2. Let % = R£ be the quotient of E by Rg.

(€]

Let xe E and X =2 = {y e E/Va e I, fu(x) = fo(y)} be the
® R

equivalence class of x modulo Rg. For every oe I, let set

L E foc(y)
F, Y ®

E Xy X .
-5 by Fa(a)— Ve G- We have:

@ (

@|=

, Fy) isan m@ structure of modalities over E

E

@ In (5,

X=X Xy F (X
F‘*)’@) @)@A“GI*,F(X(@) Fa(®).

Proof. (1) Let a, B € I..
e a#B=3ac kK, f,(a) # fz(a). Then, VA e L, fofy(a) # frofg(a).
ay _ fo (@) f[}(a) B a
Thus FO‘(G)) =8 # o - FB(G)).
Therefore o # p = F, # Fp.
» IpoF, = F.

@)

& Vae I, f(x(x) = foc(y)

- Voe I, % _ faé)y)

X
= Vae L, Fy(g) = Fa(%).
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Conversely, let suppose that Vo € I,

Fol( ) )

_ |
o —Fa(@)@Voce 1.,

o Vo e I, fo(x)Refy(y)
= Vo, A e L, Hofy(x) = fHof(y)

= Va e I, fu(x) = fou(¥)

Definition 2.2. One calls an m® set, every structure of modalities

(E, F,) over E that satisfies: Vo € I, (Fy(x) = Fu(y) © x = y).

Definition 2.3. Let (E, F,) be an m® set. C(E, F,) = (| Fy(E) is

ae I,

called the subset of m® invariant elements of (E, F).

Definition 2.4. Let (E, F,) and (E’, F}) be two m® sets. One calls
m® map from (E, F,) to (E’, Fy) every map F, : E — E’ verifying
Va e I, Fyof = foFy.
2.1.2. The m® completion of an m® set
Observation 2.1. Let (E, F,) be an m® set and C(E, F,) be the subset
of modal @-valent invariant elements of (E, F).

Let (C(E, F,))" be the set of I,-families of elements of C(E, F,).
Let (x;) € (C(E, Fy)™.

For every a e C(E, F,), one can identify a to the I,-families of

elements of C(E, Fy), (ay) with A e I,, a) = a.
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For every o € I,, one defines Fa : (C(E, Fa))l* — (C(E, Fa))l* by

ﬁ'a(x;L) =x, € C(E, Fy).

Then ((C(E, Fa))l*, Fa) isan m® setandthemap ¢ : x > (Fy(x))

oe I,

is an injection from E to (C(E, Fa))l*. We also have Vo e I, ﬁ‘aot = toFy,.

Thus, ¢ : x > (Fy(x)) is an m® injective map, so one can consider

ae I,
(E, F,) as a sub-structure of m® set of ((C(E, F(x))l*, ﬁ’a ). We will
denote the m® set ((C(E, Fa))l*, Fa) by BO(E, F,).

Definition 2.5. One calls m® completion of an m® set (E, F,) every

m® set (E’, F/,) thatis m® isomorphic to B®(E, F,).

Theorem 2.1. Every m® set admits a unique completion of m® set up to

an isomorphism.
Proof. [1].

2.1.3. The modal ®-valent expression

Let (E, F,) be an m® setand x € E.

Observation 2.2. Let define x® = (F, (x)) x® e (C(E, F, N+ vae I,

oecl,’
(Fy(x))® = (F)(Fy(x)), = (Fy(x)), = Fy(x). Thus, we can identify

(Fo(2))® to Fy(x) e C(E, Fy).

Let set E® = {x®/x € E}. Let define Fa :E® > E® by I:’a(xe)) =

(Fy(x))® = Fy(x) e C(E, F), Va. e I,. We have
(1) Va, B e I*,OHEB:ﬁ'a if:’ﬁ;
@) Va, e L, ﬁ’ﬁoﬁ’a = ﬁ’a;

®B) (Vae I, Fy(x®) = F,(5°)) = (x = y = x© = »°).
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Therefore (E®, ﬁa) is an mO® set. Let ¢t : E — E® the map defined by
x> x% ¢ is a bijection such that Vae I, ﬁ'aot =toF,. Thus

(C]

t:x > x° is an m® isomorphism from (E, F,) to (E®, 13'(,). In

(E,F,),x =y e (Vae I, Fylx) = Fy(y)). In (E®, ﬁ'a), x® =19 o
(Vo e L, Fy(x) = Fy ().
Definition 2.6. (1) One calls m® expression of x in (E, F,) the element

x© defined as above.
(2) One calls m® expression of (E, F,) the m@® set (E®, ﬁ'a).

Remark 2.2. (1) According to what proceeds, one can identify (E, F,) to
(E®, ﬁ'a) by the bijective map x > x2. So (E®, Fa) as (E, F) can be

identified to a sub-structure of m® set of B®(E, F,).

(2) If the mO set (E, Fy) is a completion of m® set, we have
the following identifications (E®, F,) = (E, F,) <® B®(E, Fg) and

x> (Fy(x))y, x - x©.

Definition 2.7. Let (E, F,) and (E’, Fy) be two m® sets and let X be a
non-empty set.
(1) (E, F;) is an m® subset of (E, F,) if E'c E and

YVa e I*, F(; = Lo|E-

(2) Xis an m® subset of (E, F,) if X ¢ E and (X, Fyx) is an m®

set.
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Proposition 2.3. Let (E, F,) be an m® setand 0 + E' ¢ E. (E, Fa‘Ef) is
an mO set if and only if:

(1) C(E, Foppr) # 0;

(2) Vx € E', Fy(x) e E

(B a#B= Foyp #+ Fyp-
Proof. [1].
2.1.4. Some examples of m® sets
(a) The canonical Lukasiewicz algebra of a chain

Let I be a closed chain 0,1. For every Vae I., one defines
F,:1I—1hby:

1 if o < x,
Vx e I, Fy(x) =
0 if a > «x,

Vx,ye I, (x £y = Vae I, Fy(x) < Fy(y)). We also observe that Va,
Be I, a <P = Fy < F,. Then (I, F,) is a m@® set that is a ©-valent
Lukasiewicz algebra.

Notation 2.2. Let denote Ig = (I, F,) and (2%, w®) = B®(Ig). Recall

that (29, Wy ) = B®(I®) is the completion of m® set of the m® set
Ig =, Fy). If =3, 1={0, 0,1} with O<a <1, Iy =, F,, F),

(2%, wy) = B®(Ig) = {0, o, @, 1}.

B®Ug) | 0 | oo | @ | 1
W, 0 1 0 1

O@=41={,0ap1;0<a<p<l;Ily=(IFy F, F;) and B®(Ig) =

{0, 0, B, B, BAT VB, 1L
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B°Ig) | 0 | @ | B |[BAT |[B|@|aVB |1
Wy, o|11]o0 0 110 1 1
wg 0010 1 1|1 0 1
wy 0] 0|1 0 0|1 1 1

(b) The structures of m® set 7.
Let n e N\{0, 1}.
Vx € Z,3(p, r) suchthat 0 <r<n-1and pe Z with x = pn +r.
If n = 2 take the chain I = {0, 1, 2}.
If n > 3 take the chain I =N,_; ={0, 1, ---, n —1}.
For every Vo € I,, let define F, : Z — Z by Fy(x) = n(p + ar).
Proposition 2.4. (1) (Z, F,) is an m® set such that C(Z, F,) = nZ.
2) (N, Fa‘N) is an mO subset of (Z, Fy).
Proof. [1].
(c) The m® set of m® relative integers (Z,z, Fy)
Let n e N\{0, 1}.
Vx € Z, 3(p, r) € Zx[|0, n —1|] such that x = pn +r.

Let set x,z = (p+ar)yy, if 1(x =0[n]). Let's set Z,; =ZU{x,;z :
x € Z and ](x = O[n])}. Let define for every Va e L., Fy : Z,; — Z,z

by:

a if a e Z,
Fo(a) =
p+or if ae Z,z\Z with a = x,,7, x = pn+r.
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Proposition 2.5. (Z,;, F;) isan m® set such that C(Z,,;, F5) = Z.

Proof. [1].

Proposition 2.6. Let define Spec,; from (Z, nZ, Fy) to (Z,z, Z, Fy) by:
p if x = np,

o[n]).

Vx € Z, Spec,y(x) =

Spec,,7 is an m® isomorphism, i.e., Spec,z is a bijective m® map such

that Yo € 1., Spec,70F, = Fy0Spec,y.
Proof. [1].

2.2. Modal ®-valent algebraic structures
2.2.1. Algebraic structure of (Z,,z, Fy)

Definition 2.8. (1) Let a € Z,,;, one calls the support of a the element
denoted by s(a) and defined as follows:
a if a € Z,

s(a) =

o[n]).

x if a=x,7, 1

(2) Let T be a binary law over Z. Let a, b € Z,;, we define an m®

binary law in Z,; induct by T and denoted also T as follows:

a, be 7,
s(a) T s(b) if
aTb= (s(a) T s(b)) =0[n] otherwise,
(s(a) T s(b)),,, otherwise

T as defined above on Z,; is called an m® lawon Z,; :aTbe Z,;

for every a, b e Z,.

Thus we can define a+be Z,; and axbe Z,; for every
a,be Z,7, where + and x are m® addition and m® multiplication,

respectively.
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In Z,;, the m® addition and the m® multiplication are

commutative and not associative.

The m® multiplication is not distributive in comparison with the
m® addition. However, one defines similar concepts to the structure of
m® set of Z,;. These laws are then said m® associative and the m®
multiplication is m® distributive in comparison with the m® addition.

The respective restrictions of these m® laws in Z = ﬂ F,(Z,;) are

oe I,
the classical laws of Z. The m® associativity and the m® distributivity
in Z,;. Let x,y,zeZ such that 7(x =0[r]) or 7(y =0[r]) or

1(z = 0[n]).

(a) Let T be an m® binary law in Z,;, VX7, Yuz> 2nz € Lypg, We

have
(xTy)Tz if (xTy)Tz)=0[n]
(an T ynZ) Tzyz =
(xTy)T2),, otherwise
xT(yTz) if (xT(yTz)=0[n]
B (xT(yT2),, otherwise

=%z T (ynZ TZnZ)'
(b) Let + and x be the m® addition and the m® multiplication in

ZnZv Van7 YnZ> 2nzZ € ZnZ7

x(y + 2) if x(y +z) = 0[n]
Xnz (ynZ + ZnZ) =

(x(y + 2)),z otherwise

Xy + x2 if xy + xz = 0[n]

(xy + x2),,7 otherwise

= Xnz¥nz t Xnz2nz-
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Definition 2.9. One calls:
(1) The modal ®-valent identity element of (Z,;, F;) for the m®

multiplication the m® element 1,, = Spec,;(1).

(2) The m® inverse of a € Z,;, every b € Z,; when it exists that is
a solution of the equation ab =1,;.
Remark 2.3. The mO® inverse when it exists is not necessary unique.
Definition 2.10. One calls:

(1) A modal ©-valent monoid a pair ((4, F,), T) consisting of a
modal ®-valent set (A, F,) and an m® binary operation T on (A, F,)

which satisfies the m® associative law. The m® monoid is said m®

unitary if it has an m® identity element.

(2) A modal O-valent group, every modal ®-valent unitary modal

®-valent monoid that has at least an m® identity element.

(3 A modal O-valent ring every triple ((4, F), +, X), where
(A, Fy) is an m® set and + and x are m® binary operations on

(A, F,) such that the following properties hold:
* ((A, F,), +) is an abelian m® group.
* (A, Fy), x) is an m® monoid.
e The m® distributive m® laws hold.

(4) A modal ®-valent field (m®f), every m® ring (m®r) in which

every non zero m® element has at least a modal ®-valent inverse.
Proposition 2.7. (Z,, F), +, X) isan m® ring with no zero divisors.

Proof. [1].
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Remark 2.1. 1 (resp., 1,;7) is an identity element (resp., an m® identity

element) for the m® multiplication in (Z,,5, Fy).
2.2.2. The modal ®-valent congruence of (Z,7, Fy)

Let n e N such that n > 2. (Z,z, Fy) is the m® ring of the modal
@®-valent relative integers. Letset ®y ={a : a € Z, 7, u € L, Fﬁ(a) = 0},
N,z = NU{x,7 : 1(x = 0(mod n)), x € N}.

Proposition 2.8. Let P € N,,;\Q, and pp be a binary relation on Z,y
defined by:

For every a,be Z,;, appb & Vo e I, Fj(a) = F,(b)[F;(P)]. We

have:

(1) pp is an equivalence relation on Z, .
(2) ppjz is the classical congruence of Z.

(3) pp is compactible with the structure of m® set of (Z,z, Fy), i.e.,
for every a, b e Z,7, appb & Va € I, Fy(a)ppFg(b).
Proof. [1].
Notation 2.3.

e pp will be denoted by PZ,; in what follows.

e We will denote the equivalence class of an element a € Z,; modulo

Z a
o Let set =24 = { ,a€ Zygt.
PZ,7 Pz, n
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Proposition 2.9. Let (Z,;, Fy) be the m® set of m@® relative integers

and P e N,;\@. For every Va. € I, let F, p be defined as follows:

ZnZ ZnZ
P7Z Pz
F(X,P . nZ nZ ,
a ( a j __ Fla)
o> By p - —
PZnZ ’ PZnZ F(x(P)ZnZ
ZnZ . . . *
( , Fy p) isan mO setif and only if P e N".
PZnZ ’
Proof. [1].
Remark 2.4. If P ¢ N*, then Loy _ L U {xLZ : J(x = 0(mod n))} and
’ Pz,,; PZ PZ,y
Lz, -z
C PZ,;’ Fo.r) =57

Definition 2.11. One calls:
(1) The m® congruence in (Z,;, F;), the m® equivalence relation
denoted by PZ,;, P e N*.

(2) A modal @®-valent residual class modulo P, the equivalence class

a
PZ,; "

modulo PZ, of every a € Z,; and denoted by

a

(3) The o-modality of 7 the integer modulo P defined as

a_ Fia 7

follows: Vo e I, F“’P(PZnZ 7 € 7

Z ..
(4) (Pzﬂ , Fy p) the m@ set of m@® relative integers modulo P
nz

(Znz, Fg)

also denoted by
PZ,7

(5) The set of integers modulo P, the following set C (%) = % .
nZ
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Proposition 2.10. Let a, b e Z,5.

a = b[P] if a € Z (therefore b e Z),
appb &

x =3P if @ =x,;, 1(x = O[n]) (therefore b = ¥, 1(y = 0[n])).
Proof. [1].
Notation 2.4. In all what follows, we shall denote x,;ppy,z by

Xnz = ynZ[PZnZ]'

Definition 2.12. One calls a modal ®-valent representing of the element

7 with a € Z,, every b e Z,; satisfying the following conditions:
Pipg

o If a € Z, therefore b € Z and then b = a[nP].
e If not, a =x,; therefore b=y,; and then x = y[nP], with

1(x = 0[n]) and (y = 0[n]).

a

Notation 2.5. Let denote the set of m® representings of 7
nz

by

rm—2
PZ,7 "

Definition 2.13. Let a, b € Z,;. One defines the addition + and the

C e . Z
multiplication x in —2£ as follows:
nz
a4 b = XY with x e rm and y e rm
pZnZ pZnZ pZnZ pZnZ pZnZ ‘
a4 b = XXY With x € rm and y € rm
pZnZ pZnZ pZnZ pZnZ pZnZ ‘

x + y and xy are respectively, the m® addition and the m® multiplication.
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Theorem 2.2. Let + and x defined in Lng as above. (( Lz , Fy ), +, %)

PZ,; PZ,;
is an m® ring with as identity element % and as an mO identity
1
element —2L
PZ,;
Proof. [1].

Theorem 2.3. Let P, ne Z with 2 < n < P. The following statements

are equivalent:

ZnZ

W (7%

, Fy) isan m® field.

(2) Ya € Z,5,3b e Z,y such that:

(1) Or a e Z, then b = x,5, 1(y = 0[n]) and ay = 1[nP].
() Orifae¢ Z,a =x,z, 1(y =0[n]) then

(@) If 3b e Z, then xb = 1[nP].

(M) If not, b = y,z, 1(y = 0[n]) and xy = 1[nP].

Proof. [1].
Corollary 2.1. If (IJZ£Z , Fy) isan m® field, then P isa prime integer.
nz
Proof. [1].
oy a . .. . ZnZ p . .
Definition 2.14. is a divisor of zero in ( , Fy) if it exists
nz PZnZ
b € Z,7 such that a b = 0.
n PZ,; PZ,7

Proposition 2.11. If 2 < n < P, then CardZ¢Z = nP.
PZnZ
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Proof. [1].

Proposition 2.12. Let a,be Z,; and P, P’e N*. If a = b(PZ,;) and
a=bP%Z,y), then a = b(ppecm(P, P)Z,;).

Proof. [1].

Proposition 2.13. Let a, b, K € Z,5, the following statements are

equivalent:
(i) Ka = Kb(PZ,y).
N P
@) @ =W ), P) )
Proof. [1].

2.3. Some intrinsic m® parameters in Z,,
2.3.1. Formal m@® exponentiation in Z,

Definition 2.15. Let a € Z,; and b € N, 5.

1) a® is defined as follows:
s(a)s(b) if a,be Z or s(a)s(b) = 0[n],
(s(a)"®), if not.

@) (a,b) > a® is an m® map from Z,; xN,; to Z,; and
s(a®) = s(a)*®.
2.3.2. Formal m® Euler’s function in 7,

Definition 2.16. The formal m® Euler’s function in Z,; denoted by

Pz is defined as an m® map from N,; to N, ; as follows:
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Let me N,

p(s(m)) if me N or if p(s(m)) = 0[n],
Prz (m) =

(p(s(m))),,z if not.
me N, or
Remark 2.5. (1) p,z(m)e N
p(s(m)) = O[n].
(2) s(ppz(m)) = p(s(m)) € N.
(3) If ged(s(m), s(m’)) = 1, then p,z(mm’) = p,z(m)p,z(m’).
2.3.3. The m® Fermat-Euler theorem in Z,,
Theorem 2.4. Let a € Z,; and m e N,,. If ged(s(m), s(a)) =1 and n

divides s(m), then aPrz(m) = an[s(’rln)

ZnZ]-

Proof. ged(s(a), s(m)) = 1 = s(a)*®™) = 1[s(m)] by the Fermat-Euler

theorem in Z. As n divides s(m), then

S

s(a)p(s(m)) = 1|n, @] = (S(G)P(S(m)) )z, = Luzl r’;ﬂ) 7]

m stm) ,
= aan( ) = 1nZ[ (n) nZ]-
Corollary 2.2. Let a € Z,7.

(1) If gcd(s(a), n) =1, then s(a)p(n) = 1|n].

(2) The m® Fermat-Euler theorem in Z,; implies the Fermat-Euler

theorem in 7.
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Proof. (1) As s(n) = n, then according to the m® Fermat-Euler theorem,
we have:
ap(n) =1,z [% ZnZ] = ap(n) =1,z [IZnZ]
= s(a)’™ = 1[n].

(2) Let a € Z and m € N* with ged(a, m) =1 and m a multiple of n.

a = s(a), m = s(m). Thus,
aPrzm =1 (g )= o™ =1[n ]
n n
= aP™ = 1[m].
2.3.4. Small Fermat-Euler theorem in Z 7
Let p be a prime number and a € Z,y\Z, ged(s(a), p¥) =1, thus by
Coppz(PF) _ k-1
the m® Fermat-Euler theorem, one has : a =1,2(p" " Zpyz). As
p" € N, then p,z(p") = p(»") = (p-1)p" .
Theorem 2.5.
— k-1 -
« PP 215" 2,
k-1
o 5P =1pk].

Proof. [1].

Corollary 2.3.

k-1
. a(p—l)p +1 _ a[pk_IZpZ].

. s((yt)(p_l)pk_hrl = s(a)[p"].
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Corollary 2.4.

o gPD(p+1) _ a[prZ].

* 5(@)” P = 5(a)[p?].
Corollary 2.5. Let m € Z and k € N such that k > 2. If ged(m, p) =1,

k-1
then mP~VP" " = 1[pF].

. . ZpZ ZpZ
Corollary 2.6. In the modal p-valent quotient rings and ,
PZLyg, k7,
P Lpg
with ke N\{0,1}, if one denotes for ae Zy;\Z,a = a and
DLy,
a = ka One has
p ZpZ
o gP-1p _ iz
o g U T

3. A Modal ®-Valent Approach of the RSA Cryptosystems

Let p,gq and n be three prime integer numbers; let set

. Z
m=pxqxn; let consider —2Z_; let ae Z,;\Z such that
mZnZ

ged(s(a), m) =1 and let recall that s(m) = m.

According to the m® Fermat-Euler theorem in Z,;, we have:

aPnZ(m) = 1nZ[S m) 7

n izl = aPm = 1,21pq7Z,;] because p,z(m) = p(m).
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Let te N such that ged(t, p(m)) =1, then according to Bezout
theorem, there exist U,V e Z such that tU+ Vp(m)=1. Thus

atUtWin) = o o qtUgWm) = 4 As aP™ =1 ,[pqZ,,], then
an(m) = ]-nZ[qunZ] = atUan(m) = atUan(qunZ)
= a'¥ = a(pgZ,;).

If x is an inversible element of %, then ged(x, m) =1 and

tU = x[m).

xP™) = 1[m]. Thus as above, we have x
/ 7 \x . .
Let x, ye Z,7 and U(—) = (—=) the set of inversible elements
mZ mZ
Z
of ﬁ let set
m], if xeU (A),
mZ

xU(qunz), if x € Z,7\7Z such that ged(s(m), s(x)) = 1,

where U (i) is the set of inversible elements of A
mZ7 mZ

. if ye UL,
D(y) = y'[m] yeUl—=)

y'(paZ,z),  if y € Z,z\Z such that ged(s(m), s(y)) = 1,

Letset U,z ,, = {a € Z,z\Z : ged(s(a), s(m)) = 1}.
ers 7
Proposition 3.1. Let x U(ﬁ) UU,z. m-

. Z
modulo(m), if x e U—),
D(C(x)) = D(xY) = xY = & mZ
modulo(% Znz),  if x€ Upgm.



29 Jean Armand Tsimi / [JAMML 17:1 (2023) 1-26

Proof. Obvious.

Remark 3.1. The functions D and C defined above will be our decoding
and coding functions, respectively. To encrypt, one will need C, i.e., U

and m which are of the public areas. To decrypt, one has to know ¢ and m.

Example 3.1. Take p =13, ¢ = 23 and n = 2.

m =13x23x2 =598, pyy(m) = p(s(m)) = p(m) = p(13 x 23 x 2) = 264.

An encoded message is constituted of elements x € U(%) U Usz, 5985

where

Z
Ulsgez) = tr e (0.1, -+, 597); ged(x, 598) = 1},

Usz 598 = {xaz € Zoy\Z; ged(x, 598) = 1}.
Let t =17, we have gcd(17, 264) = 1.

By the Bezout theorem, there exist U,V e Z such that

17U + 264V =1. By the method of successive Euclidian divisions, we
obtain (U, V) = (- 31, 2).

Thus, the functions C and D are defined as follows:

-31 . 7
) = x> [598], if xe U(—E)QSZ)’
x_Sl(ZQQZZZ), if x e UZZ,E)QB’
y17[598], if x e U(%),
D(y) =

¥17(299Z5;), if x € Uyy 59s-
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4. Practical Application of an m® Approach of RSA Cryptosystems

Let consider two persons called X and Y hoping to communicate
confidentially. They choose each one a pair of two great prime numbers

Px, qx, for X and py, qy for Y. They also choose commonly a natural

integer number n.

Let set mx = npxqx and my = npyqy. Then X also chooses Cx in
Z,7 such that ged(s(Cx), p,z(mx)) =1 and Y chooses Cy in Z,; such

that ged(s(Cy), ppz(my)) =1. The modal n-valent congruence class of

Cx has an modal n-valent inverse dx in U(i) UU,z mv-
mXZ X

As same the modal n-valent congruence class of Cy has as modal

. . Z
n-valent inverse dy in U(m_yZ) UUnz, my -

The message is encoded as follows: one can replace %k successive

symbols by an another symbol element of a given set B, i.e., one defines a

map from A* to B, where A is an usual alphabet. The elements of B

are on one hand identified to the inversible congruence classes modulo

myx (or modulo m—XZnZ), on the another hand are identified to the
n

. . m

inversible congruence classes modulo my (or modulo TX Z,7,)-

One understands here that we have two injective maps:
a:Be(i)*UUan and B:Be(i)*UUan. These
mxZ X myZ My
identifications are public and known by X and Y. In what follows, the
messages will be considered as the sequences of symbols of (mLXZ)*

7 %
U UnZ,mX or (m_YZ) U UnZ,my'
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The keys my, Cx and my, Cy are public. The values of py, ¢x, dx,

n, p,z(myx) and py, qy, dy, n, p,z(my) are on the other hand secret.

Let suppose that X wants to encode a message intended for Y and

this message is expressed as a sequence of symbols of (%)* U UnZ,my-
Y

X applies to this sequence of symbols, let say (aq, ag, -+, q;, ---) the
transformation (aq, ag, -+, @i, ---) = ( Gy qlv ... %Y ---) and th
1, 42, s Uk al ) az ) ) ak ) an en
sends the message. When Y receives the message, he applies the inverse
transformation (b, by, -, by, ---) > (b{lY, ng, . ng, ---). This process

return the message that is sent.

Remark 4.1. One can guarantee the origin of the message, i.e., Y can be
sure that the message sent comes from X. For this purpose, we can

suppose that Card((miXZ)* UUnz my ) < Card((miﬂ)* UUnz, my )-

To do so, i.e., to sign the message, X can proceed as follows: begin by

Z

consider his message as a sequence of elements of (—Z
mx

)* U UnZ, my

and then applies the transformation (a;, a9, -+, a;, =) = (asz, agX

’

e a,‘jx, --+) which can only be done by him. He then consider the

sequence that result from let say (b, by, -+, by, ~©) as a sequence of

Z

elements of (——
myz

) U Unz,my - To do this, X uses an injective map from

7 \x
(m—XZ) UUnz,my to (

Y/
myZ

Y U Unz,my that is agreed in advance with

Y and so known by Y. Then X applies the transformation

(By, by, =+, by, ) > (bICY, bZCY, . b,?Y, ---) and transmits the message.
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To decrypt the message sent by X, Y proceeds as follows: he first

applies the transformation (fi, fo, =+, fi, =) (fldY, 2dY, e fde, )

which can be done only by him; he then obtains a message composed of

elements of (iz)* UUpnz,my which he reinterprets as a message

my

composed of a sequence of elements (g1, g9, -, &, *++) In (mLXZ)*

U U,z my- He then applies the transformation (81, 89, > 8p» =) >
(gch’ ggX’ ) g]f;X9 )

If this message has not been transmitted by X but by an another
person using an another key of encrypting, then the result will be

incomprehensible.
5. Conclusion

In this note, we have reviewed the modal ®-valent mathematical

notions useful for our goal: m® Fermat-Euler’s theorem; Formal m®
Euler’s function; Formal m® exponentiation; m® congruence. Then we

have from these modal @®-valent mathematical concepts defined the RSA

encryption, decryption and signature. We have also propose a practical

application.
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