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1. Introduction

The m® (modal ®-valent) chrysippian ring [2] is defined as an

algebraic model of a non-classical logic named the m® chrysippian logic

which is a modal O-valent chrysippian extension of the boolean logic.
The modal ®-valent chrysippian logic admits states of truth other than

true and false. From the m® chrysippian rings, the notion of m® sets, of
m® algebraic structures are defined and studied in [2]. The modal

®-sets are a class of sets richer than the classical or boolean sets on the

logical and overall levels. From finite m® sets and m® algebraic
strutures, the notions of m® codes and m® linear codes are define in
[3, 4, 5, 7, 8, 9, 10, 11]. With the m® codes one can mathematically
stipulate that an error that occured during the transmission of an m®
information is slow, medium or deep. Information plays a vital role in our
daily life. Since the rise of the Internet one of the most important factors
of information technology and communication has been the security of
information. So many different methods have been developed to encrypt
and decrypt data in order to keep the message secret. Among those
methods, Steganography or “covered writing” [13] is a technique of hiding
information in digital media in such a way that no one apart from the
intended recipient knows the existence of the information.
Steganography is one such pro-security innovation in which secret data is
embedded in a cover [14]. The notion of data hiding or steganography was
first introduced with the example of prisoners’ secret message by
Simmons in 1983 [15]. There exist two types of materials in
steganography: message and carrier. Message is the secret data that
should be hidden and carrier is the material that takes the message in it
[16]. A steganography system is a quintuple P = (C, M, K, Dk, Eg),
where C 1is the set of all covers used in communication, M is the set of
all secret messages that need to be transported using the covers, K the
set of secret keys Eg :CxMxK —» C, and Dg : CxK - M two
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functions, the embedding and the extraction functions, respectively such
that Dg = (Eg(c, m, k), k) = m. In this note, we intend to introduce the

notion of modal ©-valent steganography system as a quintuple
Py = (Co, Mg, Ko, Dk, Eg, ), where Cg, Mg, and Kg are modal
®-sets, DK® and E Ke are respectively, the modal ®-valent embedding

function and the modal ©®-valent extraction function, in the hope that
this approach would logically and algebraically improves the classical
view of steganography as presented in [1]. The rest of the paper is
structured as follows: In Section 2, we recall the notions of m® set and
m® algebraic structures. In Section 3, we define the notion of m®
steganographic protocols with some examples. The m® codes and pseudo
m® codes defined by m® steganographic protocols are defined in
Section 4. In Section 5, we defined the m® linear steganographic

protocols using m® codes.
2. The m® Algebraic Structures [2]

2.1. The mO® sets

m@® sets are considered to be non-classical sets which are compatible

with a non-classical logic called the chrysippian m® logic.

Definition 2.1. Let E be a non-empty set, I be a chain whose first

and last elements are 0 and 1, respectively, (F, ) where I, = I'\{0}

ael,’
be a family of applications from E to E. An mO®s 1is the pair
(E, (Fy)yey,) simply denoted by (E, F,) satisfying the following four

axioms:

*NFuE)= N (Fu®)ix e B} # o

o Vo, B € I, if a # B, then F, #FB;
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.VOL,BEI*,FGOFﬁ :FB’

o Vx,ye E, if Va € I,, F,(x) = F,(y), then x = y.
Theorem 2.1 (The theorem of m® determination). Let (E, F,) be an
mOs.
Vx, y e E, x =y ifand only if Va € I, F (x) = Fy(y).
Proof. [2].
Definition 2.2. Let C(E, F,) = N F,(E). We call C(E, F,) the

ael,

set of m® invariant elements of the mOs(E, F,).

Proposition 2.1. Let (E, F,) be an m®s. The following properties

are equivalent:

1) xe N F(E);

ael,
@) Va e I,, Fy(x) = x;
(3) Va, B € L., Fy(x) = Fa(x);
4) 3 e L, x = Fy(x).

Proof. [2].

Definition 2.3. Let (E, F,) and (E’, F)) be two m®s. Let X be a
non-empty set. We shall call

(1) (E'F}) a modal ©-valent subset of (E, F,) if the structure of
m®s (E', F) is the restriction to E’ of the structure of the m®s (E, F,),

this means:

o ' C E;

eVa:oel, F, = ol
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(2) X a modal ©-valent subset of (E, F,) if:
e X c E;

e (X, Fy| ) is an m®s which is a modal ©-valent subset of (E, F,).
b's

In all what follows we shall write F x for F,(x), F,E for F,(E), etc.

Proposition 2.2. Let (E, F,) be an mOs and E’ be a non-empty set

such that E' c E. Let us suppose that Vo € I, F, = ol and

C(E' Fy) = 1) FulB).
Then the following axioms are equivalent:
*x (E'F)) is an em®;
x* C(E', F}) + ¢,
— Vael,, if x e E', then Fix € E".
—If a # B, then Fy + Fp.

Proof. [2].

Theorem 2.2 (Product of m® sets). Let (E, F,) and (E', F}) be two
m® sets. Let us set (E, F,)x(E', F,)=(ExE', F, x F},) such that
F, x F, is defined as follows:

Vo e l,, Fy xF, =(F,, F,): ExE - ExE'
(x, y) > F, x F(x, y) = (Fyx, F}y)
(E x E', F, x F}) is the structure of m®s on E x E'.

Proof. [2].

Definition 2.4. The product of (E, F,) by (E’, F,), is the m®s
denoted (E x E', F, x F/)) and defined as above.
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2.1.1. Application or map between m® sets

Let (E, F,) and (E, F,) be two m® sets having the same valence
©®. We call a modal m® morphism from (E, F,) into (E’, F,), every
application f : E — E' such that for every a € I,

foF, = F} of. If fis bijective, then fis called an m® isomorphism.
2.1.2. Some examples of m® sets
For n € N*, we define the closed chain
{0’ 1’ 2}’ n = 2,
I =
N,;=1{0,1,...,n-1}, if n>3.
(1) The m® set (Z, nZ, F,)

We define Va € I, = I\{0}

F,:Z->7
F,(x) = x, if x e nZ
x B
F,(x)=n(p+ar), if xeZ\nZ(x =pn+rforl<r<n-1)

(Z, F,) is a m®s such that C(Z, F,) = nZ.
(2) The mOs (Z,z, Z, F)
Let us set x,; =(p+ar),.r, where x e Z\nZ(x = pn+r, p,

reZ,1<r<n-1)

ZQ, if n=2o0rn=23,
an €
z", if n > 3.

Letusset Z,; = ZU{x,7 : =(x = 0(mod n))}.
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We define for all a € I,

F(; : ZnZ - ZnZ
F,a = a, if a € Z,
a>F,a =b +aby, if a=b,y, beZ\nZb = bn

+b22b2b1€Z,1Sb2Sn—1)

(Z,7, F)) is an m®s such that C(Z,;, F,) = Z.

e Consider (Zgyz, F,)
Loy = ZU gz, 39z, 5oz, Toz, -}
lyz = 0+ al)yeq 9y = (1, 2) € 27
837 = (L+ a1)geq gy = (2, 3) € 22
Boz = (2+ al)geq o) = (3, 4) € 27

72Z = (3 + a']‘)(xe{l, 2} = (4, 5) € Zg

FZ =F7 =17

Filyy,

0+1.1=1; Fylgy =0+2.1 =2

F13QZ = 2, F2322 = 3.
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Proposition 2.3. Let (Z, F,) and (Z,7, F)) be the m® sets defined

as above.

specyy L —> Ly
D if x =np,
X
Xpz, If —(x=0(modn)).

Let us define spec,; as follows:

Thus, spec,z is an m® bijective map from (Z, F,) into (Z,z, F}).
Proof. [2].
(3) The mO®s (Z,z, N, Fy)

Let us set x,7 =(p+ar) where x € N\nZ(x = pn+r, p,

ael,’

reZ,1<r<n-1)

N2, if n=2o0rn=23,
Xn7, €

I\ if n > 3.

Let us set N,; = NU {x,,7 : = (x = 0(mod n))}.

We define for all a € I,
F(; : NnZ - NnZ
F,a=a, if a e N,
ab sF,a=0b +aby, if a =b,;,be N\nZ

(b:b1n+b2:b2b1 EN,lezSTL—l),

(N,,z, F}) is an m®s such that C(N,z, F;,) =N



ON MODAL O-VALENT STEGANOGRAPHIC PROTOCOLS 13
e Consider (Nyy, F,)
Ngz = NU ez, 39z, b9z, Toz, ---}

Loz = (0+al)yeq oy = (1, 2) € N?
857 = L+ a1)yey g = (2, 8) e N?
Boz = (2+ a1)yeq gy = (3,4) e N?

Toz = (8 + l)geq o) = (4, 5) € N”

FN = F,N = N
Filyy =0+1.1=1; Fylgy =0+2.1 =2
F1397 = 2; Fy397 = 3.
2.2. The m® algebraics structures [2]
2.2.1. Algebraic structure of (Z,z, Fy)

Let n € N such that n > 2. Let us recall that if a € Z,;. We define

the m® support of a denoted s(a) as follows:

a, if a € Z,
s(a) =

x, if a = x,; with (x = 0(mod n)).

Thus s(a) € Z.
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Let L be a binary law on Z, ie., Va,beZ,a LbeZ Let

x, y € Z,z. We define a binary L* on Z,; as follows:

x, y € 7,

. s(x) L™ s(y), if
x L y= (s(x) L™ s(y)) = O(mod n) otherwise.

(s(x) L* s(¥)),z,  otherwise.

1" as defined above on Z,; will be called an m® law on Z,; for

X,y € Lyy.

Thus we can define x+yeZ,; and xxyeZ,; for every
X,y € Z,z, where + and x are m® addition and m® multiplication,

respectively.

Remark 2.1. In Z,; although the m® addition and the m®

multiplication are commutative, they are not associative. The m®

multiplication is not distributive over the m® addition.

The m® law L* on Z,; however, is m® associative, i.e., Vx,7, Yn7,

2,7 € Z,7 we have

( SRNT (x L y)Ll¥2, if (xL"y)L"2)=0(modn),
Xz L Ynz )L 2nz =
((x L* y)L%2),;. otherwise,

x I (yL"2), if ((x L™ y)L" 2)=0(modn),
Xnz L (ynZJ- Znz) =
(xLZ*(yL1"z)),;, otherwise.

In the meaning of the m® law L* defined on Z,;, we have

(an L* ynZ)J-* 2nZ = XnZz i (ynZ iy 2nz )
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We also define the m® distributivity of the m® multiplication over

the m® addition Vx,7, ¥,7, 2,7 € Z

xx(y+2), if (x x(y+2))=0(modn)

Xnz, X (ynZ + ZnZ) =
(xx(y+2)),; otherwise

(xxy)+(xxz), if ((xxy)+(xxz))=0(modn)
((xxy)+(xx2)),; otherwise
= Xpz X Ynz. T Xnz X 2nz-

When we restrict m® laws on Z = C(Z,, F,) we have (classical) of Z,

respectively.
2.2.2. The m® congruences of (Z,z, F})
Let p e N* and let p,, be defined on Z, as follows:
VX, y € Lyy, %ppy < Va € I, Fgx = Fyy(mod p).

Proposition 2.4. p, defined on Z,7 as above is an equivalence

relation on Z,; which is compatible with the structure of m®s
(ZnZ’ Fc;)
Proof. [2].

Notation 2.1. We shall denote xp,y by x = y(pZ,).

Definition 2.5. If p > n, we define the m® quotient of (Z,z, F;,)

Z X
modulo (pZ as follows: —2Z_ — { ix e }
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Proposition 2.5. (Z,7, F,,) is the m®s of m® relative integers.

F(; . ZnZ ZnZ
: —>
Vo e I DPLpz,  PLng DPZLng,
* X o F; ( x ): Fox
pZnZ pZnZ pZnZ pZ ’

Z F! . . .
Then (LZ, —O‘j isan mOs ifandonlyif p > n-1.
PLypz,~ Plng,

Proof. [2].

Lemma 2.1. According to the Proposition 2.5 above, the following

axioms are equivalent:
1) pzn-1.
' FE;

F
(2) Va, B e I, if a #+ B then —%— # i
P b PZyz, PZyyg,

Proof. [2].
Proposition 2.6. Vx, y € Z,,5
(D) If x € Z and x = y(pZ,7), then y € Z.
2 If x ¢ Z and x = ¥(pZ,7z), then y ¢ Z.
Proof. [2].
Proposition 2.7. If x, y € Z,7, the following axioms are equivalent:
1) x = ¥(pZyz)
x = y(mod p) if x € Z (therefore y € 7),
@ s(x) = s(y)(mod np) if x ¢ Z (therefore y ¢ 7).

Proof. [2].
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Definition 2.6. We shall call:
(1) The m® congruence in (Z,7, F,), the mO® equivalence relation

denoted p,, p € N* and defined as above.

(2) An mO integer modulo p (a residual m® class modulo p), the

class of equivalence modulo pZ,; of every x € Z,; and denoted > .
nZ

. Z F
(3) The set of m® integers modulo p, the m@s(i; —0‘)
pZnZ pZnZ

(4) The set of integers modulo p, the set: C[ Zng_. Lj -z

PLyz’ PLyz) PL
(56) The a-modality of > ad , the integer modulo p defined as follows:
nz
Vo e I, o ( ad ):Faxei.
DPZLpz, \ PLpg, Y/ pPZ

!
o

bPLng,

In all what follows, we write F, for

2.2.3. The Algebra of( Lz , Faj [2]
pZnZ

Let us recall that Vx, y € Z and for any binary law L* on

(Zz, F.), we have x L™ y € Z,;. The aim is to define a binary law on

Z * * Z
( nZ Fa] denoted by 1* such that —— 1*—2 ¢ =72 4q done

DPZLyg, ’ PZLyg, prZ PZLyg,

m p_Z
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(1) The m® compatibility of (Z,z, Fy) with p,

We require that n,peZ:2<n < p(Z,y, F,), is a structure of
mO®s of m® relative integers,

VX, y € Lpg, 2ppy < Va € I, Fyx = F,y(mod p).

Let us recall that if x,;p,y,7 we write x,7 = ¥,7(0Z,72).

Observation 2.1. If xeZ,x=gn+r:0<r<n-1, we have
x x r

pZnZ _p_Z_p_Z’

r=0xn+r=0xnxp+r; therefore r = r(mod p)

and r = r(mod np).

Hence,if x =gn+7r:0<r <m-1, then x < r(mod n).

However, x = r(modnp) < ¢ = 0(mod p); therefore the following
definition:

According to the problem of the m® compatibility of (Z,z, F}) with

PZ,7, we call m® representative of

77 a € Zyy, every be Zyy
n
satisfying following conditions:

(1) If a € Z (therefore b € Z) and b = a (mod np).

(2) Otherwise a ¢ Z, ie., a

= x,7 : (x = O(mod n)), and therefore

b="2Z,; :(y=0(modn)) and y = x(mod np).

Notation 2.2. We denote the set of m® representatives of

by
PLyg,
a

pZnZ ‘

rm
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Example 2.1. In Zy7, we have:
1p34 and 3zzp392z but 1+ 322 =4 eZ and 4 + 922 = 1322 & 7.

Thus ((1 +397)p3(4 +997)).

Similarly, 1x397 =397 ¢ Z and 4x99;, =36€Z and so

(1 397)p3(4 + 997,)).

Remark 2.2. From example it can be seen that the m® addition and

the m® multiplication of (Z,;, F,) are not compatible with pZ,.

As a result, we have no hope to get a passage to the quotient modulo

pp for the structure of the m® ring(Z,yz, Fy, +, x) as in the classical case.

However, when restricted to m® representatives, + and x are

compatible with pZ,; and so we can say that + and x are mO®
compatible with pZ,.

Definition 2.7. Va, b € Z,z, we define + and x in pZZ#Z as follows:
nz

4 b __x+y and g« b __xxy Vx € rm —=
pZnZ pZnZ pZnZ pZnZ pZnZ pZnZ , bZng, ’
Vy € rm .x+y and x x y are elements of Z,,5.

DPlipg,

Z . . .
nZ_ F, + x) is a mO® ring of unity pl_Z and of

Theorem 2.3. (
PZLyg

. 1
m® unity —2%
pZnZ

Proof. [2].
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Definition 2.8. (1) We call the m® ring of m® residual classes
modulo p the m® ring of Theorem 2.3 above.

(2) With conditions 2<n <p:peN, pZL’ X € Zpy 1s said to be
niz

ZnZ
DPZLnpg,

m® inversible in , if and only if 3Jy e Z,; such that

X % Yy  _ 1.z )
DPLpz  DPZyg, DPZng,

Corollary 2.1. If (pZZ”Z , F(;) isan mO field, then p is prime.

niz
Proof. [2].
oy X . .. . ZnZ , .
Definition 2.9. is a divisor of zero in , Fy | if there
Plyy, PLng
. x y
exists a y € Z,z such that x =0

pZnZ pZnZ

(2) Some Examples of the m® ring ( Lz, , FO’L]
pZnZ

(1)If n =2 and p =1, we have Zﬂ, F, | ={0}.
Loy,

o Ly, ’ _ 1 oz 39z
@)If n = p =2, we have (2ZZZ , FO‘) = {O, gy’ gy’ gy |
(1) The table of m® determination of the Fyy = M =

2797,
Ly,
F’
(2222 ’ aj
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(ii) Tables laws of Fyy = (Zoz, Fo) _ ( Loy F(;j. We shall write
2797 2797

a € Z9y to represent

in all what follows. For example, we shall

27
. 197 : . . Z
write 1y7 to represent as done in the classical ring —— where we
2797, 27
represent L by 1
b 7 y L.
+ 0 1 122 322 X 0 1 122 322
0 0 1 | 137 | 397 0 0 0 0 0
1 1 0 0 0 1 0 1 1oz | 397
loz. | 1z | O | O 0 loz | 0 | 1oz | laz | 39z
397z | 32z | O | O 0 39z | 0 | 39z | 32z | laz
Observation 2.2. Fy; = (%’ F&) has no divisor of zero, is an
27

m3 ring from four elements, that is not a field.
2.2.4. Algebraic study of (Fpz, F,")

In all what follows, n = p, a prime integer.

Given: k, n, p € N*; 2 < p, prime and k < n, we set F, = z and

7 7 \" A n
F,, = —2L_ . F" = (—) and F” :( nZ j .
PL = plng” P \pZ PE =\ Ly
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Observation 2.3. (1) F,, c F,7 and IE"Z c FZZ.
Doted with their respective structure of m® sets, (F,z;, Fy) and

(Fhz, Fy") are m© sets having for subsets of m@® invariants F, and

', respectively. That is, F, = C(F,z, F,) and F) = C(Fyz, F"),

respectively.
2) IFZ i1s a F,-vector space of dimension n.
() Let a e Fiy, a = (ay, ..., a,):
Viell,...,n},aq; € Fpy
Vo € I, Fya; € Fj, andso Fy'a = (Fyay, ..., Fya,) € Fj.
Definition 2.10. Let (FPZ, F&) be the m® field of p? elements and

of characteristic p. (Fpy, F,") the m®s product of (]FpZ, F.). Let

x,yeFppheFpy If x=(x,...,x,) and y = (¥, ..., ¥,), then we

define x + y and Ax as follows:

X+y =X +y, ., %, +y,):Viell, ., nf,x; +y; € Fpyp.
Ax = (Mo, ..., Axy )t Vie {l, ..., n}, hx; € Fpy. x +y and Ax are elements
of ]FZZ

Definition 2.11. We call:

(1) A modal ®-valent monoid, every m®s (A, F,) that is provided of
a law of internal composition which is modal ®-valent associative. The
modal ©®-valent monoid is said modal ®-valent unitary if it possesses a

modal ®-valent unity.
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(2) A modal ®-valent group (m®g) every modal ®-valent monoid
modal ®-valent unitary in which every element admits at least a modal

®-valent inverse.

(3) A modal ©-valent ring (m®r) every mOs (A, F,) which is
additive and multiplicative modal ®-valent monoid. The modal ®-valent

laws + and x are linked by the modal ®-valent distributivity.

(4) A modal @-valent field (m®f) every mOr(A, F,) such that every
element a # 0 of A admits at least a modal ®-valent (m®) inverse for

the m® multiplication.

Example 2.2. (Z,;, F,, +,x) is a m®Or, with as m® unity 1,5.
Modal ©-valent elements 1;1,7; — 1,7, respectively admit as mO®

inverse 1,7; 1,7; —1,7.
1,75 — 1,7, respectively admit as m® inverse 1,7; 1,7; — 1,7
2.2.5. The m® Hamming distance [3]

Let (A, F,) be a finite m® set and (A", F}') be the m® product

set. Let dp be the classical hamming distance. Aa € I, we define dp_

on A" x A" as follows:
dy, (x, y) = dg(Fgx, Fg'y)
=Card{i : Fyx; + F,y;,Vie{l,2,..., n}}
dpy, is not a distance on (A™, F[') but it is the Hamming a-distance on

C(A™, Fl).
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Definition 2.12. The m® distance dy, on A" x A" is defined by

dH(x’ y)7 lf x’yEC(An’FOT,L)
v b An’ d ) =
e o (% ¥) Z dp, (x, ¥), otherwise.
ael,

3. Modal ®-Valent Steganographic Protocols

Definition 3.1. Let n, k € N* such that k£ < n. Let (A, F,) be a

finite mO sets. Let (A", F) and (A", F}) be the m© sets product of
the m® set (A, F,). Let eg and rg be the m® maps defined as follows:

e : (A", F)x (A", Fy)— (A", F)
. n n k k
ro 1 (A", ') — (A%, FF).

If for every (x,s)e A" x A¥ rgoeg(x, s)=s, then eg and ry are,

respectively called m® embedding and m® extraction functions.
Remark 3.1. Let x and s be elements of (4", F, )" and (A*, F}).
(1) If x € C(A™, F) and s € C(A*, F}), then
iy (5, €0 (. 3)) = dy (¥, eo(x, 5)
< max {dy (x, eg(x, s)), s € A¥, x ¢ A")}.
(2) If not, then

digy (%, eo(x, 8) = Y dp, (¥, eg(x, 5))

ael,

- Z dy (Flx, Fl(eg(x, 5)))

ael,

< card(I,)max{dy (Fx, F¥(eg(x, 5))), x € A", s e A*}.
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Therefore

o max{dy(x, e(x, s))} if s € C(A", Fa‘Ak )and x € C(A", FO’(“An
o =

card(I,) max{dy, (Fq'x, Fleg(x, s))} if not.

)

Definition 3.2. pg defined as above is called the m® covering

radius.

Definition 3.3. Let n, k, and pg be three positive integers such that

k < n. Let (A, F,) be a finite m® set. We call an m® steganographic

protocol denoted c¢ over a finite m® (A", FJ') set to hide m® message

of length k (secret m® words) in m® words of length n (cover m®

words) by modifying at most pg a-coordinate (m® covering radius) is a
pair of m® maps ) o = (o, 1) satisfying:

eo : (A" x AF F' x FF)y— (A", FP),

ro 1 (A", F) — (A", F).

V(x, s) e A" x AF, rg(eg(x, 8)) = s

k

V(x, s) e A" x A", dp (x, eg(x, 5)) < po,
n, k, and pg are the parameters of the m® steganographic protocol
hIpS

Example 3.1. Let s and x be the secret m® word to hide and the
cover mO® word, respectively. We may suppose that those two words are
sequences of symbols of a finite m® alphabet (A, F,). Let be
s=(sy,....s,) and x =(xf,...,x,),se A¥ and x e A". Let us

consider the two followings m® map:
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eg : (A" x AF F' x FF) 5 (A", F?) and rg : (A", F?) - (A%, FF)

defined by: eg((x1, xg9, ..., x,,), (815 ---» Sg)) = (X1, oo’y Xp_jp» 15 S25 ... S};)

and 7g(xq, ..., X,) = (X_js1s Xn_g+2s --+» X5,), €@ and rg are m® maps.
Let a € I,,

F} oeg(x1, ooy x3), (815 vvs 83)) = Fl (21, X9, ooy Xp_k» S1> 895 - Si)

(Faxl, Fa.X‘2, ey Faxn,k, Fasl, FaS2, ey Fask,)

=eg((Fyx1, - r Fyxy), (Fysis Fysas ..., Fysp))

e@(Fo?(xl’ LR xn)’ Fo]tg(sl’ tee sk))

€p ° (Fo?’ F(f)((xl’ tee xn)’ (Sl’ EEER) Sk))

Thus, Va € I,, F' o eg = eg o (F2, FF).

Let a € I,
B org(xy, oos %) = Fo (%n_pi1s poprs or Xn)
= (Foxp_js1s FoXn_pegs o Fy)
=19 o Fl(xq1, ..., x,,).

Then (eg,79) is a (n, k, card(l, max{dy, (Fgx, Fy (eg(x, 5))}))mO

steganographic over (A4, F,).
V(x, s) e A" x A*
ro(x1, X9, «ooy X > S1» 895 -.-S) = (81, 89, ...8;) = 8

dH@ (x> e@(x’ S)) < po-
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3.1. The m® steganographic protocol F52Z

The m® protocol F52Z over the m® field Fy; permits to m® hide

messages of length & (m® secret words) in m® words (m® cover

words) of length n = 2k —1 by changing more than one of them (i.e., m®

protocol of type (2F =1, k, 1)). Let (Fofm)Z be the binary expression of m
with & m@ bits (so can consider that (m), is in F%,). Conversely, for
zeFh, Vael,, let (Folfz)lo be the integer which has FXz as binary

expression, then 1 < (F} (2))19 < 2F _1. Finally, let ¢; be the i-th m®
k
vector of the m® canonical basis of F3; '; eg = 0 = (0, 0).

Proposition 3.1. The maps yay7, es7, and ryy define as follows:

. ok 1 k ,
() voz : Foz = xFyy — (Nog, Fy)

k

(e 5) > (FiGs)+ >

i=1

1 .
ch(xi Xl>2 >10 )aeI*;
.. ok 1 k ok 1
(1) egz : Fo7 = xFgz — Fay
ok 1 .

(x, 8) > (Fg (%) + R (v95(x, 5)) Jacl,s
o 2k 4 k
(1) roz, : Fgz,~ — Fyy

ok_1 :
X = (Zizl Fa(xi)<l>2 )ael*

are moO.
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k
Proof. (i) Let (x, s), (v, t) € F3; ! x F&; let us suppose that (x, s) =

(y,t) (e., x = y and s = t) and let show that y9;(x, s) = y97(y, t).

k k
F2 1y - 21y Va e I,,
(x,8)= (1) =

Folfs = Folft Va € I,

Ya e I,
5 21 , & 2k 1 ,
Fys+ Zi:l Foxi(i)y = Fyt + Zi:l Foyi(i)q
. 2F 1 , k 2F1 .
= <F(xs + Zi=1 Faxi<L>2 >10 = <Fat + Zi=1 Focyi<l>2 >10
K 2k 1 . & 21 .
= (Fhs+ 3 Furilibyhodaer, = (Bt 30 Fuyilidy o duer,
= voz(x,8) = v27(, 1).

Therefore the map y9; is define well.

— Let us verify yg7 is m® map.

2F 1 ok
Let (x, s), (v, t) € F57 = x Fgy,

Ya e I,
k_ k_
voz o (Fg 7' Fy)(x, ) = vaz(Fg ', Fyis)
k( gk 281 2k ,
=(<Fy(Fys)e Y Fo((Fy %)) <i>9>10 e,
k 21 ok :
= (<FaS+Zi:1 (F(l x)L <l>2>10 )OLEI*

& 2k 1 )
= (< FaS + Zi:l Faxi <l>2>10 )OLEI*
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2k 1 .
Fy o vaz(x, 5) = Fo((Fys + Z 4 Foxi(i)g )10 oL,

i=
k 2k 1 )
= (<F0Ls + Zi:l Fotxi<L>2 )10 )cer* .
Therefore y97 is an m® map.

k
@) (x, s), (v, t) € F3;, 7! x F&;, let us suppose that (x, s) = (y, t) (Le.,

x =y and s = t) and let show that ey (x, s) = e9y(y, t).

k k
FZx - F2 1y Va e I,
(x,8)=(t)=

Folfs = Folft Va € I,
Fo%k_lx = Fo%k_ly Vo € I, F(fk_lx = Fo%k_ly Va € I,
=
Fys = Fyt Vo e I, 12z(%, 8) = v2z(y, t)
F(fk_lx = Fo%k_ly Va € I,

Fiyop(x, 8) = Fyyop(y, t)

k k
FO% 1y = FO% 1y Va € I,

€Fyv9z(x, 8) = €Fyvaz(y, t)

F2k771 F2k771 I
= F; x+ep, a YT eElye(y, t)Voc eI,

Yoz (%, 8) T

k k
2" -1 2" -1
= (Fg “x+ €Fyv97,(x, ) )oceI* =(Fg "+ €Fyv97,(, t) )aeI*

= eQZ(x> S) = eQZ(y> t)'

Therefore ey is define well. Let us verify ey; is an m® map.
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k
Let (x, s) € F2; 1 — Fk,
k k
egz o (FZ 71, FY)(x, 8) = egp(FZ “'x, F)s)

k_ k_
(Fo% l(FO? lx)+e )(xel*

Faran(F2 1, Fls)
—(sz_1x+e ),.7. becau ism® m
=(Fy Flyo7(x,5) Jocl, DECAUSE Yo7 1sm® map.

: rm2ia
Fy oegz(x, s) = F(Fg X+ €F: (yoy(x, s)))aeI*
_ sz_l
= (Fa' 7% + Ry (va5(x. 5)) e,
k
Therefore egy o (F2 L, FF) = F. o eyy.
(ii1) Let show that ry; is define well.

k k
Let us suppose that x = y (i.e., FO% Ty = Ff _ly) and let show that
TozX = Toz)y-

Let a € I,

k_ k_
FZNx) = F2 7Hy) = F,x; = Fyy;

= Faxi<i>2: F(xyi<i>2
2k 1 ) 2k 1 )
= Z ) Fyx; <i>o= Z ) Foy;<i>g
1= 1=

ok 1 . ok 1 .
:(Zizl Fox;<i>9)yer, :(Zi=1 Foyi<i>9)yer,

= vaz(x) = voz(y).

Therefore ry; is an m® map.
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Let show that ry; is m® map.

k_ k_
ryz o Fo H(x) = nyg(F2 x)

2k 1 ko ,
= Q. Ful(FF x))<i>g ey,

pLE] )
= (Zi:1 Fa(Faxi )<l>2 )(er* :

2k 1
Let x e F5y , let a € I,.
ok 4 )
= (Zizl Faxi <l>9 )O.EI*
' ' 2k_1 .
Fy o, s) = Fy((Y ) Fuxi<i>g)yer,)

2k 1 )
= (Zizl Faxi<z>2 )0.61*'
Therefore ry; is an m® map.

0

Proposition 3.2. (eyz, vy ) define in the Proposition 3.1 above is an

m® steganographic protocols.
Proof. Let show that (egz, rv7) is an m® steganographic protocol,

ie., let show that ry(egs(x,s) =s, for any s e Fh, and for any

k
x e F3, 7Y ie, Va e I, FE(ry(egy(x, ) = Frs.
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1)
. k
FF(ryp(e9y(x, 8))) = 1oz (F2 71 o egy(x, s)) because ry; is an m® map

k
= ryz(egz o (F2 7L, FF))(x,s) because eg; is an m®

map

k_
= ryz (egz (FE ~'x, Fiis))

ok _
= 1oz (Fy 7%+ ey (yy (v, )

we put

. 12 k_
Jj=Fy(vaz(x, 8)) = yoz o (FE 7', FY)(x, s)

2k 4 k
Yoz (Fy —x, Fys)

ok 1 ko ,
<F§(F§S)+Zi=1 Fy((FF 'x);)<i>g>10

5 2k 1 )
<Fys+ Z ) F, (F x;)<i>9>1g
1=

k 2]»':71 )
=<F/s+ E . F,(x;)<i>9>1
1=

) . 2k 1 .
<j>9 = Frs+ Zizl F (x)<i>y. (¥)
(2)

ok 1
rz(Fy —x +ej)

r(Fyxi, Fyxog, ..., Foyxj+1, ..., F,x,)

ok _1 . .
Zi:l,iq&j Fy(Fyx;)<i>g + (Faxj +1)<j>g,

changing <j>9 by

2k 1 ] .
- Zi:l,i#j F,(x;)<i>g + (Faxj + 1)<] >9
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expression given in (*) we obtain:
k ,
rop (F2 "L + ej) = FFs so va e I,, FF(ryz(eqy(x, 8)) = Fls.

Therefore, ry;(eoz(x, s) =s. Thus F2% is an m® steganographic

protocol. O

Remark 3.2.

e Insert an m® messages by F52Z in an m® covering consists to

change the m® coordinate number yqy (x, s).

e mO® extraction consists to add all m® products of each m®

component to the value of the Fy; expression of the m® index, i.e.,

2k 1 :
roz(x) = zi:l F x;<i>y.

Example 3.2. For n="7 k=3, how to insert s = 01ly7197; in

X = 122122003220122.
Ffs = 011, F3s = 000, F’x = 1100001, F5x = 0000100,

i.e., how to calculate 622(0122122, 122122003220122 )
3 3
Yo97,(122197008970197, 0197197 ) = (<Fy°(019z197)
T 3
+ Zi:l Fl X; <l>2 >10, <F2 (012zl22)
+ 27 Fix;<i>9>10)
. Faxi<i>a>10).
Or
7
<FP(01az152) + ) Fx; <i>5>10= <011 +1(001)
1=

+1(010) + 1(111)>19= 17,
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and
<F3(0197197) + Z::l Fyix; <i>g>10= <000 +1(101)>10= 5
v2z(%, 8) = (75 5) = (F{(vaz(x, 8)); Fs(yaz(x, 8)))
e22(%, 8) = (V% + ey (e, 5))3 P2 + €ylygs (s, )
FI% + efy(y, (x. 5)) = 1100001 + e7 = 1100001 + 0000001 = 1100000

Fx + ey, (x, 5)) = 0000100 + e5 = 0000100 + 0000100 = 0000000

eg7(x, 8) = (1100000, 0000000) = 19715700000 = v.

How to extract the m® message hidden s in the message
v = 1957197,000007?, i.e., how to calculate ry;(195197,00000)?. By applying

the second point of the previous remark we get that:

7 . 7 .
TQZ(U) = (Zi:]_ F]_Ui <l>9, Zi:]_ F2 <l>9 )
o7 (v) = (1(001) + 1(010); 1(000)) = (011; 000) = 0197197 = s.
4. m® Codes and Pseudo m® Codes Defined by an m®

Steganographic Protocol; Construction of an m®

Steganographic Protocol

Let (C, FO':‘C) be an m® code of length n on an m® alphabet

(A4, F,), (¢, Fo?\(:) is an m® subset of (A", F}'). Recall that an m®
correcting code of length n on an m® alphabet (A, F,) is an m® subset
of (A", F}'), and the m® covering radius pg of an m® correcting code

satisfies Vx = (x1, -+, x,) € (A", F}):
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min  dy(x; ¢) if x € C(A", F;‘ n )
dH@(x’ (c, FOTJC)) = JeeC(C, Fie) A
min dg_(x; c) if not
ceC ©
min [i:x; #¢| if x =(x,...,x,)e C(A", FO?‘A,L)

B c=(cq, ..., ¢y )eC(C, F(;l\c)
min Zl{t : Fyx; # Fye;, V; e {1, ..., n}}|  if not

Definition 4.1. An m® steganographic protocol (eg, rg) of length n

is said to be proper if the m® embedding functions eg is such that:
eo(x, s) is the nearest element to x belonging to rg'(s) = {y e (A", F})
70 (y) = s}.

Proposition 4.1. If an m® steganographic protocol (eg, rg) is

proper then the m@® covering radius pg is given by:

max{dy (x, 75 (s))} if s € C(A*; F(ZAk ) and x € C(A", Fo:l\An )
po =14 card(l,)max{dy(Flx, r ' (F*(s)))} if s e AF\C(AF, Fff\Ak )

or x e A"\C(A", F"* ).

of 4n
Proof. Let x € A" and s € A"
n n k k . _
o If x e C(A", Fa‘An ) and s e C(A", Fa‘Ak) then if eg(x, s) = v,

then dy (¥, v) = dg(x, v) = min{dgy (x, y)/y € 16 (s) = d(x, rg'(s))}. Since

that

Po = max{d(x, eolx, s))/s € C(A*, F(f"Ak ), x € C(A", FO’L"An )},
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we have
po = max{d(x, rg}(s))/s € C(AF, FE), x e C(A", F?)]

o If not, then xe AM\C(A", F*) or se AM\C(AF, FF). 1f

eg(x, s) = v, then Va € I, Fl(eg(x, s)) = FJ(v)
= Va e I, dg(Fx, F'v) = min{dg (Fx, F'y)IF y € rg' (F(s))}
= d(Fyx, 171 (F(s))

we have pg = card(I,)max{dy(Fx, r (F(s))), s e AF\C(A*, F}),
or x € AM\C(A", F}')}.
O

Let Yg = (eg, T9) be an mO steganographic protocol. The m®

protocol Yg define a collection Fr® of m® correcting codes and pseudo

m® codes defined by:

Fy, ={Cs =15'(s)/s € A*}.

Let x be an element of (A", F})

ael,

If x € C(A™", F!), to decode x we proceed in this way: if pg is the
m® radius of yg, then there exists a word x' satisfying: dy(x, x') < pg
and rg(x) = s.

Then rg(eg(x, s)) = s which means that eg(x, s) is a word decoding

x relative to the code C(cg, F(;L\ ). If x € A™\C(A", F[}), to decode x we

proceed in this way: if pg is the m® radius of vy, then there exists an m® word
x' satisfying Va e I, dg(F} (x), F}'(x") < pg and rg(F}(x")) = F}(s).
Thus dp,(x, x') < pe and 7rg(x') =s. Then rg(eg(x, s)) =s which
means that eg(x, s) is an m® word decoding x relative to the m® code

(Coo 2\ )
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To build an m® steganographic protocol of parameters (n, k, pg) on

an mO alphabet (A, F,), one way is to start by building a surjective
ro : (A", F') > (A*, F¥) which m® map 1y define a family
F,, ={Cs = 76-(s)/s € A¥) of m® codes and pseudo m® codes on

(A, F,) of length n.

Example 4.1. To build an m® steganographic protocol of parameters

(3, 2, 4) on Fyy; = {0, 1, 197, 397}, start with given an m® surjective
function rg : Fi; — F2y, if rg : Fa; — FZ;, is such that: V(x, y) € Fyy,
o (x, ¥) = {(x, 3, 2)Vz € Foz ).
761(00) = {000, 001, 0019, 00397},
761(01) = {010, 011, 01195, 01345},
r61(10) = {100, 101, 1019y, 10397},
rel(11) = {110, 111, 11195, 11395,
are m® codes
7o' (0197) = {01970, 01971, 0197197, 0197357},
76" (0357) = {03270, 03971, 0397157, 0327357},
ro' (119z) = {11570, 11971, 1157157, 1157397},
7o' (1397) = {13970, 13971, 1357197, 1397357},
76" (1220) = {15700, 19701, 1570197, 1970357},
76" (3270) = {82700, 89701, 3570197, 8570357},

1
o (1o71) = {19710, 19511, 1971197, 1971395},
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r6' (3271) = {82710, 35711, 8971197, 3571397},
76" (327127) = 3271220, 3271971, Bazlazlaz, 327127307},
re' (322397) = (8223220, 8273971, 39739717, 327322322}
76" (az127) = {l271220, 1971971, 1oz1a7197, 1o7197327 ),
ro' (197327 = {1278220, 1973971, 197397197, 197327307},
are pseudo m® codes.
Therefore eq (000, -) : F3; — F3, satifies eg(000, 00) = 000 since
dp, (000, x') = dp,, (000, cog) = 0. More generally,
eo : Fiy xF3; — F3y
(x, s) > eglx, 8) = dyg (x, ).
If s =10 and x = 111, then we have:
dpr, (111; Cyp) = dyg, (111; {100, 101, 10155, 10395}) =1, 2" is 101

because

dp, (111; 101) = 1.
Thus 76 (ab) = {(a, b, ¢)|c € Faz} = Cqp.

Proposition 4.2. An m® map rg: (A", F*) - (A*, F¥) isan m®
extraction map of an m® [n, k]-steganographic protocol if and only if rg
1s m® surjective.

Proof. Indeed if rg: (A", F?) - (A*, F¥) is an m® extraction
function of an m® [n, k]-steganographic protocol, then for all x € (A", F.')

we have rg oeg(x, )= 1,., so 1rg is mO® surjective. If rg : (A", F})

Ak ’
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- (Ak, Folf) 1s mO® surjective then there exists an m® embedding map
e such that (eg, rg) 1s an m® steganographic protocol of parameters

(n’ k’ p@)'

For all ¢t € R and for all xy € (A", F}') put

Bg(xg, t) = {y € (A", Fg)|dg, (x0, ¥) < t}.
U
Lemma 4.1. For all (n, k, pg )-steganographic protocol (eg, rg) over
an m® alphabet (A, F,) and for all xy € (A", F}') the m® map

To|B(xy, p)» the restriction of rg to the ball Blxg, pe), is mO surjective

or,
k k
T®|B(xg, p) * B(xg, pe) = (A", Fy)

y = 10(¥)
is an m® surjective map.

Proposition 4.3. The m® map To|B( is well defined. Let

X0, P@)’
consider s e (A¥, FF), since eq is the m® embedding map of the
(n, k, pg )-steganographic protocol (eg, 1g), then dg(xg, eg(s, xg)) < pe-
Let y = eg(s, xg) then dg(xg, y) < pe and 19(y)=releg(xg, 8)) = s.

That proves the existence of y € B(xg, pg) such that 1g|B(x, pe)(¥) = s-
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5. Protocol Steganography Using m® Codes

Proposition 5.1. Let F, be a finite field such that F, = F,(B),

where p is a prime interger and B is a primitive element such that

qQ=D.

=0

F, = F,(8) = {Zaiﬁi, a; e Fp}

Let (]FpZ, Fa) be the finite mO® field with p2 elements such that

n

C(]FPZ, Fa) =Fp. Let set Kpy = {Z ai[}i, a; € sz}- Let for every
1=0
.7:,0_ : KpZ b sz
o € I,, define n ; L . n o
z aiﬁl = FOL(Z aiﬁl) = Z Fa(ai)[}l
i=0 i=0 i=0
a finite mO field such that C(KPZ, F(;) =F

(Kpz, Fg) is

9
Proof. [2].
Proposition 9.13, p.304.

Proposition 5.2. Let C be a linear code of length N, of dimension k,

) ) f: FZ — Fév
of alphabet F,, having G as generator matrix. Let the
x> xG
® k N
K - K
encoder of C. f pL PE map. If f® is an m® map

x = xG

(e, Vx e I, FN o f© = f© o F'F), then
(1) f® is a linear and injective map.

) (Im(f©), FO’L‘N ( @)) is a linear m® code such that C(Im(f®),
Im(f

FO'LN o ) = C called the canonical m® extension of C.
| Im(f™)
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3) If f® is not an m®, then let set E = K]; Uix e K];,Z\K];)/
(F(f(x)G)ad* € ng} and
g®  E > ng
xG if x e K];,

X B>

(FF(x)Q) if not

ael,
(i) g® is a non linear map that is m® and injective.

(i) (Im(g®), Fofv o ) is non linear m® code such that C(Im(g®),
|Tm(g™)

Fofv o ) = C, called the canonical m® pseudo extension of the classical
[Im(g™)

linear code C.
Proof. [10].

It comes from the proof of the propositions 0.18, 0.19, 0.20, 0.21.

Definition 5.1. Let denote Im(f®) = ¢c®, (c®, F/N
|C

o ) is called the
canonical m® extension of the classical linear code C.

Proposition 5.3. Let (C, FO’LL‘C) be a linear m® code of length n, of
dimension k and of m® alphabet (KpZ, F(;) The subset of m® invariant
elements C(C, Fo?‘c ) is a classical linear code of length n, of dimension k

and of alphabet K, = F, = F,(B).

Proof. [3].
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5.1. Connection with the m® coding theory

Let C be a linear classical code of length N, of dimension k of
alphabet F, having parity check matrix H and covering raduis p. Let

(c®, FN) be a canonical m® extension or a canonical m® pseudo

extension of C.

Let a € ng, we have a = (F(;N(a))ad* and Va e I, F(;N(a) € Kg.

Let sets F = (KN xKY®)U{(x, 5) (K \KD ) x (KD \K 5 )/

(FN(x) - FN(e))ges, € KDz} and

G =KY Uly e K\KY /(HEN ™ (9))ger, € KDZF L

Let (x, s) e F\(Kg x Kg_k) ye G\Kg. To insert s in x, the principle
is to modify x in y such a way that Va e I,, HF.N (y) = F:N7(s). We then
check the vector e e ng which modifies x in y, i.e., for every a € I,, we
check F;N(e) which modifies F;N (x) in F;N (y)

N N N
Fy (y): Fy (x)_F(x (e)
= HF;" (e) = FV ™ (s) - HFN (x)
The optimal o-vector is the a-chief of the a-coset C(F.N7*(s)- HFN

(@) = {FN(c) e KY = FY1HFN (c) = F;N 7 (s) - HFN (x)}.
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Proposition 5.4. Let Emb and Ext defined as follows:
Emb:.F > G

x—e=yif(x,s)ngx p

(x, 8) >
(F(;N(x) - F&N(e))ad* if not

x—e:yif(x,s)ngx P

Emb(x, s) =
(Fe™ (@) = Fg™ (@))qer, if not

Ext:G—)KSIZ—k

Hyifyng
y

(HEN M (9))geq, if not

aecl,

Emb and Ext are m® map such that Ext(Emb(x, s)) = s.

Let A € I, and (x, s) € F.

If (x, s) e Kg x Kg_k

FN(Emb(x, s)) = FN (x - e)
=y
= Emb(F;" (x), F{N ¥ (s))

= Emb o (F{N x F{N7F)(x, s).
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If (x, 5) e (KD \KD ) x (KD F\KD )
BN (Emb(x, 5)) = BN (FN (x) = Fo¥ (€))ger, )
= BN (x)- N (e)
= Emb(F;" (x), F{N ¥ (s))
= Emb(F;N x F{N7F(x, s)).
Let o € I, and y € G.
If y e KY,
BN (Exi(y)) = F;NF (Hy)
= Hy
= HF;N (y)
= Ext(F{N (y))
= Ext(F;"N (y)).
If y e G\KY
N (Bxt(y)) = BN M (HFN (9))ger,)
= HF{N " (y)
= Ext(F;N ().

Thus Emb and Ext are m®. Ext(Emb(x, s)) = s, V(x, s) € F.



Remark 5.1. If s € KgZ\KN, then s = (F.N(s))
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acl, - So we observe

that when hiding s in x e KgZ\KN, this becomes to hide card(I,)

classical messages in x. Indeed, for every o e I,, we hide F(fv_k (s) in

F:N(x), ie., in other word we hide for every o e I,, FN7*(s) in x.

According to what proceeds, we can hide classical messages in a cover

m® object (m® codeword).

6. Conclusion

In the present work, we have been brougth from the m® algebraic

structures to define m® steganographic protocols with some examples.

We have also observe that one can hide classical messages in a cover m®

objet (m® codeword).
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