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Abstract 

We give a short self-contained proof of the important classical result that a 

minimal normal subgroup of a finite group is an internal direct product of 

isomorphic simple groups (e.g., Theorem 8.6.1 of M. Hall’s The Theory of 

Groups, The MacMillan Co., 1966; Corollary 5.27 of J. J. Rotman’s An 

Introduction to the Theory of Groups, Springer Verlag, 1995; Theorem 4.3A (iii) 

of J. D. Dixon & B. Mortimer’s Permutation Groups, Springer Verlag, 1996). 
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1. Introduction 

A normal subgroup 1=/M  of a group G  is a minimal normal 

subgroup of G  if M  contains no other non-trivial normal subgroup of .G  

That is, GK ⊲=/1  with MK ≤  implies .MK =  It is clear that 

minimal normal subgroups of non-trivial finite groups exist. We will use 

this well-known 

Lemma. If A and B are normal subgroups of some ambient group H 

and ,1=BA ∩  then baab =  for all ., BbAa ∈∈  Moreover, BAG ,=  

is the internal direct product of A  and ,B  and is normal in .H  

Proof. ( ) Aabab ∈−− 11  since ,11 Abab ∈
−−  and similarly ( ) Bbaab ∈−− 11  

since .1 Bbaa ∈−  So ,111
=

−− baab  i.e., a  and b  commute. In any 

product in ,, BAG =  we can move all a’s to the left and all b’s              

to the right, so .ABG =  To multiply in ,AB  we have 

( )( ) ( ) ( ).,,, BbbAaabbaabababaab ∈′∈′′′=′′=′′  Each element of G  

can be uniquely written in the form :ab  for if baab ′′=  then it follows 

,11 1=∈′=′ −− BAbbaa ∩  whence aa ′=  and .bb ′=  Thus the map 

( ) abba ֏,  is a surjective and injective morphism, showing .GABBA =≅×  

Also for ,, ABabHh ∈∈  we have ( )( ) ,111 ABbhhahhabhh ∈= −−−  so 

G  is normal in .H   � 

Theorem. A minimal normal subgroup M of a finite group G is the 

internal direct product of isomorphic simple groups that are conjugate in 

.G  

Proof. Let S  be a minimal normal subgroup of .M  Since conjugation 

by Gg ∈  is an automorphism of SggG 1, −  is minimal normal in 

.1MggM −
=  Let nn SggSgg 1

0
1

0 ,, −−
…  be the (pairwise) distinct conjugates 

of S  in ( ).0,0,,10 ≥≤≤∈= nnjGggG j  Since jjii SggSgg 11 −−
∩      

is normal in ,M  by minimal normality of ii Sgg 1−  in ,M  this intersection 

is 1 for .ji =/  
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Now define groups iM  for ni ≤≤0  by ,0 SM =  and 

1
1
11 , +

−
++ = iiii SggMM  if ,1

1
1 1=+

−
+ iii MSgg ∩  and ii MM =+1  

otherwise. We show by induction up to ,n  that each iii SggMM 1, −
⊲  is 

contained in ,iM  and iM  is the internal direct product of distinct 

conjugates of .S  This is trivial for .0=i  Assume the induction 

hypothesis for i. Consider the case :1
1
1 1=+

−
+ iii MSgg ∩  Since MM i ⊲  

(by induction hypothesis) and ,1
1
1 MSgg ii ⊲+

−
+  by the Lemma 1+iM  is 

the internal direct product of iM  and ,1
1
1 +

−
+ ii Sgg  hence of distinct 

conjugates of ,S  and also normal in .M  On the other hand, in the case 

,1
1
1 iii MSgg ∩+

−
+=/1  the intersection is normal in ,M  so we have 

iii MSgg ≤+
−
+ 1
1
1  since 1

1
1 +

−
+ ii Sgg  is minimal normal in .M  So, in either case, 

1
1
1 +

−
+ ii Sgg  is always contained in .1+iM  Thus, by induction, nM  is the 

internal direct product of conjugates of .S  Moreover, since nM  contains ,iM  

which contains ,:0:, 111 GgSggniSggMSgg iinii ∈=≤≤= −−−  

the normal closure of S  in .G  By minimal normality of M  in ,G  it 

follows that .MMn =   

Finally, S  is simple: Suppose 1=/K  is normal in .S  Since K  is 

contained in the single factor S  in the direct product M  and is normal in 

that factor, K  is normal in .M  By minimal normality of S  in ,M  we 

have ,SK =  showing S  is simple. Thus M  is isomorphic to the internal 

direct product of conjugates of S  in .G   � 
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