A SIMPLE PROOF THAT MINIMAL NORMAL SUBGROUPS OF FINITE GROUPS ARE DIRECT PRODUCTS OF ISOMORPHIC SIMPLE GROUPS

CHRYSTOPHER L. NEHANIV

University of Waterloo Ontario, Canada e-mail: chrystopher.nehaniv@uwaterloo.ca

Abstract

We give a short self-contained proof of the important classical result that a minimal normal subgroup of a finite group is an internal direct product of isomorphic simple groups (e.g., Theorem 8.6.1 of M. Hall's *The Theory of Groups*, The MacMillan Co., 1966; Corollary 5.27 of J. J. Rotman's *An Introduction to the Theory of Groups*, Springer Verlag, 1995; Theorem 4.3A (iii) of J. D. Dixon & B. Mortimer's *Permutation Groups*, Springer Verlag, 1996).

2020 Mathematics Subject Classification: 20-01, 20D99.

Keywords and phrases: finite groups, minimal normal subgroups, structure theory, finite simple groups, tutorial exposition.

Received August 26, 2022

© 2022 Scientific Advances Publishers

This work is licensed under the Creative Commons Attribution International License (CC BY 3.0).

http://creativecommons.org/licenses/by/3.0/deed.en_US

1. Introduction

A normal subgroup $M \neq 1$ of a group G is a minimal normal subgroup of G if M contains no other non-trivial normal subgroup of G. That is, $1 \neq K \triangleleft G$ with $K \leq M$ implies K = M. It is clear that minimal normal subgroups of non-trivial finite groups exist. We will use this well-known

Lemma. If A and B are normal subgroups of some ambient group H and $A \cap B = 1$, then ab = ba for all $a \in A$, $b \in B$. Moreover, $G = \langle A, B \rangle$ is the internal direct product of A and B, and is normal in H.

Proof. $(b^{-1}a^{-1}b)a \in A$ since $b^{-1}a^{-1}b \in A$, and similarly $b^{-1}(a^{-1}ba) \in B$ since $a^{-1}ba \in B$. So $b^{-1}a^{-1}ba = 1$, i.e., a and b commute. In any product in $G = \langle A, B \rangle$, we can move all a's to the left and all b's to the right, so G = AB. To multiply in AB, we have $(ab)(a'b') = a(ba')b' = aa'bb'(a, a' \in A, b, b' \in B)$. Each element of Gcan be uniquely written in the form ab: for if ab = a'b' then it follows $a^{-1}a' = bb'^{-1} \in A \cap B = 1$, whence a = a' and b = b'. Thus the map $(a, b) \mapsto ab$ is a surjective and injective morphism, showing $A \times B \cong AB = G$. Also for $h \in H$, $ab \in AB$, we have $h^{-1}abh = (h^{-1}ah)(h^{-1}bh) \in AB$, so G is normal in H.

Theorem. A minimal normal subgroup M of a finite group G is the internal direct product of isomorphic simple groups that are conjugate in G.

Proof. Let *S* be a minimal normal subgroup of *M*. Since conjugation by $g \in G$ is an automorphism of *G*, $g^{-1}Sg$ is minimal normal in $M = g^{-1}Mg$. Let $g_0^{-1}Sg_0, \ldots, g_n^{-1}Sg_n$ be the (pairwise) distinct conjugates of *S* in $G(g_0 = 1, g_j \in G, 0 \le j \le n, n \ge 0)$. Since $g_i^{-1}Sg_i \cap g_j^{-1}Sg_j$ is normal in *M*, by minimal normality of $g_i^{-1}Sg_i$ in *M*, this intersection is **1** for $i \ne j$.

Now define groups M_i for $0 \le i \le n$ by $M_0 = S$, and $M_{i+1} = \langle M_i, g_{i+1}^{-1} S g_{i+1} \rangle$ if $g_{i+1}^{-1} S g_{i+1} \cap M_i = 1$, and $M_{i+1} = M_i$ otherwise. We show by induction up to n, that each $M_i \triangleleft M$, $g_i^{-1}Sg_i$ is contained in M_i , and M_i is the internal direct product of distinct conjugates of S. This is trivial for i = 0. Assume the induction hypothesis for *i*. Consider the case $g_{i+1}^{-1}Sg_{i+1} \cap M_i = 1$: Since $M_i \triangleleft M$ (by induction hypothesis) and $g_{i+1}^{-1}Sg_{i+1} \triangleleft M$, by the Lemma M_{i+1} is the internal direct product of M_i and $g_{i+1}^{-1}Sg_{i+1}$, hence of distinct conjugates of S, and also normal in M. On the other hand, in the case $1 \neq g_{i+1}^{-1}Sg_{i+1} \cap M_i$, the intersection is normal in M, so we have $g_{i+1}^{-1}Sg_{i+1} \leq M_i$ since $g_{i+1}^{-1}Sg_{i+1}$ is minimal normal in M. So, in either case, $g_{i+1}^{-1}Sg_{i+1}$ is always contained in M_{i+1} . Thus, by induction, M_n is the internal direct product of conjugates of S. Moreover, since M_n contains M_i , which contains $g_i^{-1}Sg_i$, $M_n = \langle g_i^{-1}Sg_i : 0 \le i \le n \rangle = \langle g^{-1}Sg : g \in G \rangle$, the normal closure of S in G. By minimal normality of M in G, it follows that $M_n = M$.

Finally, S is simple: Suppose $K \neq 1$ is normal in S. Since K is contained in the single factor S in the direct product M and is normal in that factor, K is normal in M. By minimal normality of S in M, we have K = S, showing S is simple. Thus M is isomorphic to the internal direct product of conjugates of S in G.

Acknowledgement

Support of the Natural Sciences and Engineering Research Council of Canada (NSERC) funding reference number RGPIN-2019-04669 is gratefully acknowledged. Cette recherche a été financée par le Conseil de recherches en sciences naturelles et en génie du Canada (CRSNG), numéro de référence RGPIN-2019-04669.

CHRYSTOPHER L. NEHANIV

References

- [1] J. D. Dixon and B. Mortimer, Permutation Groups, Springer Verlag, 1996.
- [2] M. Hall, Jr., The Theory of Groups, The MacMillan Company, 1959.
- [3] J. J. Rotman, An Introduction to the Theory of Groups, Springer Verlag, 4th Edition, 1995.