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Abstract 

Bounds for the torsional rigidity of cylindrically anisotropic bars with one plane 

of elastic symmetry perpendicular to the axis of bar are derived making of use 

the two minimum theorems of elasticity. All results of the paper are based on 

the theory of uniform torsion which was developed by Saint-Venant and 

Prandtl. Illustrative example shows that the one term approximation leads to 

relative close bounds. 
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1. Introduction 

While the Saint-Venant torsion of homogeneous Cartesian anisotropic 

linearly elastic bars has been the subject of several studies from both 

theoretical and numerical viewpoints [1-7, 14, 15] until then relative few 

articles and books deal with the task of torsion problem of cylindrically 

anisotropic bars [2, 3, 4, 6, 8-13]. The object of this paper is the Saint-

Venant torsion of homogeneous cylindrical orthotropic solid elliptical 

cross section. The cylindrical anisotropic materials having a linear elastic 

stress-strain relations can possess a unique coupling between the radial 

and circumferential directions. The cylindrical orthotropy is a lower level 

of the cylindrical anisotropy it has a weaker coupling between the radial 

and circumferential directions as in the case of cylindrical anisotropy. The 

bar with elliptical cross section is an important structural component the 

investigation of its deformation under the torsional load is the subject of 

several text books of elasticity [1, 5, 6]. 

 

Figure 1. Saint-Venant torsion of cylindrical anisotropic bar. 

We consider the Saint-Venant torsion of cylindrical anisotropic 

linearly elastic homogeneous bar with solid cross section. The polar 

coordinate system zOrϕ  is positioned at the left end cross section of the 

bar as shown in Figure 1. The applied torque is T  and the rate of twist 

with respect to axial coordinate z is denoted by ϑ  and the length of the 
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bar .L  The cross section of the bar is a simply connected bounded two-

dimensional domain A  and its boundary curve is .A∂  The arc length 

coordinate defined on A∂  is s and the component of normal vector n in 

polar coordinate system is ., ϕnnr  The unit vectors of the polar 

coordinate system zOrϕ  are denoted by ( ) ( ),, ϕϕ ϕeer  and ze  as shown 

in Figure 1. For cylindrical anisotropic elastic bar the shear moduli are 

.,, 54455544 AAAA =  The shear flexibility coefficients denoted by 

.,, 54455544 aaaa =  The connection between the shear moduli and shear 

flexibility coefficients are as follows [2, 3, 6]: 
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From the non-negativity of strain-energy density, it follows that [2, 3, 4, 

6] 

,0,0,0,0 55554444 >>>> AaAa  (3) 

.0,0 2
455544

2
455544 >−>− AAAaaa  (4) 

2. Governing Equations 

The cylindrically anisotropic bar under the uniform torsion follows 

the next stress-strain relationships [2, 3, 6] 

,4555 zrzrz AA ϕγ+γ=τ   (5) 

,4445 zrzz AA ϕϕ γ+γ=τ   (6) 

where rzτ  and zϕτ  are the shearing stresses while zrz ϕγγ and  are the 

shearing strains. The inverse relations of (5) and (6) are as follows: 

,4555 zrzrz aa ϕτ+τ=γ   (7) 
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.4445 zrzz aa ϕϕ τ+τ=γ   (8) 

The shearing strains in terms of torsion function ( )ϕω=ω ,r  can be 

represented as [1-4]: 
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The shearing stresses satisfy the mechanical equilibrium equation [1-5] 

( ) ( ) ,,,0 Arr
r

z
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ϕ∂
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+τ

∂

∂ ϕ   (10) 

and the stress boundary condition on the mantle of the bar 

( ) .,,0 Arnn zrrz ∂∈ϕ+τ+τ ϕϕ   (11) 

It is known that Equations (10) and (11) are satisfied if 

( ) ,,,, AAr
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UU

r
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=τ ϕ   (12) 

( ) ( ) ,,,0, ArrU ∂∈ϕ=ϕ   (13) 

where ( )ϕ= ,rUU  is the Prandtl’s stress function of the solid cross 

section A. The Prandtl’s stress function is the solution of the following 

Dirichlet type boundary value problem [3, 4, 12, 13]: 
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( ) ( ) .,,0, ArrU ∂∈ϕ=ϕ   (15) 

The expression of torsional rigidity S  in terms of ( )ϕ= ,rUU  can be 

represented as [3, 4, 12, 13] 
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Combination of Equations (5), (6), (9), (10) and (11) gives the torsional 

boundary value problem in terms of torsion function. A detailed 

computation leads to the following Neumann’s type boundary value 

problem for ( ):, ϕω=ω r  
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The expression of torsional rigidity S  in terms of ( )ϕω=ω ,r  can be 

represented as 
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The total strain energy of the bar is as follows: 

.
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3. Lower Bound for the Torsional Rigidity 

In this case, the minimum principle of the complementary energy of 

linear elasticity leads to the following inequality [16-18]: 

( )[ ] ( ), , ,
C C
U r U r ϕ ≥ ϕ ∏ ∏ ɶ   (21) 
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where ( ),U U r= ϕɶ ɶ  is a statically adissible stress function which satisfies 

the homogeneous boundary condition  

( ) ( ), 0, , ,U r r Aϕ = ϕ ∈ ∂ɶ  (22) 

and its second order partial derivatives with respect to r  and ϕ  are 

continuous functions in AAA ∂∪=  and ( ),
C
U r ϕ ∏ ɶ  is defined as 
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It must be noted that 

( )[ ], .
C

S U r= ϕ∏  (24) 

It is obvious if ( ),U r ϕɶ  statically admissible stress function then ( ),U rλ ϕɶ  

is also a statically admissible function for the arbitrary value of ,λ  that is 

the following inequality is valid: 
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By a simple calculation can be derived the inequality relations formulated 

in Equation (26) 
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The correctness of the following lower bound formula follows from 

inequalities (16) and (25) 
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4. Upper Bound for the Torsional Rigidity 

According to the minimum principle of potential energy of the linear 

theory of elasticity, we have [16-18] 

( )[ ] ( )[ ], , ,
L L

r rω ϕ ≥ ω ϕ∏ ∏ɶ   (28) 

where ( ),rω = ω ϕɶ ɶ  is a kinematically admissible torsion function and 
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In Equation (28), ( ),rω = ω ωɶ ɶ  is an arbitrary function whose second order 

partial derivatives with respect to r  and ϕ  are continuous functions in 

.A A A= ∪ ∂  It should be mentioned that 

( )[ ], .
L

S r= ω ϕ∏   (30) 

It is obvious if ( ),rω = ω ϕɶ ɶ  kinematically admissible torsion function then 

( ),rλω ϕɶ  is also a kinematically admissible torsion function for arbitrary 

value of ,λ  that the upper bound given by in equality (31) is valid for S  

with arbitrary λ  
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The following inequality can be proven by a simple extreme value 

calculation: 
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According to inequality relation (32) the form of the sharpest upper bound 

in terms of ( ),rω = ω ϕɶ ɶ  is as follows: 
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5. Example: Cylindrical Anisotropic Elliptical Bar 

Figure 2 shows the cross section of the cylindrical anisotropic elastic 
bar. The equation of the boundary curve A∂  in polar coordinates r  and 

ϕ  is 

( )
2 2 2 2

, 0 2 .
sin cos

ab
R

a b

ϕ = ≤ ϕ ≤ π
ϕ + ϕ

 (35) 

 

Figure 2. Cylindrical anisotropic elliptical cross section. 

Assumed form of the statically admissible function ( ),U U r= ϕɶ ɶ  is as 

follows: 

( ) ( ) ( )2 2 2 2 2 2, sin cos , , .U r a b r a b r A Aϕ = − ϕ + ϕ ϕ ∈ ∪ ∂ɶ   (36) 

Substitution of ( ),U U r= ϕɶ ɶ  given by Equation (36) into lower bound 

formula (27) gives 

( ) ( )

3 3

2 2
55 44 55

.
2

L

a b
S S

a a b ab a a

π
≥ =

+ + −
 (37) 

In the lower bound formula (37) for 44 55a a=  the sign of the equality is 

valid, in this case the considered bar is isotropic. 
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By the use of kinematically admissible torsion function in upper 

bound formula yields the result 

( )
( ) ( )

3 3 2 2
44 55 44 55

4 4 2 2 2 2
44 55 44

2
.

4 2
U

A a b A a A ab A b

S S

A a b A a b A ab a ab b

+ + π
≤ =

+ + + + +
 (38) 

In the upper bound formula (38) for 44 55A A=  the sign of the equality is 

valid that is we have [1, 5] 

3 3

44 2 2
.

a b
S A

a b

= π
+

  (39) 

For 
2 2

9 9
44 55

m m
0.06m, 0.12m, 9.5 10 , 9 10 ,a b a a

N N

− −= = = × = ×  

2
9

45
m

6.5 10a
N

−= − ×  the bounding formulae (37), (38) give the following 

numerical result: 

2 22128.891022Nm 2150.064306Nm .S≤ ≤  (40) 

6. Conclusions 

In the present paper, the elastic torsion of cylindrical bar with solid 

cross section made of cylindrical anisotropic material which displays 

planes of elastic symmetry perpendicular to the axis of bar is considered. 

Lower and upper bounds are derived to the torsional rigidity of the bar. 

To formulate the upper and lower bounds of torsional rigidity two 

minimum theorems of linear elasticity are used. The application of the 

obtained formulae of torsional rigidity is illustrated in the example of 

elliptical cross section. 
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