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Abstract 

In a Markov chain population model subject to catastrophes, random 

birth events, promoting growth, are in balance with the effect of 

binomial catastrophes that cause recurrent mass removal. We study 

two versions of such population models when the binomial catastrophic 

events either comes from a fixed or random survival probability. In both 
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cases, most of the time, the chain is ergodic and we are left with the 

description of its invariant equilibrium probability mass function. For 

such processes, the notion of discrete self-decomposability plays a key 

role in quantifying the degree of disaster of the equilibrium state. 

1. Introduction 

In some simple growth process, some population changes its size at 

random as follows. In the course of its lifetime, the population alternates 

at random busy and idle periods. In a busy growth period, a random or 

fixed amount of newborns are produced which are being added to the 

current population size. In an idle exclusive catastrophic period, the 

population stands at risk being subject say to external attacks (such as a 

flood or a drought or a pest outbreak), resulting in the possible death of 

each of its constitutive members with some fixed mortality probability, 

independently of each other. Under such a catastrophic event, the 

population size thus shrinks according to a binomial distribution with 

survival probability, say u (hence the name binomial catastrophes). It will 

happen that the current size of the population is reduced to zero at some 

random time. In a worst disaster scenario for instance, all members can 

die in a single idle period leading instantaneously to a first disastrous 

extinction event (the case ).0=u  From a first extinction event, the 

organism can then either recover taking advantage of a subsequent busy 

epoch and starting afresh from zero, or not, being stuck to zero for ever. 

Stochastic models subject to binomial catastrophes have a wide 

application in different fields viz. bioscience, economy, ecology, computer 

and natural sciences, etc. For instance, 

− In forestry, a good management of the biomass depends on the 

prediction of how steady growth periods alternate with tougher periods, 

due to the occurrence of cataclysms such as hurricanes or droughts or 

floods, hitting each tree in a similar and independent way. 

− In economy, pomp periods often alternate with periods of scarcity 

when a crisis equally strikes all the economic agents. 
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As just described in words, the process under concern turns out to be 

a Markov chain on the non-negative integers, displaying a subtle balance 

between generalized birth and death events. Whenever it is ergodic, there 

are infinitely many local extinctions and the pieces of sample paths 

separating consecutive passages to zero are called excursions, the height 

and length of which are of some relevance in the understanding of the 

population size evolution. Excursions indeed form independent and 

identically distributed (iid) blocks of such Markov chains. 

Discrete-time random population dynamics with catastrophes 

balanced by random growth has a long history in the literature, starting 

with [12]. Mathematically, binomial catastrophe models are Markov 

chains (MCs) which are random walks on the non-negative integers, so 

differing from standard random walks on the integers in that a one-step 

move down from some positive integer cannot take one to a negative 

state, resulting in transition probabilities being state-dependent. Such 

MCs may thus be viewed as generalized birth and death chains on a 

countable state-space [13, 21]. The transient and equilibrium behaviour of 

such stochastic population processes with either disastrous ( )0=u  or 

mild ( )( )1,0∈u  binomial catastrophes is one of the purposes of this 

work. We aim at studying the equilibrium distribution of this process and 

deriving procedures for its approximate computation. Another issue of 

importance concerns the measures of the risk of extinction, first 

extinction time, time elapsed between two consecutive extinction times 

and maximum population size reached in between. 

The detailed structure of the manuscript, attempting to realize this 

program, can be summarized as follows: 

• Section 2 is designed to introduce the model in probabilistic terms. 

We develop three particular important cases: 
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− Survival probability .1=u  In this case, on a catastrophic event, the 

chain remains in its current state with no depletion of individuals at all. 

The population size slowly drifts to infinity, a case of transience. 

− Survival probability .0=u  This is a case of total disasters for 

which, on a catastrophic event, the population size is instantaneously 

propelled to state 0, no one surviving the drought. 

− The scenario when the adjunction of newborns, on a growth event, 

is deterministic being reduced to a single element, and { }1,0=/u  so that 

binomial mortality is not degenerate. 

• In Section 3, we discuss the conditions under which the chain with 

[ )1,0∈u  is recurrent (positive or null) or transient. We emphasize that 

positive recurrence is generic, unless the newborns random variables 

have unrealistic very heavy tails, with infinite logarithmic moments. This 

is due to the fact that for a binomial catastrophe model, a catastrophic 

event produces a huge death toll. When, as in the positive recurrent case, 

it is non-trivial, we mainly discuss the shape of the invariant probability 

mass function of the chain. Specifically, 

− When 0=u  (total disasters), the invariant probability mass 

function is shown to be the one of a shifted geometric sum of the 

newborns, so in the compound Poisson class, but not necessarily self-

decomposable. We give some sufficient conditions under which it is self-

decomposable, so unimodal and then we show that it has mode 

necessarily at the origin. When the mode is at 0, we speak of a completely 

disastrous situation, the most probable equilibrium state being zero 

(corresponding to eventual extinction). 

We refer to [16] for the notions of discrete infinite divisibility 

(compound Poisson), self-decomposability and unimodality which play a 

key role in this manuscript. 
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− When ( )1,0∈u  (mild disasters), we show that the invariant 

probability mass function is also the one of a compound Poisson (infinitely 

divisible) random variable, which is moreover discrete 

ledecomposab-self-ku  for all .1≥k  Self-decomposability being 

ledecomposab-self-α  for all ( )10,∈α  we give conditions under which 

this strict self-decomposability holds. When strict self-decomposability 

holds, the invariant probability mass function is unimodal and we give 

completely disastrous conditions under which the mode is located at 0. 

In the positive recurrent case and when [ ),1,0∈u  we also give new 

expressions of the distributions of the first return time to zero and the 

time to a first extinction starting from some positive initial condition. 

• In Section 4, we introduce a family of binomial catastrophe models, 

now with random survival probability .U  Think of an extreme drought 

striking a forest: each tree, independently of its neighbours, will have to 

face a chance U  of survival, and considering U  random can be a natural 

issue to take into account the variability of the trees’ reaction in their 

struggle for life against the drought. When dealing with such a growth 

model with binomial catastrophes in random environment, the strength 

of the depletion of individuals in a catastrophic event is also very strong 

(massive) but more diffuse. To the best of the author’s knowledge, the 

randomness feature of U  has not been fully considered in the literature 

and we go one-step in this direction while considering that U  has a 

( )1,beta a  distribution, .0>a  We show that the condition under which 

binomial catastrophe models with random U  are ergodic is the same as 

for the model with fixed u  (finiteness of the logarithmic moments of the 

newborns random variables). When ergodic, we give the exact expression 

of the probability generating function of its invariant measure. It has two 

factors, one of which is the one of a self-decomposable random variable, 

the other one being the one obtained for the total disaster equilibrium 

case with fixed .0=u  When strict self-decomposability of the latter 
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factor holds, the invariant probability mass function of the binomial 

catastrophe models with random U  is itself self-decomposable, so 

unimodal and we give completely disastrous conditions under which its 

mode is located at .0  

We finally show that, when ergodic, the invariant measure of the 

binomial catastrophe models with random U  can be achieved by a pure-

death branching processes with immigration in continuous-time. 

2. The Binomial Catastrophe Model with Fixed Survival 

Probability 

We first describe the model and some of its special extreme cases. 

2.1. The model 

Consider a discrete-time Markov chain (MC) nX  taking values in 

{ }.,2,1,0:0 …=N  With ( ) …,2,1, =nubn  an independent identically 

distributed (iid) sequence of Bernoulli random variables (rv’s) with 

success parameter ( ),1,0∈u  let 

( )ubXu m

X

m

n

n

∑
=

=
1

�   (1) 

denote the Bernoulli thinning of nX 1. Let …,2,1, =β nn  be an iid birth 

sequence of rv’s with values in { }.,2,1 …=N  The dynamics of the MC 

under concern here is a balance between birth and death events according 

as ( ):1=+ qp  

11 ++ β+= nnn XX  with probability p 

nn XuX �=+1  with probability .1 pq −=  

                                                      
1In words, the thinning operation acting on a discrete random variable is the natural 

discrete analog of scaling a continuous variable, i.e., multiplying it by a constant in [ ].1,0  

See [16].  
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This model was considered by [1, 2, 4, 6, 8, 12], and we aim at providing 

an additional insight. We have ( )uXXu n
d

n ,bin~�  hence the name 

binomial catastrophe. The binomial effect is appropriate when, on a 

catastrophic event, the individuals of the current population each die 

(with a fixed probability )u−1  or survive (with probability )u  in an 

independent and even way, resulting in a drastic depletion of individuals 

at each step. Owing to: ( ) ,1 nnn XuXXu �� −−=  the number of 

stepwise removed individuals is ( ) nXu �−1  with probability (wp) .q  

This way of depleting the population size (at shrinkage times) by a fixed 

random fraction u  of its current size is very drastic, especially if nX  

happens to be large. Unless u  is very close to 1 in which case depletion is 

modest (the case 1=u  is discussed below), it is very unlikely that the 

size of the upward moves will be large enough to compensate depletion 

while producing a transient chain drifting at .∞  

With ( ) 1,: ≥=β= xxbx P  and ( ) ( ) yxyx
yyx uud

−−= 1:,  the binomial 

probability mass function (pmf), the one-step-transition matrix P  of the 

MC nX  is given by: 

( ) ( ) 1,,0,0,0 ≥=== ypbpbyPqP yy  

( ) ( ) ( ) 1,1, , ≥=−= −
xqduuqyxP yx

yxyx
y  and xy ≤≤0  

( ) 1,, ≥= − xpbyxP xy  and .xy >   (2) 

Remarks (Special extreme cases). 

(i) When ,1=u  the lower triangular part of P  vanishes leading to 

( ) ( ) 1,,0,0,0 ≥== ypbyPqP y  

( ) 1,0, ≥= xyxP  and ( ) 1,,,0 ≥=<≤ xqxxPxy  

( ) 1,, ≥= − xpbyxP xy  and .xy >  
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The transition matrix P  is upper-triangular with diagonal terms. The 

process nX  is non-decreasing, so it drifts to ∞  with probability 1 (a case 

of transience). 

(ii) If 1~ δβ
d

 a move up results in the addition of only one individual, 

which is the simplest deterministic drift upwards. In this case, the 

transition matrix P  is lower-Hessenberg. 

3. Recurrence Against Transience 

Using a generating function approach, we start with the transient 

analysis before switching to the question of equilibrium. 

3.1. The transient analysis 

Assume .000 == xX  Let ( ) ( )β
β =φ zz E  be the pgf of ,1β=β  as an 

absolutely monotone function on [ ]1,0 2. Let ( ) ( )( )…,1,0 nnn ππ=′π  

where ( ) ( )xXx nn ==π 0P  and ′  denotes the transposition. With 

( ) ,,,,1 2 ′= …zzz  a column vector obtained as the transpose ′  of the row 

vector ( ),,,,1 2
…zz  define 

( ) ( ) ,0 zE n
X

n
nzz π′==Φ  

the pgf of .nX  The time evolution Pnn π′=π′ +1  yields 

( ) ,11 zz Pz nnn ππ ′=′=Φ ++  

 

                                                      
2A function B  is said to be absolutely monotone on ( )1,0  if it has all its derivatives 

( )( ) 0≥zB n  for all ( ).1,0∈z  Pgfs are absolutely monotone and the composition of two 

pgfs is a pgf. With x  integer, we denote by [ ] ( )zBzx  the xz  coefficient in the series 

expansion of ( ).zB  
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leading to the transient dynamics 

( ) ( ) ( ) ( )( ) ( ) .1,11 01 =Φ−−Φ+Φφ=Φ β+ zzuqzzpz nnn   (3) 

The fixed point pgf of ,∞X  if it exists, solves 

( ) ( ) ( ) ( )( ).11 zuqzzpz −−Φ+Φφ=Φ ∞∞β∞   (4) 

When 1=u  (survival of all), there is no move down possible. The only 

solution to ( ) ( ) ( ) ( )zqzzpz ∞∞β∞ Φ+Φφ=Φ  is ( ) ,0=Φ∞ z  corresponding 

to .~ ∞∞ δd
X  Indeed, when ,1=u  combined to ( ) ,11 =Φ∞  

( ) ( ( )) ( ) ( ) 1, 01 =ΦΦφ+=Φ β+ zzzpqz nn  

( ) ( ),1
zpqz

n
n βφ+=Φ  

showing that, if ( ) ( ) 1,1:1 1 ≥ρ+→∞<β=φ′=ρ≤ −
β pqXn nE  almost 

surely as .∞→n  The process nX  is transient in that, after a finite 

number of passages in state ,0  it drifts to .∞  

3.2. Existence and shape of an invariant pmf [ )( )10,∈u   

We shall distinguish two cases, starting with the extreme total 

disaster one. 

• The case 0=u  (total disasters) 

When 0=u  (total disasters), the transition matrix (2) reads 

( ) ( ) 1,,0,0,0 ≥== ypbyPqP y  

( ) 1,0, ≥= xyxP  and ( ) 1,0,,0 ≥=≤< xqxPxy  

( ) 1,, ≥= − xpbyxP xy  and .xy >  

Some related Markov catastrophe models involving total disasters are 

described in [19, 7]. 
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For such Markov chains, the time 1≥τ  elapsed between consecutive 

catastrophic events is geometric with ( ) 1,1 ≥== − xqpx x
τP  and the 

net growth B  of the process during this laps of time is 

,
1

x

x

B β= ∑
−τ

=1

  (5) 

where τ  and ( )1; ≥β xx  are independent. The pgf of B  is thus 

( )
( )

,
1 zp

q
zB

βφ−
=φ  

the one obtained while compounding a shifted-geometric pgf ( )pzq −1  

with the pgf ( )zβφ  of the s
,

β 3. 

When a downward move occurs, it takes instantaneously nX  to zero 

(a case of total disasters), independently of the value of .nX  This means 

that, defining ( ),0:1inf 000,0
xXXn nx ==≥=τ  the first extinction 

time of ( ) ,1,, 1
0,0

≥== − xqpxX x
xn τP  a geometric distribution with 

success parameter ,q  with mean ( ) ,10,0
qx =τE  independently of 

.00 ≥x  Note that ,0 ττ0,
d
=  as the length of any excursion between 

consecutive visits to ,0  also has a geometric distribution with success 

parameter q  and finite mean .1 q  In addition, the height H  of an 

excursion is clearly distributed like xx
B β= ∑

−
=

1
1
00,τ  (with the convention 

).0
0

1
=β∑ = xx

 Consecutive excursions are the iid pieces of this random 

walk on the non-negative integers. 

                                                      
3A geometric(q) rv with success probability q  takes values in { }.,2,1 …=N  A shifted 

geometric(q) rv with success probability q  takes values in { }.,2,1,00 …=N  It is obtained 

while shifting the former one by one unit. 
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Combined to ( ) ( )4,11 =Φ∞  yields 

( ) ( ),zz Bφ=Φ∞  equivalently ,BX
d
=∞  (6) 

as an admissible pgf solution, whatever the distribution of .β  We just 

obtained: 

Proposition (total disaster). Combined to ( ) ,11 =Φ∞  (6) is an 

admissible pgf solution. When nXu ,0=  is ergodic (positive recurrent) 

and the law of ∞X  is a compound shifted-geometric of the ,
,
sβ  whatever 

the distribution of .β  

Statistical properties of the rv BX
d
=∞  of the total disaster model 

(1) The probabilities ( ) [ ] ( ) ( ) 1, ≥==Φ=π ∞ xxBzzx x P  are in 

principle explicitly given by the Faa di Bruno formula for compositions of 

two pgf’s, (see [3], p. 146). It involves the ordinary Bell polynomials 

( ) ,
!!

!
,,,

1
121,

z

c
z

z

yxyx c

b

x

y
bbbB

z

∏∑
≥

∗

+− =…  

where the star-sum runs over the non-negative integers zc  obeying 

xzczz
=∑ ≥1

 and yczz
=∑ ≥1

 (upon partitioning the integer x  into y  

summands). In more detail ( ) q=π 0  and 

( ) ( ) .1,,,, 121,
1

≥=π +−
=
∑ xbbbBpqx yxyx

y
x

y

…  

We also observe that 

( ) ( ( ))
( ) ( ( ))

( )
( ),

1

1

11

1

1
1

z
z

z

q

p

zpz

zp

z

z
B

B φ
−

φ−
=

φ−−

φ−
=

−
φ− β

β

β   (7) 
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so that (with ( ) )qB == 0P  the following recurrences on 

( ) [ ] ( )zzx x
∞Φ=π  ( ) ,1, ≥== xxBP  hold 

( ) ( ) ( ),
0

yByx
q

p
xB

x

y

=−>β=> ∑
=

PPP  

( ) ( ) ( ) .1,
1

0

≥=−=β== ∑
−

=

xyByxpxB

x

y

PPP  

The latter convolution-like relation can be useful to generate recursively 

( ) [ ] ( ) ( ) 1, ≥==Φ=π ∞ xxBzzx x P  on a laptop, thereby by-passing its 

complex combinatorial representation in terms of Bell polynomials. 

(2) With ( )1,0∈p  and ( )pb  a Bernoulli rv with success parameter 

,p  define the thinning operator 
( )

n
pb

n
XXp ∑ =

=∗
1

 (where XX
d

n =  and 

with the convention ).0
0

1
=∑ = nn

X  Compare with (1). We have 

( ) ( ).XXp zpqz EE +=∗  Supposing we search for a solution X  to the 

equation in distribution (assuming XX
d
=′  and Xp ′∗  and β  independent) 

,β+′∗= XpX
d

 

we get 

( ) ( ) ( )[ ] ( ),zzpqzz X
βφΦ+=Φ=E  

( )
( )

( )
,

1 zp

zq
z

β

β

φ−

φ
=Φ  

( )zΦ  is the pgf of a compound geometric rv (see Theorem 4.2 of [16]). 
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Proposition (total disaster). The limiting rv ,∞X  as a compound 

shifted geometric rv, is the solution of the fixed point equation 

( ).β+′∗= ∞∞ XpX
d

  (8) 

Proof. Searching now for a solution ∞X  to the equation in 

distribution (8) we get 

( ) ( ) ( )zzpqz β∞∞ φΦ+=Φ  

( )
( )

.
1 zp

q
z

β
∞ φ−

=Φ  

(3) The rv BX
d
=∞  is at least infinitely divisible (ID), else compound 

Poisson, because ( ) ( )( )zrzB υ/−−=φ 1exp  where 0>r  and ( )zυ/  is a pgf 

with ( ) .00 =/υ  Indeed, with ,req −=  

( )
( ( ))

q

zp
z

log

1log

−

φ−−
=/

β
υ   (9) 

is a pgf (the one of a Fisher-log-series rv, [5]). 

(4) We now address the self-decomposability of BX
d
=∞  (with ( ) =φ zB  

( )
)

zp

q

βφ−1
 question: would ∞X  be self-decomposable, (assuming 

∞∞ =′ XX
d

 and ∞′Xu �  and uY  independent), it should solve 

,u
d

YXuX +′= ∞∞ �  

for all ( ).1,0∈u  See [16] and [18] for an account on discrete SD rv’s, as a 

remarkable subclass of compound Poisson ones. 
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Theorem. With [ ] ( ) ∞β =≥φ= XBxzzb
dx

x ,1,  is ID and furthermore 

self-decomposable (SD) if 

1
11

+
−

≤+
x

pbx

b

b

x

x  for any .1≥x   (10) 

Proof. If B is SD then (see [14], Lemma 2.13) 

( )
( )

,1
11

zd
z

zh
r

B
zez

′
′−
′−

− ∫
=φ  

for some 0>r  and some pgf ( )zh  obeying ( ) .00 =h  We are led to check 

if 

( )
( )

( )
( )

,
1

1
1 z

zh
r

zp

zp
z

−
−

=
φ−

φ′
=′/

β

β
υ  

for some pgf h  and ,1pbr =  where 

( ) ( )
( )

( )
( ( )) ( ) ( )

( )zp

zzzpb

bzp

z
z

b
zh

β

ββ

β

β

φ−

φ′−−φ−
=

φ−

φ′
−−=

1

111
1

1
1

1 1

11
 

( ) ( ),zzB φφ=  where ( ) [ ( ( )) ( ) ( )].11
1

: 1
1

zzzpb
qb

z ββ φ′−−φ−=φ  

A sufficient condition for h  to be a pgf is thus that ( )zφ  be a pgf itself.    

In particular, if ( ) 11 =φ  (which holds) and if 

[ ] ( ) 0≥φ zzx  for all .1≥x  

The proof ends while observing 

( ) [( ) ( ) ].1
1

11
11

+
≥

+−−=φ ∑ xx
x

x

bxbpbxz
qb

z   � 

Let us show on four examples that these conditions can be met. 
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Examples. (1) Suppose ( ) .zz =φβ  Then 
1

0 1
+
−

≤= +
x

px

b

b

x

x  for all 

.1≥x  The simple shifted-geometric rv B is SD. 

(2) Suppose ( ) 2
21 zbzbz +=φβ  with .1 12 bb −=  We need to check 

conditions under which .
2

1 1

1

2 pb

b

b −
≤  This condition is met if and only if 

the polynomial 023 1
2
1 ≤+− bpb  which holds if and only if ,11

∗≥ bb  

where ( )1,01 ∈∗b  is the zero of this polynomial in ( ).1,0  

(3) Suppose ( ) ( ) ( ),1,0,1 ∈αα−α=φβ zzz  the pgf of a ( )αgeometric  

rv, with .1−αα= x
xb  The condition reads: .

1+
α−

≤α
x

px
 It is fulfilled if 

qx

px

+
−

≤α  for all 1≥x  which is ( ) 11 <+≤α qq  (or 111 =≥=α ∗bb  

( )).1 q+  

(4) Suppose ( ) ( ) ,0,1exp >θ−θ−=φβ zzz  the pgf of a shifted 

( )θPoisson  rv, with ( ) .1,!11 ≥−θ= θ−− xxeb x
x  The SD condition holds 

for all 1≥x  if and only if: ( ) .121 1 <−≤θ pb  Under this condition, 

11 <
θ

=+
xb

b

x

x  ( xb  is a decreasing sequence), and β  has its mode at 

.1=x  

(5) Sibuya, [15]. Suppose ( ) ( ) ( ),1,0,11 ∈α−−=φ α
β zz  with α=xb  

[ ] 1,!1 ≥α − xxx  (where [ ] ( ) ( ) 1,11 ≥−+α+αα=α xxx …  are the 

rising factorials of α  and [ ] ).1:0 =α  The condition reads: 
1

1
+

α−
=+

x

x

b

b

x

x  

1+
α−

≤
x

px
 which is always fulfilled. The shifted-geometric rv with Sibuya 

(with heavy tail index )α  distributed compounding rv is always SD. Note 

11 <+

x

x

b

b
 ( xb  is a decreasing sequence), so that β  has its mode at .1=x  
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When the rv BX
d
=∞  is SD, it is unimodal, with mode at the origin if 

( ) ( ),01 =<= BB PP  or with two modes at { }1,0  if 
( )
( )

1
0
1

=
=
=

B

B

P

P
 (see 

[18], Theorem 4.20). 

Proposition (total disaster). Under the condition that BX
d
=∞  is SD 

and so unimodal, ∞X  has always mode at the origin. 

Proof. The condition to check here is that, with ( ) ( ) qB B =φ== 00P  

and ( ) ( ) ( ) ( ) ( ) ,101,001 11 <====φ′=φ′== β pbBBpqbpqB B PPP  

which is always satisfied. 

Definition. A random walk with binomial catastrophe nX  is said to 

be completely disastrous if the limit law of ∞X  is SD, unimodal, with 

mode at the origin. 

The above random walk with total disaster is completely disastrous 

when B  is SD: The most probable equilibrium state is then 0 

(corresponding to eventual extinction). 

• The case ( ).10,∈u  From (4) and (6), the limit law pgf ( ),z∞Φ  if it 

exists, solves the functional equation 

( ) ( ) ( )( ),11 zuzz B −−Φφ=Φ ∞∞   (11) 

so that, formally 

( ) ( ( )),11
0

zuz n
B

n

−−φ=Φ ∏
≥

∞   (12) 

as an infinite product pgf. 

Proposition. The invariant measure exists for all ( )1,0∈u  if and 

only if ( ) ∞<+ BlogE  or equivalently ( ) .log ∞<βE  
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Proof (Theorem 2 in [12]). By a comparison argument, we need to 

check the conditions under which ( ) ( )00 ∞Φ=π  converges to a positive 

number. We get 

( ) ( ) ( ( )) ∞<−φ−⇔>−φ=Φ ∑∏
≥≥

∞
n

B

n

n
B

n

uu 11010
00

 

( ) ( ) ( ) ,loglog
1

1

1

1

0
∞<==⇔∞<

−
φ−

⇔ +
≥
∑∫ BxBxdz

z

z

x

B EP  

meaning that B  has a finite logarithmic first moment. It follows from (7) 

that 
( ) ( )

.
1

1

1
1 1

0

1

0
∞<

−

φ−
⇔∞<

−
φ− β

∫∫ dz
z

z
dz

z

zB  

This condition is extremely weak and, for most s
,

β  therefore (but the 

ones with infinite logarithmic moments), the process nX  is positive 

recurrent, in particular if β  has finite mean. 

When β  has finite first and second order moments, so do B  and ∞X  

which exist. Indeed: 

If ( ) ,1 ∞<ρ=β=φ′β E  (with ( ) ( ) )qpB B ρ=φ′= 1E  

( ) ( ) ( ) ( ) ( )
.

1
:111

2
∞<

−
=µ==Φ′⇒










Φ′+

ρ
=Φ′ ∞∞∞∞ u

B
X

q

u

q

p
q

E
E  

If ( ) ∞<φ ′′β 1  or equivalently if ( ) ∞∞<φ ′′ XB ,1  has finite variance 

found to be: 

( ) ( ) ( ) ( ) ( )( )1111
1

1 2
2

2
BBB u

u
X φ′++φ′−φ ′′

−
=σ ∞  

 ( ) ( )( ).
1

1 2
2

BuB
u

E+σ
−

=  
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Example. With ,0, >θ C  suppose that ( ) ( ) θ−
∞↑>β xCx x log~P  

translating that β  has very heavy logarithmic tails. Then ∞=βqE  for 

all 0>q  and β  has no moments of arbitrary positive order. For such a 

(logarithmic tail) model of ,β  one can check that nX  remains positive 

recurrent if 1>θ  and starts being transient only if .1<θ  The case 

1=θ  is a critical null-recurrent situation. Being strongly attracted to ,0  

the binomial catastrophe model exhibits a recurrence/transience 

transition but only for such very heavy-tailed choices of .β  

Recall that: 

When positive recurrent, the chain visits state 0  infinitely often and 

the expected return time 00,τ  to 0  has finite mean given, by Kac’s 

theorem, [11], as ( ).010 π=0,τE  

When null recurrent, the chain visits state 0  infinitely often but the 

expected return time to 0  has infinite mean. 

When transient, the chain visits state 0  a finite number of times 

before drifting to ∞  for ever after an infinite number of steps (no finite 

time explosion is possible for discrete-time Markov chains). 

Corollary. If the process nX  is null recurrent or transient, no non-

trivial ( )0′=/  invariant measure exists. 

Proof. This is because, ( )z∞Φ  being an absolutely monotone function 

on [ ]1,0  if it exists, 

( ) ( ) ( ) ( ) 001000 =π⇒=−Φ⇒=Φ=π ∞∞ xu  for all .1≥x  

Sampling nX  at times when thinning occurs and time change: 
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Let ( )( ),0:1inf =≥= pBn nτ  with ( ) ,1,1 ≥== −
kk

k qpτP  

( ) .
1 pz

q
z

−
=τ−1E  The rv τ  is the time elapsed between two consecutive 

catastrophic events. So long as there is no thinning of nX  (a catastrophic 

event), the process grows of xx
B β= ∑

−
=
1
1

τ
 individuals. Consider a time-

changed process kX  of nX  whereby one time unit is the time elapsed 

between consecutive catastrophic events. During this laps of time, the 

original process nX  grew of B  individuals, before shrinking to a random 

amount of its current size at subsequent catastrophe times. We are thus 

led to consider the time-changed integral-valued Ornstein-Uhlenbeck 

process with fixed initial condition :000 ≥= xX  

,0,11 ≥+= ++ kkkk BXuX �   (13) 

with …,2,1, =kkB  an iid sequence of compound shifted geometric rv’s. 

In this form, kX  is a pure-death subcritical branching process with 

immigration, 1+kB  being the number of immigrants at generation ,1+k  

independent of .kX  With ( ) ( ),k
k

Xzz E=Φ  we have 

( ) ( ) ( )( ) ( ) ,,11 001
x

B zzzuzz =Φ−−Φφ=Φ + kk   (14) 

corresponding to 

0

1

0

xuBuX l
l

l

��
k

k

k

k += −

−

=
∑  

.01

1

0

xuBu l
l

l

d
��

k

k

+= +

−

=
∑  

 



THIERRY E. HUILLET 20 

The limit pgf ( )z∞Φ  (if it exists) also solves (11), so ( ) ( ).zz ∞∞ Φ=Φ  Thus 

(12) holds, corresponding, if 00 →Xu �
k  as ,∞→k  to 

,1
0

+
≥

∞∞ ∑== l
l

l

dd
BuXX �  

an iterated version of ,BXuX
d

+′= ∞∞ �  where ∞∞ =′ XX
d

 and ∞
′Xu �  

independent of .B  

The time-changed process kX  has the same limit law as the original 

binomial catastrophe model ,nX  which exists if and only if ∞<+ BlogE  

holds. Note kX  is the sum of the independent rv’s ,1+l
l Bu �  each 

obtained while scaling the iid .0,1 ≥+ lBl  

Proposition. When the law of ∞X  exists ( ),log ∞<βE  it is infinitely 

divisible (compound Poisson). 

Proof. The rv B  being compound-Poisson from (9), as a result of (12), 

∞X  is obtained as a weak limit of the sum of a sequence of independent 

compound-Poisson random variables, each with pgf, :0≥n  

( ( )) ( ( ( )))zurzu nn
B −−/−−=−−φ 111exp11 υ  

    ( ( )),~1exp zr nn υ/−−=  

where ( ( ))n
n urr −/−= 11 υ  and ( ) ( ( ( )) ( ))nn

n uzuz −/−−−/=/ 111~ υυυ  

( ( ))nu−/− 11 υ  obeying ( ) .00~ =/ nυ  

So it is compound-Poisson. See Proposition 4.1 p. 26 in [18]. 

Proposition. When the law of ∞X  ( ),log ∞<βE   it is discrete u-self-

decomposable (SD) and then SDu -k  for all .1≥k  
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Proof. This follows from [17]. 

Full SD distributions are those which are u-SD for all ( ).1,0∈u  

Corollary. When the law of ∞X  exists ( ),log ∞<βE  if B  is SD, so is 

.∞X  

Proof. If B  is SD, from (12), ∞X  is obtained as a weak limit of the 

sum of a sequence of independent SD random variables, each with pgf, 

:0≥n  

( ( )) ( ( ))
zd

z

zuh
rzu

n

z

n
B ′

′−
′−−−

−=−−φ ∫ 1
111

exp11
1

 

 
( )

,
1

~
1

exp
1

zd
z

zh
r n

z
n ′

′−
′−

−= ∫  

where ( ( ))n
n uhrr −−= 11  and ( ) ( ( ( )) ( ))nn

n uhzuhzh −−−−= 111
~

 

( ( ))nuh −− 11  obeying ( ) .00
~

=nh  

So it is SD; see Proposition 4.4, p. 264 in [18]. We know the conditions on 

the law of β  under which B  is SD. 

When the rv ∞X  is SD, it is unimodal, with mode at the origin if 

( ) ( ),01 π<π  or with two modes at { }1,0  if 
( )
( )

1
0
1

=
π
π

 (see [18], Theorem 

4.20, p. 274). 

With ( ) ( ) ( ),101 =β=φ′== PP pqB B  we have 

 ( ) ( ) ( ),100 uq −Φ=Φ=π ∞∞  

 ( ) ( ) ( ) ( ) ( )uquuB −Φ′+−Φ==Φ′=π ∞∞∞ 11101 P  

  
( ) ( ) ( ) ( ) ( ).0110

1
π=β>−Φ′+π

=
= ∞ P

P
puqu

q

B
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A condition for unimodality at 0  is thus 

( ) ( ) ( )
.

11
1log

u

p
u

=β−
<−′Φ∞

P
  (15) 

Note also 

 ( ) ( ) ( ) ( )n
B

mn

m
B

m

m

uuu −φ−φ′=Φ′=π ∏∑
=/≥

∞ 1101
0

 

( ) ( ) ( )m
B

m

m

uu −′φπ= ∑
≥

1log0
0

 

( )
( )

( )m

m
m

m up

up
u

−φ−

−φ′
π=

β

β

≥
∑

11

1
0

0

 

with ( ) ( ) 101 <ππ  giving a closed-form condition for unimodality at .0  

For instance, if ( ) ( ) ( )01, π<π=φβ zz  if and only if 

.1
0

<
+

∑
≥

m

m

m puq

pu
 

We have proved: 

Proposition. Under the condition that B  is SD, ∞X  is SD and so 

unimodal; nX  is completely disastrous with a mode at the origin if and 

only 

( )

( )
.1

11

1

0

<
−φ−

−φ′

β

β

≥
∑ m

m
m

m up

up
u  

First return time to 0 of both kX  and .Xn  We end up this section 

by supplying a new expression of the distribution of the first return time 

to 0  of nX  when ( ).1,0∈u  
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Let ( ).00:1inf 00,0 ==≥= XX kkτ  We have ( ) ,10,0 q==τP  

and for each ,2≥l  

( ) ( )0,0,,0 1100,0 0
=>>== −= llX

XXXl …PP τ   

( ) ( ) ( ),00000 11

1

2

100
>=>>>= −−

−

=
= ∏ ll

l

X
XXXXX PPP kk

k

 

(16) 

which is computable as follows. 

First we have ( ) .0100
pX

X
=>=P  Second, with ( )zkΦ  given from 

(13), obeying ( ) ( )uq −Φ=Φ − 10 1kk  and due to and ( ) EP ==− 01kXu �  

( ) ( ),11 1
1 uu

X −Φ=



 − −

−
k

k  

( ) ( )
( )0

0,0
00

1

1
1

>

>=
=>=

−

−
−

k

kk
kk

X

XX
XX

P

P
P  

[ ]
( )01

0,0

1

11

−

−−

Φ−

>=+
=

k

kkk XBXu �P
 

( )
( ( ) ( )) ( ) ( )

( )01

00
01

01 1

1
11

1 −

−
−−

− Φ−

Φ−Φ
=Φ−−Φ

Φ−
=

k

kk
kk

k

q
u

q
 

giving third 

( ) ( ( ) ( ))
( )

.
01

001
00

1

1
1

−

−
−

Φ−

Φ+Φ−
=>=

k

kk
kk

p
XXP  

From (14), using ( ) ( ( ))zuz B −−φ=Φ −′
=′∏ 11 1
1

kk

k
k  evaluated at ,0=z  

the three identities yield a closed-form expression of ( )l=0,0τP  in (16). 
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Let ,1, ≥lBl  be a random sequence of iid rv’s each obtained from lB  

when ,~ 1δβ
d

 so with ( ) ( )pzqz B −= 1E  as a shifted geometric rv. 

Exploiting the fact that kX  is nX  sampled at catastrophic times, the 

time elapsed between consecutive catastrophes of nX  being ,1+lB  we 

obtain. 

Proposition. The first return time to 0  of ,nX  say ( :10,0 ≥= ninfτ  

),00 0 == XXn  is given as a random sum of independent geometric rv’s 

( ),1
0,0

1
0,0 += ∑

=

l

l

B

τ

τ  

where the law of 0,0τ  is from (16) and the s
,

lB  are independent from 

.0,0τ  

Remark. The latter reasoning is also useful to compute the law of the 

first time to extinction of both kX  and .nX  

With ,00 >x  let ( )000, 0:1inf
0

xXXx ==≥= kkτ  be the time to 

first local extinction of .kX  We now have ( ) ( ) ==== 01 10, 00
Xxx PP τ  

( ) ,1 0x
uq −  and for each ,2≥l  

( ) ( )0,0,,0 110, 00
=>>== − llxx XXXl …PP τ   

 ( ) ( ) ( ),00000 11

1

2

10
>=>>>= −−

−

=
∏ ll

l

x XXXXX PPP kk

k

 

(17) 
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which is computable in a similar way as before except for the first term in 

the latter product (which is known) and while considering ( ) ( k
k uz −=Φ 1  

( )) ( )( )zuz B
x −−φ− −′

=′∏ 11.1 1
1

0 kk

k
 evaluated at 0  instead for the 

remaining terms, taking into account 00 xX =  from (14). 

With ( )000, 0:1inf
0

xXXn nx ==≥=τ  the time to first local 

extinction of ( ).1, 0,0
0 10, += ∑ = l

lxn BX xττ  

4. The Binomial Catastrophe Model with Random  

( )1,Beta α  Survival Probability 

We now want to deal with a growth model with binomial catastrophes 

having random survival probability. Whenever a catastrophic event 

occurs, each individual present in the current population, independently 

of the others, is subject to survival (death) with now random probability 

U  (respectively, ).U  This situation occurs when a catastrophic event 

strikes simultaneously and independently all currently alive members of 

some population. Think of an extreme drought striking a forest: Each 

tree, independently of its neighbours, will have to face a chance U  of 

survival, and considering U  random can be a natural issue to take into 

account the variability of the trees in their struggle against the drought 

(binomial catastrophes in random environment). To the best of the 

authors’ knowledge, the randomness feature of U  has not been fully 

considered in the literature and we go one step in this direction. 

4.1. Preliminaries 

For any fixed x integer and U  a [ ] valued-1,0  random variable (rv), 

first consider the rv 

( ),
1

UBxU i

x

i
∑

=

=�  
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where ( )( )1, ≥iUBi  is an iid sequence of Bernoulli rv’s with ( )( )1=UBP i  

,U=  random ( xU �  is the Bernoulli thinning of ,x  see [16]). Clearly 

00 =�U  and 

( ) [ ( )( ) ],11 xxU zUz −−= EE �  equivalently 

( ) ( )[ ] xyUU

y

x

yxU
yxy ≤≤−














== − 0,1EP �  

and the support of xU �  is { }.,,0 x…  With 
d

U ~  fixing the probability 

distribution of ,U  examples are: 

( ) ( ) yxy uu

y

x

yxU
−−














== 1�P  if ( ),1,0,~ ∈δ uU u

d
 

( ) 0,yyxU δ==�P  if ,~ 0δ
d

U  

( ) xyyxU ,δ==�P  if ,~ 1δ
d

U  

( )
1

1
+

==
x

yxU �P  if U  is uniform, 

( ) ( )
( )baB

yxbyaB

y

x

yxU
,

, −++













==�P  if ( ) ,0,,,Beta~ >babaU

d
  

(18) 

where ( )baB ,  is the beta function. For the first binomial example with 

U  concentrated in a point u  of ( ),1,0  both mean and variance of xU �  

are of order x  for large x  (xu  and ( ),1 uxu −  respectively). For the 

second and third examples with U  concentrated on the extreme points of 

[ ],1,0  xU �  is concentrated on the extreme points of its support, 0  and 

,x  respectively. For the last two examples with U  truly random and 
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( )ba,Beta  distributed, the mean is of order x  and the variance of order 

2x  for large ( ( )Uxx E  and ( ) ( ( ) ( ))222 UUxUx EE −+σ  respectively). 

The Bernoulli thinning operator allows for the definition of the size of the 

population immediately after a catastrophic event. 

4.2. The binomial model with random survival probability 

Let ( )1; ≥β nn  be a sequence of iid rv’s taking values in 

{ }.,3,2,1 …=N  Consider now the discrete time-homogeneous Markov 

chain ( )0; ≥nXn  with state-space 0N  and non-homogeneous spatial 

transition probabilities characterized by: 

• Given ,1≥nX   

qXU

pX

X

n

nn

n

yprobabilitwith

yprobabilitwith1

1
�

+

+

β+
=   (19) 

the support of xU �  being { }.,,0 x…  Note 01 1 =⇒= +nn XX  with 

probability q  and ( ),nnn XUXXU �� −=  where .1: UU −=  Note also 

that given ,xXn =  there is a probability ( ) ( )xUxxU EP ==�  that a 

catastrophic event produces no death toll, all individuals surviving 

independently to it. 

• Given ,0=nX  the increment of nX  is 1+βn  with probability p  and 

0  with probability q  so that nX  is reflected at .0  

The stochastic transition matrix of the new model (19) is 

( )[ ],, yxPP =  where 

( ) ( )yxUqyxP == �P,  if ,0 xy ≤≤  

( ) ( )xypyxP −=β= P,  if ,xy >  

and the shape of the invariant measure was discussed in [8] when 

,~ u
d

U δ  for some fixed ( ).1,0∈u  
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Special extreme cases are: When U  is uniform, ( ) ( )1, += xqyxP  if 

xy ≤≤0  (the uniform model of [12]) whereas when ( ) =δ yxPU u ,,~  

( ) yxy uu

y

x

q
−−














1  if xy <≤0  (the binomial model of [12]). In the uniform 

case, a catastrophic event takes xXn =  to any state { }xy ,,0 …∈  with 

uniform probability ( ).11 +x  

If 1~ δβ
d

 and ,0,~ 0 =δ n
d

XUU �  a catastrophic event takes 

instantaneously 1≥= xXn  to state ,0  a total disaster event, [19, 7]. In 

that extreme case, the transition matrix P is primitive, with its first 

column consisting of the q’s and an upper diagonal filled with the p’s.  

In the sequel, we shall choose ( ) 0,1 >=∈ − advavdvUP a  so that U  

has a skewed ( )1,beta a  distribution, with mean ( ).1+aa  In order to 

compare with u
d

U δ~  as in the fixed survival probability setup, we choose 

a  so that ( ) ( ) uaaU =+= 1E  is fixed in ( ),1,0  (else ( )).1 uua −=  We 

also have ( ) ( ) ( )[ ] ( ) ,212 222 uuuaaaaU −−=+−+=σ  with a 

maximum at ( ) ( ) .21122122 <−−=∗u  

Note: 

� :211 >⇔> ua  small values of the survival probability U  have 

little chance to occur. 

� :211 <⇔< ua  small values of U  are enhanced (favouring the 

total disaster case). 

� ,211 =⇔= ua  on a catastrophic event, half the current 

population size will be decimated and U  is uniform. 
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For such a choice of ,U  with Γ  the Euler gamma function, the 

transition matrix P  of the chain is 

( ) ( )
( )

( )
( )11

1
,

+Γ
+Γ

++Γ
+Γ

=
y

ay

ax

x
qayxP  if ,0 xy ≤≤  

( ) xypbyxP −=,  if .xy >  

Theorem. Let ( ).1,~ abetaU
d

 If and only if ∞<+ BlogE  (or βlogE  

),∞<  does ∞X  have a proper distribution characterized by its factorized 

pgf 

( ) ( ) ( )
,

1
11

zd
z

z
ezz B

z

a
B ′

′−
′φ−

φ=Φ ∫−
∞  

the second factor of which being SD. 

Proof. The limit law pgf ( ),z∞Φ  if it exists, solves the functional 

equation 

( ) ( ) ( ) ( )( ).11 zUqzzpz −−Φ+Φφ=Φ ∞∞β∞ E   (20) 

Then 

( )( ) ( ) ( )( )dvzvvaqzzp a −−Φ=Φφ− ∞
−

∞β ∫ 111 1
1

0
 

( )
( ) ( ) zdzz

z

aq a

za
′′Φ′−

−
= ∞

−
∫

11
1

1
 

( ) ( ) ( ) ( ) .101 1

0








′′Φ′−−Φ−= ∞

−
∞

−
∫ zdzzaqz

a
z

a  

Taking the derivative with respect to ,z  we are led to a linear ordinary 

differential equation for ( ) ( ) ( ) zdzzz
az

′′Φ′−=/ ∞
−

∫
1

0
1υ  which can be solved 

to give 

( ) ( ) ( ) ( ) ( ) ( ) ( )( ),1
0

0
0

zaqAzaqA
z

zaqA e
aq

zdAeez
′−∞′−

∞ −
Φ

=′Φ=/ ∫υ  
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where ( ) ( ) zdzazA
z

′′= ∫0  and ( ) ( ) ( )( )[ ].111 zpzza βφ−−=  Then 

( ) ( ) ( ) ( ) ( ) ( )zaqAa
ezazz −−−

∞∞ −Φ=Φ 110  

( ) ( )
( ) ( )[ ]

.
0 11

0 





 ′′−−′−

∞ ∫
φ

Φ
=

zdzzqaa

B

z

ez
q

 

Observing 

( ) ( ) ( )( ) ( ),1111 zzzqaz B ′−′φ−=′−′−  

we get 

( ) ( ) ( )
( )

.
0 1

1
0

zd
z

z
a

B

Bz

ez
q

z
′

′−
′φ−

∞
∞

∫
φ

Φ
=Φ  

Imposing ( ) 11 =Φ∞  yields ( )
( )

zd
z

z
a B

qe
′

′−
′φ−

−

∞
∫

=Φ 1
11

00  and we finally 

have 

( ) ( )
( )

zd
z

z
a

B

B
zezz

′
′−

′φ−
−

∞
∫

φ=Φ 1
11

 

This defines a pgf if and only if 
( )

∞<′
′−

′φ−
∫ zd

z

zB

1
11

0
 which is B+logE  

.∞<  The condition for positive recurrence of this chain with random 

survival probability is the same as for the model with fixed survival 

probability. Note that as 0→a  (or ) 0,0
..sa

Uu →→  and ( ) ( )zz Bφ→Φ∞  

and we are back to the total disorder model. The factor ( )( ) =Φ∞ :2 z  

( )
zd

z

z
a B

ze
′

′−
′φ−

− ∫ 1
11

 is the pgf of a discrete SD distribution. 
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Remark. To be exact, the latter factor ( )2
∞Φ  is the pgf of a discrete SD 

distribution if it is of the form 

( )

,1
11

zd
z

z
r B

ze
′

′−
′/−

− ∫
υ

 

for some 0>r  and some pgf ( )zBυ/  obeying ( ) .00 =/ Bυ  But ( )2
∞Φ  is 

amenable to the latter form while letting 

( ) ( ) ( )
( )01

0

B

BB
B

z
z

φ−
φ−′φ

=′/υ  and ( )( ) .01 apar B =φ−=  

The pgf Bυ/  is the one, ,Bφ  of B  conditioned to be positive (successful 

immigration events). In the factor ( )( )
( )

,: 1
1

2
1

zd
z

z
a B

zez
′

′−
′φ−

−

∞
∫

=Φ  there is a 

chance pq −= 1  that immigration events will fail, leading to no input of 

immigrants. 

Corollary. If B  is ,SD  so is ∞X  which is then unimodal, with mode at 

the origin if and only if ( ) ,11 <+ bap  equivalently 
( )

.
11

1
:

1

1
bp

pb
uu c −+

−
=<  

In that case, nX  is completely disastrous. 

Proof. If ( )zBφ  is the pgf of a discrete SD distribution, then so is 

( )z∞Φ  as a product of two pgf’s of discrete SD distributions, see 

Proposition 4.3 in [18]. Then, 

( ) ( )
( )

,00 1
11

0
zd

z

z
a B

qeX
′

′−
′φ−

−

∞
∫

===π P  

( ) ( ) ( )
( )

,11 1
1

1

1

0
zd

z

z
a B

ebapqX
′

′−
′φ−

−

∞
∫

+===π P  

( ) ( ) ( ).01 1bap +=ππ  

 



THIERRY E. HUILLET 32 

When ( ) ,11 <+ bap  or equivalently when 

( )
,

11
1

:
1

1
bp

pb
uu c −+

−
=<  

the random walk with ( ) ddistribute-1,beta a  survival probability (with 

mean ),u  is completely disastrous, ∞X  having mode at .0  

Let us finally observe that: 

If ( ) ,∞<BE  

( ) ( ) ( ) ( ) ( ) ( ) .111 ∞<−=+==Φ′ ∞∞ uBaBX EEE  

If ( ) ,2 ∞<BE  

 ( ) ( )[ ] ( ) ( ) ( ) ( )22 211111 aaaXX BB +φ′++φ ′′=−=Φ ′′ ∞∞∞ E  

( ) ( ) ( ) ( ) ( ) ( )( ) .
1

1
1 22222 ∞<+σ

−
=−+=σ ∞ BuB

u
BaBX EEE  

4.3. Self-decomposable rv’s and pure-death branching processes 

with immigration in continuous-time 

There is an alternative construction of a regenerative process in 

continuous-time which produces discrete-SD distributions in the long-

time run, [20]. The following result then holds: 

Theorem. Let ,tY  with ,00 =Y  be a continuous-time pure-death 

branching processes with immigration. Let tt YXX += 0  where 0X  and 

tY  are independent. Suppose that BX
d
=0  and that the pgf of the number 

of immigrants is ( ) ( ).zzh Bυ/=  Then tX  has the same limit law as the 

discrete-time binomial catastrophe process with random ( )1,abeta  

survival probability if the incoming rate of immigrants is .apr =  
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Proof. Consider a continuous-time homogeneous compound Poisson 

process ( ) ( ) ,00,0, =≥ rr PttP  so with pgf 

( )( ) ( )( ){ },1exp0 zhrtz
tPr −−=E   (21) 

where ( ) Mzzh E=  (with ( ) )00 =h  is the pgf of the number of the 

immigrants ,M  arriving in groups at the jump times of ( )tPr  having rate 

.0>r  Let now 

( ) ( ),11 zez t
t −−=φ −   (22) 

be the pgf of a pure-death Greenwood branching process started with one 

particle at ;0=t  see [9]. This expression of ( )ztφ  is easily seen to be the 

solution to ( ) ( )( ) ( ) ( ) ,,1 0 zzzzfz ttt =φφ−=φ=φɺ  as is usual for a pure-

death continuous-time Bellman-Harris branching processes with affine 

branching mechanism ( ) ( )zrzf d −= 1  and fixing, without loss of 

generality, the death rate to be ;1=dr  see [10]. The distribution function 

of the lifetime of each initial particle is .1 te−−  Let ,tY  with initial 

condition ,00 =Y  be a random process counting the current size of some 

population for which a random number of individuals M  (determined by 

( ))zh  immigrate at the jump times of ( ),tPr  each of which being 

independently and immediately subject to the latter pure death 

Greenwood process. Let tt YXX += 0  as in the statement of the 

theorem, with 0X  representing a random initial reservoir of eternal 

individuals not subject to ageing and death. With ( ) ( ),0
0

X
zz E=Φ  we 

then get 

( ) ( ) ( ) ( ) ( ) ( )( )( ) ,1exp:
0

00 dszhrzzzzz s

t
YX

t
tt φ−−Φ=Φ==Φ ∫EE   (23) 
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with 

( ) ( ) ( ) ( ( ))dsehrX s
t

tt
−−−−Φ===Φ ∫ 11exp000

0
0P  

( ) ( )
,

1
1

exp0
1

0
0 du

u

uh
r

te

−
−

−Φ= ∫
−−

 

the probability that the population is extinct at .t  As ,∞→t  

( ) ( ) ( ) ( ) ( )
( ( ( ) ) )dszehr

Y
t

s

ezzzzz
−−−−

∞

−∞

∞ ∫
Φ=Φ=Φ→Φ

111

00
0E  

( )
( )

.1
1

0

1
du

u

uh
r

zez −
−

− ∫Φ=   (24) 

So, ,: ∞= YY  as the limiting population size of this pure-death branching 

process with immigration, is an SD rv, [20]. In such models typically, a 

subcritical branching population is regenerated by the incoming of 

immigrants at random Poissonian times. This is the continuous-time 

version of the discrete-time branching process with immigration kX  

introduced in (13). 

The proof ends while identifying the triple ( )rh,,0Φ  to ( ).,, apBB υ/φ  

The true rate r of the underlying compound Poisson process ( )tPr  has the 

special factorized form ap  when there is a probability pq −= 1  that a 

Poisson immigration event carrying M  immigrants fails. 
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