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Abstract 

This is a summary of articles based on higher order B-splines methods and the 

variation of B-spline methods such as Quadratic B-spline finite elements 

method, Exponential cubic B-spline method, Septic B-spline technique, Quintic 

B-spline Galerkin method, and B-spline Galerkin method based on the 

Quadratic B-spline Galerkin method (QBGM) and Cubic B-spline Galerkin 

method (CBGM). In this paper, we study the B-spline methods and variations 

of B-spline techniques to find a numerical solution to the Burgers’ equation. A 

set of fundamental definitions including Burgers equation, spline functions, 

and   B-spline functions are provided. For each method, the main technique is 

discussed as well as the discretization and stability analysis. A summary of the 

numerical results is provided and the efficiency of each method presented is 

discussed. A general conclusion is provided where we look at a comparison 

between the computational results of all the presented schemes. We describe 

the effectiveness and advantages of these methods. 

1. Introduction 

Due to the great usefulness of spline functions in applications, 

scientists have used spline functions for various applications. Spline 

functions have applications in various fields such as applied mathematics 

and engineering. Spline methods are often used when solving Ordinary 

Differential Equations (ODE’s) and Partial Differential Equations 

(PDE’s). B-spline [8] methods have played an important role in 

computational mathematics, mathematical physics and mechanics. 

Geyikli and Gazi Karakoc applied septic B-spline collocation method for 

the numerical solution of the modified equal width wave equation [6]. 

Parcha and Mihretu [13] use a ninth degree spline function as well as an 

eighth degree spline to solve a seventh order boundary value problem. 

Authors obtained an approximate solution that very closely matches the 

exact solutions. Rashidinia and Khazaei solved a fifth degree and eight 

order boundary value problems with eight degree B-Spline [16]. A low 

absolute error is obtained for their results which indicates that the 

presented numerical method is effective for solving high order boundary 

value problems. From these authors we get an understanding that spline 

methods produce solutions that are highly accurate. 
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Many efforts have been enhanced to evaluate the numerical solution 

of Burgers’ equation in the past few years. The analytic solution of a two 

dimensional coupled Burgers’ equation was first given by Fletcher [5] 

using the Hopf-Cole transformation. A variety of studies have been 

developed for the various forms of nonlinear PDE’s, as model problems in 

fluid dynamical systems ([22], [11]). Spline methods are commonly used 

to approximate a solution to Burgers’ equation. A survey of higher order 

splines for boundary value problems by Srivastava can be found which 

gives a summary [25] of higher order spline methods. 

In order to study the interactions of multi-shocks in thin viscoelastic 

tube filled, Akter et al. [29] presented an analytic wave solutions of beta 

space fractional Burgers equation. This presented work investigates the 

single and overtaking collision of multi-shock wave excitations having 

space fractional evolution in a thin viscoelastic tube filled with 

incompressible inviscid fluid. The computational wave and numerical 

solutions of the Atangana conformable derivative (1 + 3)-Zakharov-

Kuznetsov (ZK) equation with power-law nonlinearity are investigated 

via the modified Khater method and septic-B-spline scheme by Khater et 

al. [28]. This model is formulated and derived by employing the well-

known reductive perturbation method. 

The Burgers equation involves both non-linear propagation effects 

and diffusive effects. This equation is similar to the Navier–Stokes 

equation without the pressure term. Therefore, it is a simpler model to 

analyze fluid turbulence [30]. For this paper we consider variations of     

B-spline methods including Quadratic B-spline finite elements method, 

Exponential-cubic B-spline method and B-spline Galerkin methods for 

numerical solutions of Burgers equation. A summary of different methods 

for solving burgers’ equation is presented. Using B-spline functions in 

different methods demonstrates efficient techniques in terms of time and 

cost in each approach. High accuracy solutions and stability and 

convergence analysis of the methods show efficiency and effectively of the 

discussed techniques. In Section 2, we provide fundamental definitions of 
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Burgers equation, spline, and B-spline functions. Section 3 presents the 

quadratic B-spline finite element method which includes some remarks 

about the method and its advantages. In Section 4, the exponential-cubic 

B-spline method is summarized. Section 5 and 6 present the quintic        

B-spline Galerkin method and the septic B-spline techniques respectively. 

In Section 7, we look at the B-spline Galerkin methods to find a numeric 

solution to Burgers’ equation by considering two time splitting 

techniques. The final Section, 8, includes the conclusion and final 

thoughts about these methods. 

2. Definitions 

2.1. Burgers’ equation 

Burgers’ equation is a fundamental partial differential equation [23]. 

Here we will use the following form: 

,xxxt uuuu λ=+  (1) 

where 0>λ  is a constant which is known as the diffusion coefficient, and 

u is an arbitrary function.  

For each paper we describe the initial conditions and boundary 

conditions that are considered for each method. 

2.2. Spline functions 

A spline is a piece-wise polynomial function defined in region 

[ ],, baD =  such that there exists a decomposition of D  into sub-regions. 

In each sub-region of ,D  the function is a polynomial of some degree .k  

The term “spline” is used to refer to a wide class of functions that are 

used in applications requiring data interpolation or smoothing. A function 

( )xS  is a spline of degree k  on [ ]ba,  if 

[ ],,1 baCS −∈ k  

,10 bttta n =<<<= …  

 



A SURVEY ON RECENT HIGHER ORDER SPLINE …  5 

and 

( )

( )

( )

( )














<<

<<

<<

=

−− ,,

,,

,,

11

211

100

nnn txtxS

txtxS

txtxS

xS

⋮⋮

  (2) 

where ( ) .1,,1,0, −=∈ niPxSi …
k  

2.3. B-spline 

The B-spline is defined as a basis function of degree k  which is 

denoted by ( ),xi
kϕ  where .Z∈i  In order to define B-spline basis 

functions, we need to define the degree of these basis functions, .p  The    

i-th B-spline basis function of degree p  is written as ( )upiN ,  and it is 

defined as follows: 
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The equation above is known as the Cox-de Boor recursion formula. To 

understand how the formula works, we can start by assuming the degree 

is zero (i.e., )0=p  then all the basis functions are considered as step 

functions. That is, basis function ( )uNi 0,  is 1, if u is in the i-th k  not 

span [ )., 1+ii uu  Here, we denote the B-spline of degree k  by ( ),xBi
k  

where i is an element in Z  with the following properties [27]: 

(1) ( )uN pi,  is a degree p  polynomial in .u  

(2) Non-negativity: for all pi,  and ( )uNu pi,,  is non-negative. 
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(3) Local support: ( )uN pi,  is a nonzero polynomial on [ ]., 1++ pii uu  

(4) At most 1+p  degree of the basis functions are nonzero on any span 

[ ],, 1++ pii uu  namely: ( ) ( ) ( ) ( ).,,,, ,,2,1, uNuNuNuN pippippippi …+−+−−  

This property shows that the following basis functions are nonzero on 

[ ],, 1++ pii uu  

( ) ( ) ( ) ( ).,,,, ,,2,1, uNuNuNuN pippippippi …+−+−−  

(5) Partition of unity: The sum of all nonzero degree ,p  basis 

functions on span [ ]1, ++ pii uu  are 1 which states that the sum of these 

1+p  basis functions is .1  

An alternative approach to drive the B-spline relations: 

Here we consider equally-spaced knots of a partition 10: xxa <=π  

nx<<…  on [ ]., ba  This will be an alternative approach for deriving the 

B-splines which are more applicable with respect to the recurrence 

relation for the formulations of B-splines of higher degrees. Firstly, we 

recall that the k-th forward difference ( )0xf  of a given function ( )xf  at 

0x  is defined recursively by [19] and [14] and is given as follows: 

( ) ( ) ( ) ( ) ( ) ( )., 010
1

010 xfxfxfxxxf kkk ∆−∆=∆−=∆ +   (5) 

Definition. The function ( ) ,
m

tx +−  details given in [16], 

( )
( )








<

≤−
=− +

.0

,0

tx

txtx
tx

m

m
  (6) 
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It is clear that ( )mtx +−  is ( )1−m -times continuously differentiable with 

respect to t  and .x  The B-spline of order m  is defined as follows: 
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Hence, we can obtain the B-spline of various orders by taking various 

values of .m  

Let 1=m  so that 
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By considering different values for ,m  different degree of B-spline can be 

obtained, including septic B-spline. 

3. Quadratic B-spline Finite Element Method 

For the quadratic B-spline finite element method presented in [20], 

the collocation method and a central difference with respect to time is 

used. This method is used to find a solution to the Burgers’ equation (1) 

with homogeneous boundary conditions that are 

( ) ( ) .0,, == tbutau  (10) 

Since the finite element method is used the region is partitioned into N  

finite elements with equal length h  and knots ix  are used such that 
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.110 bxxxa N =<<<= −…  The quadratic B-spline properties are 

defined as follows for ,mB  
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The goal is to approximate ( )txu ,  of the form 

( ) ( ) ( )., xBttxu mm
m

ξ=∑   (12) 

Here mξ  is given as a time dependent quantity and the numerical 

solution ( )txu ,  is given in mid knots such as ( ) .21++= mmm xxy  The 

values of u  and the principal derivatives are calculated from the 

quadratic B-spline definitions 
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To implement the collocation points, mid knots are used to evaluate u so 

that the following equation is obtained: 
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Here the ∗  represents the differentiation with respect to time. 

Interpolating between n  and 1+n  and using the central difference 

operator for time, ,ξ  gives 

,
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111
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  (18) 

where nξ  are parameters at the time .tn∆  A system is then obtained and 

written as 

( ) ( ) ,11 −+ ξ+ξξ=ξξ nnn CBA   (19) 

here ( ) ( )ξξ BA ,  are tridiagonal matrices with two initial time levels. The 

exact solution at 0tt =  and ttt ∆+= 0  is used to obtain the initial 

conditions. 

Stability Analysis: Since the finite element method is used, which is 

explained in [9], an investigation of the stability of the numerical scheme 

is required. The Von-Neummann method is used to find the stability 

which is defined as 

.ˆ himnn
m ee k=ξ   (20) 

Here k  is the mode number and h  is the element size. A linearized 

recurrence relationship is obtained for the Burgers’ equation given as 
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where .423,24 22 htvtzhtz ∆+∆=β∆−∆=α ν  The following equations 

are then solved and the roots 1g  and 2g  are found as  

.
2cos4cos3

cos3
,1 21 β+θα+θ+

θ+
=−= gg   (21) 

Modules of growth are taken to obtain ,1≤g  which means that the 

scheme is unconditionally stable. 
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Remarks. The 2L  and ∞L  error norms are used to compare the 

analytical and numerical solutions. Different examples with different 

initial conditions are analyzed. Here we focus on the initial condition of 

an exponential form for which the exact solution is known to be 

( )

( ) ( )
.1,

1

,
4

0

2
≥

+

= t

ett

tx
txu

x ν

 (22) 

The results are compared with the exact solution for different ,h  and k  

values. The algorithm is compared with the exact solutions and it is 

shown that the method produces accurate results for small viscosity 

values. The quadratic B-spline method is easy to implement and can be 

generalized with higher order spline methods. Because of the flexibility 

and accuracy of this method the quadratic B-spline finite element method 

is advantageous when finding a solution to the Burgers’ equation. 

4. Exponential-Cubic B-Spline Method 

The exponential cubic B-spline functions are used to set up the 

collocation method to solve Burgers’ equation by [4]. The initial conditions 

and boundary conditions considered are as follows; the initial condition 

( ) ( ) ,,0, bxaxfxu ≤≤=   (23) 

and the boundary conditions 

( ) ( ) .,,, 21 α=α= tbutau   (24) 

Here 21 , αα  are constants, ( )txuu ,=  is a sufficiently differentiable 

unknown function and ( )xf  which is bounded. 

Exponential cubic B-spline collocation method: For this method the 

nodes are equally distributed for the domain so that 

,: 10 bxxxa N =<<<=π …   (25) 
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and a mesh with spacing ( ) Nabh −=  is used. The exponential cubic     

B-splines, ( ),xBi  at the points of π  are defined as 

( )
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and ( ) ( ) pphsphc ,sinh,cosh ==  is a free parameter. A basis is formed 

for the functions over the interval. Each basis function ( )xBi  is twice 

continuously differentiable and ( )xBB ii ′,  and ( )xBi′′  [4]. To approximate 

the unknown Nuu,  is used which is in the form of 

( ) ( ).,

1

1

xBtxu ii

N

i

N δ= ∑
+

−=

 (30) 

Here iδ  is a time dependent parameter. The first and second derivatives 

are calculated at knots, ,ix  and the Crank-Nicolson scheme is used to 

discretize time variables of the initial conditions are modified known u  in 

the Burgers’ equation. After some substitution the initial conditions at 

the boundaries are obtained and used to find an approximation to the 

Burgers’ equation.  
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Remarks. In a similar approach with the previous sections, the 

discrete 2L  and ∞L  error norms are used to compare the analytical and 

numerical solutions. Similar to the quadratic B-spline finite element 

method an example considered is a particular solution to Burgers 

equation which has the following initial condition: 

( ) ,10,
8

1
exp1, ≤≤








λ
= xxu   (31) 

with boundary conditions ( ) 0,0 =tu  and ( ) .1,1 =tu  The reason why this 

example is chosen is because the analytical solution is known to be (22). It 

is mentioned that the solution to this specific example will be successful 

for a small λ  which results in a steep shock solution. The propagation of 

the shock is studied with 005.0=λ  and .0005.0=λ  The results are 

compared with other papers [1] and [2]. The exponential cubic B-spline 

collocation method provides better results than the cubic B-spline 

collocation method and the B-spline Galerkin finite element method. Note 

that the cost of the cubic B-spline Galerkin method is higher than the 

exponential cubic B-spline method. Over all the test runs of the 

exponential cubic B-spline method had the best results for finding the 

free parameter .1=p  

5. Quintic B-Spline Galerkin Method 

Now we look into the quintic B-splines method to find solutions of a 

time-split Burgers equation over finite intervals with the help of [21]. The 

Burgers equation studied has the following boundary conditions: 

( ) ( ) ,,,, 21 α=α= tbutau  

( ) ( ) ( ],,0,,,0, 2 Tttbutau xx ∈α==  

( ) ( ) .,,0, 2α== tbutau xxxx  

The paper explores both solutions for the Burgers and time-split Burgers 

equation, but here we focus on the solution of the Burgers equation. 
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Quintic B-spline Galerkin method: The method begins by applying 

the Galerkin technique [2] to add the weighted functions and a mesh 

bxxxa N =<<<= …10  as a uniform partition. Here the knots mx  and 

.,,11 Nxxh mm …=−= −  
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(32) 

The quintic B-splines with knots 5,,5, +−= Nmxm …  and bases on 

bxa ≤≤  with the global approximation defined as 

( ) ( ) ( ),,

2

2

xQttxu mm

N

m

N δ= ∑
+

−=

  (33) 

where mδ  is a time dependent parameter. The knodal values of u  and its 

derivatives shown as follows: 

( ) ,266626 2112 ++−− δ+δ+δ+δ+δ== mmmmmmm xuu   (34) 

( ) ( ),1010
5

2112 −−++ δ−δ−δ+δ=′=′ mmmmmm h
xuu   (35) 
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A local coordinate system is used. It is defined by the mapping the 
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542







 ξ

−





 ξ

+





 ξ

−=
hhh

Qm   (41) 

,102020205026
5432

1 





 ξ

+





 ξ

−





 ξ

−





 ξ

+
ξ

+=+ hhhhh
Qm   (42) 

,55101051
5432

2 





 ξ

−





 ξ

+





 ξ

+





 ξ

+
ξ

+=+ hhhhh
Qm   (43) 

.
5

3 





 ξ

=+ h
Qm   (44) 

The approximation is reduced over the element [ ]1, +mm xx  as follows: 

( ) ( ) ( ),,

3

2

ξδ=ξ= ∑
+

−=

ii

m

mi

e
N Qttuu   (45) 
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where 3,,2, +−=δ mmii …  are element parameters. The weighted 

function with the quantic B-spline and e
NU  over the element [ ]h,0  gives 

a weighted function as a matrix form 

( ) .eeeeTeee DLA δλ−δδ+δɺ   (46) 

It is noted that the matrices DA,  are 6 by 6 and the matrix L  is a 6 by 6 

by 6 which eδ  is defined as follows: 

( ).,,,,, 32112 +++−− δδδδδδ=δ mmmmmm
e   (47) 

The matrix L  is organized as the following: 

.

3

2

, kk

k

δ= ∑
+

−−

ij

m

m

ji LB  (48) 

After combining all element matrices as a system of nonlinear ordinary 

differential equations with a global parameter ,δ  the following equation 

is obtained: 

( ) ,00 =δ−+δ DBA ν   (49) 

using the Crank-Nicolson discretization formula for the vector of element 

parameter δ  and the finite difference equation for the time derivatives 

parameters ,0δ  a nonlinear recurrence relation for the time parameters 

δ  with the following form is obtained: 

( ) ( )( ) ( ) ( )( ) .22 1 nn DtBtADtBtA δ+−=δ−+ +
νν   (50) 

Boundary conditions at the left end of the region and at the right end of 

the region are applied as well as some terms of the global parameter so 

that a solvable system made of 5+N  equations and 5+N  unknown 

parameters is obtained. An 11-banded matrix system at every time step is 

solved. To start the iteration of the recurrence relation of the above 
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system, the initial parameter vector 0δ  is obtained and time evaluation 

of Nu  can be evaluated from the time evolution of the vector ,nδ  which is 

found by solving the recurrence relation of the system above. 

Remarks. The 2L  and ∞L  error norms are used to compare the 

analytical and numerical solutions. Just like other methods here we focus 

on the first test problem with an exponential initial condition (31) which 

the analytical solution to Burgers’ equation is known (22). Here the 

parameters used are 005.0,005.0 ==λ h  and 01.0=∆t  over the 

problem domain [ ].1,0  This method shows accuracy in the 2L  norm. 

When compared to the cubic spline methods ([1], [4]) it is noted that the 

method shows small improvement for the 2L  and ∞L  norms. 

The quintic B-spline method provides provide high accuracy results 

for finding the solution of Burgers’ equation. The time splitting does not 

affect the method. It was concluded that the method is efficient and 

reliable. 

6. Septic B-Spline Techniques to Solve Burgers Equation 

The septic B-spline method over finite elements [12] is used to obtain 

a numerical solutions to the nonlinear Burgers’ equation by considering 

[15]. The papers focus on obtaining a solution for Burgers equation (1) 

with the initial condition, 

( ) ( ),0, xfxu =   (51) 

and the following boundary conditions: 

( ) ( ) ( ) ( ) ,0,,,,,, 21 ==α=α= tbutautbutau xx   (52) 

( ) ( ) ( ) ( ) ,0,,,0,, ==== tbutautbutau xxxxxxxxxx   (53) 

where 21 , αα  are constants as the problem need, ( )txuu ,=  is a 

sufficiently-often differentiable function, and ( )xf  is bounded. 
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The authors [15] discussed about finding approximate solution 

( )txuN ,  which satisfy the following conditions: (a) It must agree with the 

initial condition ( )0,xu  at the knots .jx  (b) The first, second and the 

third derivatives of the approximate initial condition agree with the exact 

initial conditions at both ends of the range [ ]., ba  The approximate 

solution to ( )txu ,  is in the form of a collocation method: 

( ) ( ) ( ) ,,,1,0,,

3

3

NjtxBtxu iji

N

i

N …=ω= ∑
+

−=

  (54) 

where ( )txi  are time dependent quantities to be determined. Using the 

boundary conditions where ( )ji xΦ  is the values of the septic B-spline 

function forms a basis for the functions defined over [ ],, ba  and all its 

first, second, and third derivatives vanish outside the interval 

[ ]., 44 +− ii xx  Here ( )tiω  is a time dependent quantity that is determined 

by using the given boundary conditions in the paper. Using values of the 

bases in the collocation method and its derivatives with knots at the 

shown points produces a matrix system that consists of 1+N  equations 

with 7+N  unknowns. This requires six additional constraints which are 

obtained from the boundary conditions. The presented matrix system 

equation has the following form: 

( ) ( ) ,1 rBA nnnn +ωω=ωω +   (55) 

where the matrices ( ),nA ω  and ( )nB ω  are septa-diagonal ( ) ( )11 +×+ NN  

matrices and r  is the ( )1+N -dimensional column vector. The septa-

diagonal algorithm is then used to solve the derived system to obtain a 

solution. 

Stability Analysis: Stability analysis is done by using the Von-

Neumann stability analysis for the linear system. An amplification factor 

g  is obtained for mode k  and results produce 1≤g  which means that 

the linearized numerical scheme for the Burgers’ equation is 

unconditionally stable. 
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Remarks. The numerical solutions of Burgers’ equation and modified 

Burgers’ equations are analyzed by computing the difference between the 

analytic and numerical solutions at each mesh point. The 2L  and ∞L  

norms are used for comparison of the results. The results of the nonlinear 

Burgers’ equation by septic B-spline technique are given as follows: 

(1) As the viscosity value λ  is increased the errors tend to increase, 

but for all the values of used here, the errors are acceptable. 

(2) It is discussed that as the time increases, the curve of numerical 

solution decays. 

(3) The numerical solutions obtained exhibit to maintain good 

accuracy compared with the exact solution, especially for small values of 

the viscosity parameter. Using a collocation method with the septic         

B-splines gives an accurate approximation, particularly for small values 

of the viscosity parameter. 

7. B-Spline Galerkin Methods for Numeric Solutions of the 

Burgers’ Equation 

Here we will look at one variation of B-spline functions to solve 

Burgers’ equation [3]. A solution to Burgers equations is approximated 

using quadratic and cubic B-spline Galerkin finite element method. The 

Burgers’ equation (1) solved has the following initial condition: 

( ) ( ),0, xfxu =   (56) 

and boundary conditions 

( ) ( ) ( ) ( ) ,0,,,,,, 21 ==α=α= tbutautbutau xx   (57) 

where subscripts x  and ,t  where [ ]Tt ,0∈  denote differentiation. 

A system of PDE’s of the first order is obtained by splitting Burgers’ 

equation in time as follows: 

.02,02 =−=+ xxtxt vuuuuu   (58) 
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Applying the Galerkin technique and considering weight functions, ,w  to 

the equations above lead to following integral equations: 

( ) ( ) .02,02 =−=+ ∫∫ dxvuuwdxuuuw xxt

b

a
xt

b

a
  (59) 

The first and second order smooth solutions are provided by using the 

quadratic and cubic B-splines functions as well as the Galerkin finite 

element method [3]. 

The quadratic B-spline Galerkin method (QBGM): Here a global 

approximation Nu  is written in terms of B-splines [3] given in the 

following form: 

( ) ( ) ( ),,

1

xQttxu mm

N

m

N δ= ∑
−=

  (60) 

where mδ  is time dependent parameter which is specified from the 

quadratic Galerkin method. ( )xQm  represents the quadratic B-splines at 

knots .mx  A basis is then formed over the interval [ ]., ba  First 

derivatives values vanish outside the interval. An interval [ ]1, +mm xx  

includes three successive quadratic B-splines. 

The finite elements are identified with intervals [ ]1, +mm xx  with 

nodes at mx  and .1+mx  This transforms the quadratic B-splines into 

element shape functions over the finite intervals [ ].,0 h  A local coordinate 

system is used which is ,mxx −=ξ  where [ ],,0 h∈ξ  and leads to the 

following: 

( ) ( ) ( ) ( ) ( ) ( ),1111 txQtxQtxQu mmmmmm
e
N ++−− δ+δ+δ=   (61) 

where ( )11 ,, +− δδδ=δ mmm
e  are known as element parameters and 

( )11 ,, +−= mmm
e QQQQ  are given as element shape functions. A system 

of algebraic equations is obtained by applying the Galerkin method, and 
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considering both weight and approximate functions that are chosen as the 

quadratic B-spline shape functions: 

( ) ( ) ,22 21 nn tBAtBA δ∆−=δ∆+ +   (62) 

( ) ( ) .22 211 ++ δ∆+=δ∆− nn tDvAtDvA   (63) 

The two pentadiagonal systems, shown above, consist of ( )2+N  

equations of ( )2+N  unknown parameters ( ).,, 01
n
N

nn δδδ−  Applying the 

boundary conditions ( ) ( ) 0,, == xbuxau  at both ends of the interval and 

using Thomas algorithms, the solutions of the pentadiagonal matrix 

equations with the dimensions NN ×  are obtained. After initial 

parameters 0
mδ  are obtained with the help of the boundary and initial 

conditions, time evolution of the parameters n
mδ  are computed using the 

recurrence relations between time steps. These are obtained alliteratively 

so that time evolution of the approximate solution Nu  could be 

determined [3]. 

Cubic B-spline Galerkin method (CBGM): Cubic B-spline ,1, −=mQm  

1, +N…  is defined at the knots mx  and a basis is formed over [ ]., ba  An 

approximate solution to ( )txuN ,  is obtained using the cubic B-splines [3] 

and element parameters mδ  which have the following form: 

( ) ( ) ( ).,

1

1

xQttxu mm

N

m

N δ= ∑
+

−=

  (64) 

Using the above expression and the values of the cubic B-splines mQ  at 

the knots ,mx  the values of uu ′,  and 
,,

u  in terms of the element 

parameters are obtained and given as follows: 

,4 11 +− δ+δ+δ= mmmmu   (65) 



A SURVEY ON RECENT HIGHER ORDER SPLINE …  21 

( ),
3

11 −+ δ−δ=′ mmm h
u   (66) 

( ),2
6,,

112 +− δ+δ−δ= mmmm
h

u   (67) 

where time dependent parameters, ,mδ  is determined from the cubic     

B-spline Galerkin method. 

A mapping of a typical finite interval [ ]1, +mm xx  to the interval [ ]h,0  

is used with local coordinates ξ  to related to the global coordinates 

[ ].,0, hxx m ∈ξ−=ξ  Using the given cubic B-spline shape functions 

211 ,,, ++− mmmm QQQQ  in terms of the ξ  over the [ ]h,0  will cover a 

finite element [ ]1, +mm xx  which yields to a local approximation (trial 

solution) over the element and is given as follows: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ).221111 tQtQtQtQu mmmmmmmm
e
N ++++−− δξ+δξ+δξ+δξ=   

(68) 

where the element parameters are ( )211 ,,, ++− δδδδ=δ mmmm
e  and 

element shape functions are ( ).,,, 211 ++−= mmmm
e QQQQQ  Substituting 

weight functions W  and u  by shape functions mQ  and trial solution (67) 

into the main equations (58) yields to a matrix system of first order ODE’s 

which leads to a global matrix equation: 

( ) ( ) .22 21 nn tBAtBA δ∆−=δ∆+ +  (69) 

In a similar manner, by using interpolation of the parameters mδ  and it’s 

time derivative between two time levels 21+n  and ,1+n  an algebraic 

equation is obtained as follows: 

( ) ( ) .22 211 ++ δ∆λ+=δ∆λ− nn tDAtDA  (70) 

The Equations (68) and (69) consist of two recurrence relations for the 

time ( )3+N  equations of the ( )3+N  unknown parameters. Applying 
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boundary conditions produces a septa-diagonal systems which includes 

( )1+N  unknown parameters in equations ( ).1+N  Then the time 

evolution of the time parameter for the both schemes are obtained [3]. 

Remarks. The numerical solution of Burgers’ equation is discussed 

[3] for three standard problems. The 2L  and 1L  error norms are used to 

measure the versatility and accuracy of the proposed methods as well as 

1e  norm. The Galerkin method with both quadratic and cubic B-splines 

are presented as weight and trial functions which are used to obtained a 

solution to the time-split Burgers equation. 

The first example is about Shock-like solution of the Burgers’ 

equation which is compared with the analytical solution (22). The 

propagation of the shocks is shown to be slightly smoother as time 

increases. A variety of boundary conditions are tested and the best result 

is obtained by selecting zero for initial conditions as ( ) 0, =tau  and 

( ) .0, =tbu  Both schemes show the same result for the 2L  and 1L  error 

norms. From the results, the present calculation produced has a larger 

error compared to the schemes in which the split Burgers’ equation 

approximation is not carried out. 

For the second example the Burgers equation is discussed with the 

following initial condition 

( ) ( ) [ ],1,0,sin0, ∈= ∏ xxxu  (71) 

and boundary condition 

( ) ( ) .0,0,1,0 ttutu ≤==   (72) 

We observe the decay of sinusoidal disturbance. The parameters which 

are used are viscosity constant ,1=m  time step 00001.0=∆t  and 

various space steps are considered. There is a good agreement between 

both numerical schemes and exact values. Numerical results for 410=λ  

show a very sharp front near the left boundary at earlier times and as 
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time increases. The sharpness and amplitude of the wave front then 

decays. These properties of the numerical solutions from the QBGM and 

CBGM produce a small error when comparing with the result obtained by 

Varoğlu and Finn [26], Kakuda and Tosaka [7]. For an arbitrary initial 

data sets, the exact solutions of Burgers equation is presented as a quasi-

linear parabolic PDE. Considering the fact that the analytical solutions of 

Burgers equations involve Fourier series solutions for a small viscosity 

constant ,ν  the analytical solutions converge slowly. 

8. Conclusion 

We provide a summary of different methods for solving Burgers’ 

equation which are shown to be efficient and effective. A summary for 

solving time-split Burgers’ equation is presented by using quadratic and 

cubic B-spline Galerkin finite element techniques. Solving quintic           

B-spline Galerkin method results in an 11-banded sparse matrix system 

for every time step which is efficient time wise and cost wise. Two 

numerical algorithms based on Galerkin method with both quadratic and 

cubic B-splines as weight and trial functions are studied for the time-split 

Burgers’ equation. This technique produces a high accuracy solution for 

Burgers’ equation. Moreover, by selecting suitable boundary conditions 

for the Galerkin method with both cubic and quadratic B-splines as an 

approximate function will produce a similar error. Having sparse and 

band matrices in a linear system for the septic B-spline function 

techniques [15] is more efficient and cost less computationally. Stability 

analysis for the methods show that the methods are stable which are 

great to work with. Finally we present a comparison among the 

numerical results of all schemes and analytical values in all methods 

which maintain a good accuracy compared with the exact solutions. These 

methods are efficient and cost effective and are a great option for solving 

Burgers’ equation. 
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