Journal of Mathematical Sciences: Advances and Applications Volume 69, 2022, Pages 37-42 Available at http://scientificadvances.co.in DOI: http://dx.doi.org/10.18642/jmsaa_7100122231

PRODUCT OF FACTORIALS IN THE SEQUENCE $\{g_n\}$

NURETTIN IRMAK

Department of Fundamental Science Faculty of Natural and Engineering Science Konya Technical University Konya Turkey e-mail: nirmak@ktun.edu.tr irmaknurettin@gmail.com

Abstract

Let $\{g_n\}_{n\geq 0}$ defined as $g_n = g_{n-1} + g_{n-2}$ with $g_1 = 1$ and $g_2 = a$ $(a \in \mathbb{Z}^+)$. We characterize 2-adic valuation of the sequence $\{g_n\}$ for $a \equiv 3, 4, 5, 6 \pmod{8}$. Afterwards, we solve the equation $g_n = m_1! m_2! \dots m_k!$ completely.

2020 Mathematics Subject Classification: 11B39, 11D72.

Keywords and phrases: factorials, recurrence sequences, Diophantine equations. Received October 3, 2021

© 2022 Scientific Advances Publishers

This work is licensed under the Creative Commons Attribution International License (CC BY 3.0).

http://creativecommons.org/licenses/by/3.0/deed.en_US

NURETTIN IRMAK

1. Introduction

Several mathematicians are interested in finding factorials in special sequences as Fibonacci, Lucas etc. Luca [2] showed that the terms of F_3 , F_6 , F_{12} , L_0 , and L_3 can be written as the products of the factorials where F_n and L_n are *n*-th Fibonacci and Lucas numbers, respectively. Moreover, the largest product of distinct Fibonacci numbers which is a product of factorials was shown in [3] by Luca. Later, Grossman and Luca [4] proved that the equation

$$F_n = m_1! + m_2! + \ldots + m_k!,$$

has finitely many positive integers n for fixed k integer. The case $k \le 2$ has been determined. The case k = 3 was solved by Bollman, Hernandez and Luca.

The *p*-adic order, $\nu_p(r)$, of *r* is the exponent of the highest power of a prime *p* which divides *r*. Recently, Marques and Lengyel [5] characterized 2-adic valuation of T_n and showed that T_n is factorial when n = 1, 2, 3, and 7. For other details about the special sequences, we refer the papers [7] and [8].

Let $a \in \mathbb{Z}^+$. For $n \ge 3$, define the sequence $\{g_n\}$ as

$$g_n = g_{n-1} + g_{n-2},$$

with $g_1 = 1$ and $g_2 = a$. We get Fibonacci and Lucas sequence if taking a = 1 and a = 3, respectively. In this paper, we characterize 2-adic order of g_n for $a \equiv 3, 4, 5, 6 \pmod{8}$ and solve the equation $g_n = \prod_{i=1}^k m_j$.

Our theorems are following:

Theorem 1. For $n \ge 1$, we have

$$\nu_2(g_n) = \begin{cases} 0 & \text{if } n \equiv 1, 2 \pmod{3}, \\ \nu_2(a-1) & \text{if } n \equiv 0 \pmod{6}, \\ \nu_2(a+1) & \text{if } n \equiv 3 \pmod{6}, \end{cases}$$

for $a \equiv 3, 5 \pmod{8}$.

If $a \equiv 4, 6 \pmod{8}$, then

$$\nu_2(g_n) = \begin{cases} 0 & \text{if } n \equiv 0, 1 \pmod{3}, \\ \nu_2(a) & \text{if } n \equiv 2 \pmod{6}, \\ \nu_2(a-2) & \text{if } n \equiv 5 \pmod{6}. \end{cases}$$

Remark 1. As seen above theorem, $\nu_2(g_n) \leq 2$ follows for $n \geq 1$.

Theorem 2. Assume that $m_i \ge 2$ $(1 \le i \le k)$. Then the solutions of the equation

$$g_n = \prod_{j=1}^k m_j!$$
 (1.1)

are given as follows:

a	6	5	4	3	12	11	36	35
n	2	3	2	3	2	3	2	3
$\prod_{j=1}^k m_j$	3!	3!	$(2!)^2$	$(2!)^2$	2!3!	2!3!	$(3!)^2$	$(3!)^2$

Before proceeding further, some considerations will be needed for the convenience of the reader.

NURETTIN IRMAK

Lemma 1. Let *m* and *n* be positive integers and *p* is a prime number. If $\nu_p(n) \neq \nu_p(m)$, then

$$\nu_p(m+n) = \inf \{\nu_p(n), \ \nu_p(m)\}$$

holds.

Lemma 2. For any integer $k \ge 1$ and p prime, we have

$$\frac{k}{p-1} - \left\lfloor \frac{\log k}{\log p} \right\rfloor - 1 \le \nu_p(k!) \le \frac{k-1}{p-1},$$

where |x| denotes the largest integer less than or equal to x.

Proof. We refer Lemma 2.4 in the paper of Marques [6].

Lemma 3. For n, k and s are positive integers, we get

$$g_{rn+s} = L_r g_{r(n-1)+s} - (-1)^r g_{r(n-2)+s},$$

where L_r is r-th Lucas number and $0 \le s \le r-1$.

Proof. It can be proven by the Binet formula of the sequence $\{g_n\}$. \Box

2. Proof of Theorem 1

We will prove only the case $a \equiv 3 \pmod{8}$. The other cases can be proven by using the similar way. In order to show $\nu_2(g_n) = 0$, we need to prove that $g_n \equiv 1 \pmod{2}$. To avoid unnecessary repetitions we shall prove only that case $n \equiv 1 \pmod{3}$. For that, we shall proceed by induction on *n*. The base case n = 1, $g_1 = 1$. We may suppose that $g_{3n-2} \equiv 1 \pmod{2}$ and $g_{3n-5} \equiv 1 \pmod{2}$. By Lemma 3, we deduce that

$$g_{3n+1} = 4g_{3n-2} + g_{3n-5}.$$

After taking modulo 2 of both sides, then

$$g_{3n+1} \equiv 4 \cdot 1 + 1 \pmod{2}$$
$$\equiv 1 \pmod{2}$$

follows as claimed.

Now assume that $n \equiv 0 \pmod{6}$. Now the base case is n = 6. Since $g_6 = 5a + 3$ and $a \equiv 3 \pmod{8}$, then

$$\begin{split} \nu_2(g_6) &= \nu_2(5a+3) \\ &= \nu_2(5(8k+3)+3) \\ &= \nu_2(40k+18), \end{split}$$

for some $k \in \mathbb{Z}^+$. As $1 = \nu_2(40k + 10) \neq \nu_2(8) = 3$, then we obtain that $\nu_2(g_6) = \nu_2(40k + 10)$ by Lemma 1. It yields that $\nu_2(g_6) = \nu_2(a - 1)$ as claimed. As $\nu_2(a - 1) = 1$ for $a \equiv 3 \pmod{8}$, we will show $g_n \equiv 2 \pmod{4}$ for $n \equiv 0 \pmod{6}$. Assume that $g_{6(n-1)} \equiv 2 \pmod{4}$ and $g_{6(n-2)} \equiv 2 \pmod{4}$. By Lemma 3, we have

$$g_{6n} = L_6 g_{6(n-1)} - g_{6(n-2)}$$
$$= 18g_{6(n-1)} - g_{6(n-2)}.$$

Then $g_{6n} \equiv 2 \pmod{4}$ follows which gives that $\nu_2(g_{6n}) = \nu_2(a-1) = 1$. Since the case $n \equiv 3 \pmod{6}$ can be proven similarly, we omit this case. Therefore, we prove the Theorem 1.

3. Proof of Theorem 2

Assume that $k \ge 3$. Then we arrive at a contradiction after taking 2-adic valuation of both sides of the Equation (1.1) since $\nu_2 \left(\prod_{j=1}^k m_j!\right) \ge 3$ and $\nu_2(g_n) \le 2$. So, k = 1 and k = 2 follow. The possible solutions are given in Theorem 2.

NURETTIN IRMAK

4. Open Question

In this paper, we characterize 2-adic order g_n for $a \equiv 3, 4, 5, 6 \pmod{8}$. What is 2-adic valuation of the g_n for $a \equiv 0, 1, 2, 7 \pmod{8}$? We leave this problem as a question for reader.

References

- M. Bollman, H. S. Hernandez and F. Luca, Fibonacci numbers which are sums of three factorials, Publicationes Mathematicae Debrecen 77(1-2) (2010), 211-224.
- [2] F. Luca, Products of factorials in binary recurrence sequences, Rocky Mountain Journal of Mathematics 29(4) (1999), 1387-1411.

DOI: https://doi.org/10.1216/rmjm/1181070412

- [3] F. Luca and P. Stanica, F₁F₂F₃F₄F₅F₆F₈F₁₀F₁₂ = 11!, Portugaliae Mathematica 63(3) (2006), 251-260.
- [4] G. Grossman and F. Luca, Sums of factorials in binary recurrence sequences, Journal of Number Theory 93(2) (2002), 87-107.

DOI: https://doi.org/10.1006/jnth.2001.2718

- [5] D. Marques and T. Lengyel, The 2-adic order of the Tribonacci numbers and the equation $T_n = m!$, Journal of Integer Sequences 17 (2014); Article 14.10.1.
- [6] D. Marques, The order of appearance of product of consecutive Fibonacci numbers, Fibonacci Quarterly 50(2) (2012), 132-139.
- [7] T. Lengyel, The order of the Fibonacci and Lucas numbers, Fibonacci Quarterly 33(3) (1995), 234-239.
- [8] C. Sanna, The p-adic valuation of Lucas sequences, Fibonacci Quarterly 54(2) (2016), 118-124.