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Abstract 

The concept of Almost-0P  Distributive Fuzzy Lattice ( )ADFLP -0  with a 

finite chain base is introduced and we prove basic properties about .-0 ADFLP  

Necessary and sufficient conditions for characterization of monotone and 

disjoint representations of an element x in ADFLP -0  are investigated. 

1. Introduction 

Swamy and Rao in [10] introduced the concept of an Almost 

Distributive Lattice (ADL) as a common abstraction of existing lattice and 

ring theoretic generalization of a Boolean algebra and observed that the 

set ( )RPI  of all principal ideals of an Almost Distributive Lattice 

( )mR ,0,,, ∧∨  with a maximal element ,m  form a distributive lattice.  

Epstein and Horn in [2] introduced the concept of a lattice.-0P  Later in 

[13], Traczyk was studied and explored properties of lattice.-0P  has good 

application in computer and logic theory and the concept of a Almost-0P  

Distributive Lattice was introduced by Rao and Mihret in [7]. 

The concept of fuzzy set was introduced by Zadeh in [14] and this 

concept was adapted by Goguen in [4] and Sanchez in [12] use to define 

and study fuzzy relations. In this paper, we use fuzzy partial order 

relation defined in [5] and the kinds of ideals of fuzzy lattice in [6] to 

extend some important properties of Almost-0P  Distributive Lattice to 

Almost-0P  Distributive Fuzzy Lattice. 

2. Preliminaries 

Definition 2.1 ([9]). An algebra ( )0,,, ∧∨R  is called an Almost 

Distributive Lattice if it satisfies the following axioms: 

(1) .0 aa =∨  

(2) .00 =a∧  

(3) ( ) ( ) ( ).cbcacba ∧∨∧∧∨ =  
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(4) ( ) ( ) ( ).cabacba ∧∨∧∨∧ =  

(5) ( ) ( ) ( ).cabacba ∨∧∨∧∨ =  

(6) ( ) ,bbba =∧∨  for all .,, Rcba ∈  

Theorem 2.1 ([9]). Let m  be a maximal element in an Almost 

Distributive Lattice R  and .Ra ∈  Then the following are equivalent: 

(1) m  is maximal element of a poset ( )., ≤R  

(2) .ama =∧  

(3) .mma =∨  

(4) ma ∨  is maximal. 

Definition 2.2 ([10]). Let R  be an Almost Distributive Lattice with a 

maximal element m  and ( ) { 0=∈= baRaRB ∧  and ba ∨  is 

maximal for some }.Rb ∈  Then ( )( )∧∨,,RB  is a relatively 

complemented Almost Distributive Lattice and it is called the Birkhoff 

center of .R  

Lemma 2.1 ([9]). Let ( )0,,, ∧∨R  be an Almost Distributive Lattice. 

Then the following conditions hold for all a, :, Rcb ∈  

(1) .bbaaba =⇔= ∧∨  

(2) .ababba =⇔= ∧∨  

(3) �  is associative. 

(4) .cabcba ∧∧∧∧ =  

(5) ( ) ( ) .cabcba ∧∨∧∨ =  

(6) .00 =⇔= abba ∧∧  

(7) ( ) ( ) ( ).cabacba ∨∧∨∧∨ =  
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(8) ( ) ( ) bbbaabaa == ∨∧∨∧ ,  and ( ) .aaba =∧∨   

aaa =∧  and .aaa =∨  

(9) aa =∨0  and .00 =∧a  

Definition 2.3 ([9]). Let R  be an Almost Distributive Lattice with 0. 

Then for all ,, Rba ∈  define ba ≤  if and only if aba =∧  or 

equivalently .bba =∨  Then ( )≤,R  is a poset. 

Definition 2.4 ([7]). Let R  be an Almost Distributive Lattice with 0. 

Then a unary operation � on R  is called a pseudo-complementation on R  

if, for :, Rba ∈  

(1) .0=�aa ∧  

(2) .0 bbaba =⇒= ∧∧
�   

(3) ( ) .���
baba ∧∨ =  

So that �a  is called a pseudo-complement of Ra ∈  and R  is called a 

pseudo-complemented Almost Distributive Lattice. An element a in R  is 

said to be dense if .0=�a  

Definition 2.5 ([7]). A pseudo-complemented Almost Distributive 

Lattice ( )mR ,0,,,, �∧∨  is called a stone Almost Distributive Lattice if, 

for any .0, ���� =∈ aaRa ∨  

Definition 2.6 ([9]). Let R  be an Almost Distributive Lattice with 0. 

A non empty subset I  of R  is an ideal of ,R  if it satisfy the following 

conditions: 

(1) ., IbaIba ∈⇒∈ ∨  

(2) Ia ∈  and .RxaRx ∈⇒∈ ∧  

Theorem 2.2 ([9]). Let R  be an Almost Distributive Lattice with 0. 

Then for any ,, Rba ∈  we have the following: 
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(1) ( ] { }.Rxxaa ∈= ∧  

(2) ( ] ( ] ( ] ,xbxabaaabba ∧∧∧ ≤⇔⊆⇔=⇔∈  for all .Rx ∈  

Lemma 2.2 ([9]). For any ,, Rba ∈  the following hold: 

(1) ( ] ( ] ( ] ( ].abbaba ∧∧ ==∩  

(2) ( ] ( ] ( ] ( ].abbaba ∨∨∨ ==  

Definition 2.7 ([7]). Let ( )mR ,0,,, ∧∨  be an ADL with Birkhoff 

center ( )RB  of R  is called a pseudo-supplemented Almost Distributive 

Lattice if, for each ,Rx ∈  there exists ( )RBb ∈  such that 

(1) .bbx =∧  

(2) If ( )RBc ∈  such that ,ccx =∧  then .ccb =∧  In this case, 

mb ∧  is uniquely determined by x and is denoted by .! x  We call x!  the 

pseudo-supplement of .x  

Definition 2.8 ([7]). Let R  be a bounded distributive lattice and 

( )RB  the center of .R  A chain base of R  is a finite sequence ,,0 10 ee=  

1,, 12 =−− nn ee…  such that R  is generated by ( ) { }.1,,, 110 =−neeeRB …∪  

If R  has a chain base, then R  is called a lattice.-0P  

Definition 2.9 ([7]). Let R  be an Almost Distributive Lattice with 0 

and maximal elements. Then R  is called a Almost-0P  Distributive 

Lattice if ( )( )RRPI ,0,,, ∧∨  is a Lattice.-0P  

Definition 2.10 ([8]). Let X  be a set, A function [ ]1,0: →× XXA  

is said to be fuzzy partial order relation if it satisfies the following 

condition: 

(1) ( ) XxxxA ∈∀= ,1,  that is A  is reflexive. 
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(2) ( ) ,0, >yxA  and ( ) 0, >xyA  implies that .yx =  That is A  is 

antisymmetric. 

(3) ( ) ( ) ( )[ ] .0,,,minsup, >≥ ∈ zyAyxAzxA Xy  That is A  is transitive. 

If A  is a fuzzy partial order relation in a set ,X  then ( )AX ,  is called 

a fuzzy partial order relation or fuzzy poset. 

Definition 2.11 ([5]). Let ( )AX ,  be a fuzzy poset. Then ( )AX ,  is a 

fuzzy lattice if and only if ,yx ∨  and yx ∧  exists for all ., Xyx ∈  

Definition 2.12 ([5]). Let ( )AX ,  be a fuzzy lattice. Then ( )AX ,  is 

distributive if and only if ( ) ( ) ( ),zxyxzyx ∧∨∧∨∧ =  and ( ) ∧∨ yx  

( ) ( ),zyxzx ∧∨∨ =  for all .,, Xzyx ∈  

Definition 2.13 ([5]). Let ( )AX ,  be a fuzzy lattice and .XY ⊆  Then 

Y  is an ideal of ( )., AX  

(1) If YyXx ∈∈ ,  and ( ) ,0, >yxA  then .Yx ∈  

(2) If ,, Yyx ∈  then .Yyx ∈∨  

Definition 2.14 ([6]). Let ( )AX ,  be a fuzzy lattice and .Xx ∈  Then 

the set determined by ( ){ }0,: >∈=↓ xyAXyx  is called principal 

ideal of ( )AX ,  generated by .x  The family of all ideals of a fuzzy lattice 

( )AX ,  will be denoted by ( ).XI  

Definition 2.15 ([2]). Let ( )0,,, ∧∨R  be an algebra, and we call 

( )AR,  is an Almost Distributive Fuzzy Lattice (ADFL) if the following 

condition satisfied: 

(1) ( ) .0,0 >aaA ∨  

(2) ( ) .00,0 >aA ∧  

(3) (( ) ( ) ( )) (( ) ( ) ( ) ) .1,, == cbacbcaAcbcacbaA ∧∨∧∨∧∧∨∧∧∨  
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(4) ( ( ) ( ) ( )) (( ) ( ) ( )) .1,, == cbacabaAcabacbaA ∨∧∧∨∧∧∨∧∨∧  

(5) ( ( ) ( ) ( )) (( ) ( ) ( )) .1,, == cbacabaAcabacbaA ∧∨∨∧∨∨∧∨∧∨  

(6) (( ) ) ( )( ) ,1,, == bbabAbbbaA ∧∨∧∨  for all .,, Rcba ∈  

Throughout this paper, we write ( )AR,  for an Almost Distributive 

Lattice, and R  be an Almost Distributive Lattice ( )0,,, ∧∨R  with 

maximal element, ( )( )ARPI ,  a principal ideal fuzzy lattice of an Almost 

Distributive Fuzzy Lattice ( )AR,  and ( )( )RPIBA  the Birkhoff center of 

a principal ideal fuzzy lattice ( )( )., ARPI  

In ( )AR,  and ( )( ) AARPI ,  represents [ ]1,0: →× RRA  and 

( ) ( ) [ ],1,0: →× RPIRPIA  respectively. 

3. Almost-0P  Distributive Fuzzy Lattice 

Definition 3.1. Let ( )RPI  be a principal ideal of an Almost 

Distributive Lattice ,R  and ( )AR,  be an Almost Distributive Fuzzy 

Lattice with maximal element .m  Then ( )( )ARPI ,  is the set of all 

principal ideal fuzzy lattice of ( )., AR  

Definition 3.2. Let ( )( )ARPI ,  be the principal ideal fuzzy lattice of 

an Almost Distributive Fuzzy Lattice ( )., AR  Then ( ] { ARxa A ∈=  

( ) },0, >xax ∧  for all .Rx ∈  

Definition 3.3. Let ( )( )ARPI ,  be a principal ideal fuzzy lattice of an 

Almost Distributive Fuzzy Lattice ( )., AR  

Define ( )( ) {( ] ( ) ( ] ( ] ( ]AAAA baRPIaRPIB 0⊆∈= ∩  and ( ]AbaR ∨⊆  

for some }.Rb ∈  Then ( )( )RPIBA  is called the Birkhoff center of the 

principal ideal fuzzy lattice ( )( )., ARPI  
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Lemma 3.1. The set of all principal ideal fuzzy lattice of ( )AR,  

forms a distributive fuzzy lattice. 

Proof. Let ( )AR,  be an Almost Distributive Fuzzy Lattice, and 

( )( )ARPI ,  be the principal ideal fuzzy lattice of ( )., AR  

Let ( ] ( ] ( ] ( )( ) ( ] ( ] ( ] ( ).,,0,,,0 RPIbaARPIba ∈⇒∈  

(1) ( ] ( ] ( ] ( ] ,0 AAAA baba ⊇= ∧∩  since 0 is the least element. Imply 

that ( ] ( ] ( ] .0 AAA ba ⊇∩  

( ] ( ] ( ] .Rbaba AAA == ∨∨  

So that we have ( ] .AbaR ∨⊆  Hence ( )( )ARPI ,  is bounded. Since 

( ) RRPI ⊆  and R  is an ADL with 0. Clearly ( )( )ARPI ,  is an Almost 

Distributive Fuzzy Lattice. It remain to show the binary operation ∧∨,  is 

commutative and ∨  is right distributive over .∧  

(2) ( ] ( ] ( ] ( ] ( ] ( ] .AAAAAA ababbaba ∩∩ === ∧∧  since ( ] ( ] =ba ∩  

( ] ( ].abba ∧∧ =  

Hence �  is commutative. ( ] ( ] ( ] ( ] === AAAA abbaba ∨∨∨ ( ] ( ] ,AA ab ∨  

since ( ] ( ] ( ] ( ] ( ] ( ].ababbaba ∨∨∨∨ === �  is commutative. 

(3) Let ( ] ( ] ( ] ( )( ) ) ( ] ( ] ( ] ( ).,,,,, RPIcbaARPIcba ∈⇒∈  Now 

( ] ( ][ ] ( ]AAA cba ∨∩  

( ][ ] ( ]AA cba ∨∧=  

( ] [( ] ]AA bac ∧∨=  by (2) above 

( )( ]Abac ∧∨=  

( ] ( ]AA bcac ∨∧∨=  by LD∨  

(( ] ( ] ) (( ] ( ] )AAAA bcac ∨∧∨=  

(( ] ( ] ) (( ] ( ] )AAAA cbca ∨∧∨=  by (2) above. 
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Hence [( ] ( ] ] ( ] (( ] ( ] ) (( ] ( ] )AAAAAAA cbcacba ∨∧∨∨∧ =  holds. So that 

( )( )ARPI ,  is distributive fuzzy lattice. Thus ( )( )ARPI ,  is a bounded 

distributive fuzzy lattice on ( ] ( ][ ].,0 ba ∨   � 

Lemma 3.2. Let ( )AR,  be an Almost distributive Fuzzy Lattice with 

maximal element m and ., Rba ∈  Then the following hold: 

(1) ( ] Ra A =  if and only if a is maximal. 

(2) ( ] ( ]AA ba ⊆  if and only if ( ) .0, >baA  

(3) ( ] ( ]AA ba =  if and only if ( ) ( ) .1,, == mambAmbmaA ∧∧∧∧  

(4) Let ( )RBA  and ( )( )RPIBA  be the center of an Almost Distributive 

Fuzzy Lattice ( ),, AR  and the set of principal fuzzy ideal of ( ),, AR  

respectively, and .Ra ∈  Then ( ] ( )( )RPIBa A∈  if and only if ( ).RBa A∈  

Proof. (1) Let ( ] ,Ra A =  for any Rx ∈  we have ( ] ⇒∈ Aax  

( ) .0, >xaxA ∧  Since ,xxa ≤∧  we have ( ) .0, >xxaA ∧  Hence 

xxa =∧  by antisymmetry property of .A  Imply that ax ≤  by 

Theorem 2.9. Thus a is maximal element. On the other hand, suppose a is 

maximal element. Then ,xxa =∧  for all .Rx ∈  Imply that .xax ∧≤  

So that we have ( ) 0, >xaxA ∧  and hence ( ] .Aax ∈  Therefore 

( ] .AaR ⊆  Clearly ( ] Raaa A ∈⇒∈  and hence ( ] .Ra A ⊆  Thus 

( ] .Ra A =  

(2) Suppose ( ] ( ] .AA ba ⊆  We need to show ( ) .0, >baA  Since 

( ] ( ] ( ) .0, >⇒∈⇒∈ abaAbaaa AA ∧  Since ,aab ≤∧  we have 

( ) .0, >aabA ∧  Thus aab =∧  by antisymmetry property of .A  

Implies that ba ≤  by Theorem 2.9. Therefore ( ) .0, >baA  
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On the other hand, suppose ( ) .0, >baA  Then we show ( ] ( ] .AA ba ⊆  

Now, ( ) 0, >baA  implies aabaab ≤⇒= ∧∧  and Aaba ⇒≤ ∧  

( ) .0, >aba ∧  So that ( ]Aba ∈  and hence ( ] ( ] .AA ba ⊆  

(3) Let Rba ∈,  and m  is maximal element in ( )., AR  Then 

( ] ( ]AA ba =  if and only if ( ] ( ]AA ba ⊆  and ( ] ( ] ( ) 0, >⇔⊆ abaAab AA ∧  

and ( ) ( ) ( ) 1,,0, ==⇔> mamabAmabmaAbabA ∧∧∧∧∧∧∧  

and ( ) ( ) ( ) 0,1,, >== mambAmbmbaAmbambA ∧∧∧∧∧∧∧∧  

and ( ) ,0, >mbmaA ∧∧  since mamba ∧∧∧ ≤  and .mbmab ∧∧∧ ≤  

mbma ∧∧ =⇔  by antisymmetry property of .A  

( ) ( ) .1,, == mambAmbmaA ∧∧∧∧  

(4) Let ( )( ) ,1BRPIBA =  suppose ( ] .1Ba ∈  Then there exist 

( ] ( )( )ARPIb ,∈  such that ( ] ( ] ( ] ( ] .0 AAAA baba ⊆= ∧∩  Since 

( ] ( ] .0 AA ba ∧⊆  We have ( ] ( ] .0 AAba =∧  Again, ( ∨aR ⊆  ] .Ab  As 

( ] .Rba A ⊆∨  We get ( ] ( ] ( ] .Rbaba AAA == ∨∨  Hence 0=ba ∧  

and ba ∨  is maximal. Implies ( ) 00, >baA ∧  and (( ) ∨∨∨ axbaA ,  

) ,0>b  for all .Rx ∈  Thus ( ).RBa A∈  

Conversely, suppose ( ).RBa A∈  Then there exist Rb ∈  such that 

( ) 00, >baA ∧  and ( )( ) .0, >baxbaA ∨∨∨  Since 0 is the least 

element, ba ∧≤0  and hence ( ) .0,0 >baA ∧  Imply that 0=ba ∧  by 

antisymmetry property of A. Again for any ( ) ≤≤∈ 0,, xbaaRx ∨∨  

( ) .0 xbabba ∨∨∨ ≤=⇒ ( ) xbaba ∨∨∨ ≤⇒  and hence ( ,baA ∨  

( ) ) .0>xba ∨∨  
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Therefore ( ) .baxba ∨∨∨ =  Thus ba ∨  is maximal. Now ( ] ∩Aa  

( ] ( ] ( ] ,0 AAA bab == ∧  since .0=ba ∧  Imply that ( ] ( ] .0 AAba ⊆∧  

( ] ( ] ( ] Rbaba AAA == ∨∨  since ba ∨  is maximal. So that we have 

( ] .AbaR ∨⊆  Thus ( ] ( )( ) .1BRPIBa A =∈   � 

Lemma 3.3. Let ( )AR,  be an Almost Distributive Fuzzy Lattice with 

Birkhoff center ( )RBA  and { } .,,, 121 Reee n ⊆−…  Then { ( ∧∨ i
n
i

bT 1
1
−

==  

) ( )},: RBbme Aii ∈∧  for 11 −≤≤ ni  is a sub Almost Distributive 

Fuzzy Lattice of ( )., AR  

Definition 3.4. The sub Almost Distributive Fuzzy Lattice T in 

Lemma 3.6 is called the sub Almost Distributive Fuzzy Lattice of ( )AR,  

generated by ( ) { }.,,, 121 −nA eeeRB …∪  

Definition 3.5. Let ( )AR,  be a bounded distributive fuzzy lattice 

,1,0  and ( )RBA  the Birkhoff center of ( )., AR  A chain base of ( )AR,  is 

a finite sequence ( ) ,0,1 >− ii eeA  for 11 −≤≤ ni  such that ( )AR,  is 

generated by ( ) { }121 ,,, −nA eeeRB …∪  in which every element Rx ∈  

satisfy ( ( )) ( ( ) ) ,1,, 1
1

1
1

== −
=

−
= xebAebxA ii

n
iii

n
i

∧∨∧∨  where ( ).RBb Ai ∈  

If ( )AR,  has a chain base ,then ( )AR,  is called a fuzzy-0P  lattice. 

Theorem 3.1. R  is a latticeP -0  if and only if ( )AR,  is a fuzzyP -0  

lattice. 

Proof. Let R  be a lattice-0P  and .Rx ∈  Then ( ),1
1 ii

n
i

ebx ∧∨
−

==  

for ( )RBbi ∈  and { },,,,,0 1210 −= neeee …  for 11 −≤≤ ni  is a chain 

base. R  is generated by ( ) { }110 ,,, −neeeRB …∪  with 2100 eee ≤≤=  

.11 =≤≤ −ne…  Let ( )AR,  be an Almost Distributive Fuzzy Lattice. 

Then ( ( )) ( ( ) ) .1,, 1
1

1
1

== −
=

−
= xebAebxA ii

n
iii

n
i

∧∨∧∨  Since ≤≤= 100 ee  

.112 =≤≤ −nee …  We have ( ) ( ) ( ,,,0,,0, 22110 −>> neAeeAeeA …  
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) .01 >−ne  Hence ( ) 0,1 >− ii eeA  for 11 −≤≤ ni  and ( )AR,  is 

generated by ( ) { } ( ).,,,, 110 RBbeeeRB AinA ∈−…∪  Hence ( )AR,  is a 

fuzzy-0P  lattice. On the other hand, suppose ( )AR,  be fuzzy-0P  lattice. 

For ,Rx ∈  we have ( ( )) ( ( ) ) ,01,, 1
1

1
1

>== −
=

−
= xebAebxA ii

n
iii

n
i

∧∨∧∨  

( ( ) 0, 1
1

>⇒
−

= ii
n
i

ebxA ∧∨  and ( ( ) ) .0,1
1

>−
= xebA ii

n
i

∧∨  So that we have 

( )ii
n
i

ebx ∧∨
1

1
−

==  by antisymmetry property of A. 

Since ( )AR,  is a fuzzy-0P  lattice, we have ( ) ( )2110 ,,0,0 eeAeeA >=  

( ) ( ) ( ,0,01,,,0 111001012 eAeeeeeeAeeA nn ≤=⇔>⇒>=> −− ∧…  

) 21022112 0 eeeeeeee ≤≤⇒≤=⇔> ∧  proceeding in the same 

manner, we have ( ) 00, 112212 ⇒≤=⇔> −−−−−− nnnnnn eeeeeeA ∧  

.11210 =≤≤≤≤= −neeee …  Hence { }110 ,,,0 −= neee …  form a chain 

base of R  and ( ).RBbi ∈  Imply that R  is generated by ( ) ∪RB  

{ }.,,, 110 −neee …  Thus R  is a lattice.-0P   � 

Definition 3.6. If ( )AR,  be an Almost Distributive Fuzzy Lattice 

with maximal elements, then ( )AR,  is called Almost-0P  Distributive 

Fuzzy Lattice if, ( )( )ARPI ,  is a fuzzy-0P  lattice. 

In the following theorem we give elementwise characterization of a 

Almost-0P  Distributive Fuzzy Lattice. 

Theorem 3.2. If ( )AR,  be an Almost Distributive Fuzzy Lattice with 

maximal element m  and Birkhoff center ( ),RBA  then ( )AR,  is a 

AlmostP -0  Distributive Fuzzy Lattice if and only if there exist elements 

{ }110 ,,,0 −= neee …  in ( )AR,  such that 

(1) ( ) .0, 1 >− memA n ∧  

(2) ( ) ,0,1 >− ii eeA  for 11 −≤≤ ni  and 

(3) For any ,Rx ∈  there exist ( )RBb Ai ∈  such that ( 1
1

, −
=

n
i

mxA ∨∧  

( )) ( ( ) ) .1,1
1

== −
= mxmebAmeb ii

n
iii ∧∧∧∨∧∧  
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Proof. Let ( )AR,  be a Almost-0P  Distributive Fuzzy Lattice with 

maximal element m  and Birkhoff center ( ).RBA  Then ( )( )ARPI ,  with 

maximal element R  is a fuzzy-0P  lattice and there exist elements 

Reee n ∈−110 ,,, …  such that ( ] ( ] ( ] ( ] ( ] ,,,0 2110 …AAAAA eeee ⊆⊆=  

( ] ( ]AnAn ee 12 −− ⊆  and for any ( ] (( ] ( ] ) 1
1

1
1

, −
=

−
= ==∈ n

iAiAi
n
iA ebxRx ∨∧∨  

( )] ( ( )] ,1
1 Aii

n
iAii ebeb ∧∨∧

−
==  with ( ] ( )( )RPIBb AAi ∈  the Birkhoff 

center of ( )( )., ARPI  Since ( ] ( ] ,1 AiAi ee ⊆−  for .11 −≤≤ ni  We get 

( ) ,0,1 >− ii eeA  for 11 −≤≤ ni  and hence condition (2) holds. Now, 

( ] Re An =−1  imply that ( ]Anem 1−∈  and hence ( ) ,0, 1 >− memA n ∧  

since ( ] Rm =  for m  is maximal element of .R  So that condition (1) 

holds. If ,Rx ∈  then ( ] ( ] ( ] ) ( ( )] ,1
1

1
1 Aii

n
iAiAi

n
iA ebebx ∧∨∧∨

−
=

−
= ==  for 

≤≤ i1  ( )RBbn Ai ∈− ,1  and since ( ).1
1 ii

n
i

ebx ∧∨
−

==  So that condition 

(3) holds. Therefore, the three condition holds. On the other hand, assume 

( )AR,  be an ADFL with maximal element m  satisfying condition (1), (2) 

and (3) above. From (2), ( ) .0,1 >− ii eeA  Hence ( ] ( ] ,1 AiAi ee ⊆−  for 

.11 −≤≤ ni  Let ( ] ( )( )., ARPIx ∈  Then by (3), there exist 

( )RBbbb An ∈−121 ,,, …  such that ( ] ( ( )] ,1
1 Aii

n
iA ebmx ∧∨∧

−
==  for 

( )( ) .11, −≤≤∈ niRPIBb Ai  From (1), we have ( ) 0, 1 >− memA n ∧  

and hence ( ] ,1 Re An =−  since ( ] Rm =  for a maximal element m  in .R  

Therefore ( )( )ARPI ,  is a fuzzy-0P  lattice generated by ( )( )RPIBA  

( ] ( ] ( ] ( ]{ }.,,,0 110 −= neee …∪  Hence ( )AR,  is Almost-0P  Distributive 

Fuzzy Lattice.  � 
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Definition 3.7. Let ( )AR,  be an Almost Distributive Fuzzy Lattice 

with Birkhoff center ( )RBA  is a Almost-0P  Distributive Fuzzy Lattice if 

and only if there exist { } Reee n ⊆== − 1,,,0 110 …  such that 

( ) ,0,1 >− ii eeA  for ( ) 0,,11 1 >−≤≤ − memAni n ∧  and ( )AR,  is 

generated by ( ) { } ( ).,,,, 121 AReeeRB nA ⊆−…∪  

Definition 3.8. A set { }110 ,,,0 −= neee …  of elements in a 

Almost-0P  Distributive Fuzzy Lattice ( )AR,  satisfying conditions (1), 

(2) and (3) of Theorem 3.11 is called a chain base of ( )., AR  From now on 

wards, when we write ( )( )110 ,,,;, −neeeAR …  is a Almost-0P  

Distributive Fuzzy Lattice with a chain base { }1,,,0 110 == −neee …  

and Birkhoff center ( ).RBA  Where ( )mR ,0,,, ∧∨  is a Almost-0P  

Distributive Lattice. 

Definition 3.9. Let ( )( )110 ,,,;, −neeeAR …  be a Almost-0P  Distributive 

Fuzzy Lattice and Rx ∈  such that ( ( ))mebmxA ii
n
i

∧∧∨∧
1
1

, −
=  

( ( ) ) ( ).1,1
1

∗== −
= mxmebA ii

n
i

∧∧∧∨  

(1) If ( ) ,0,1 >+ ii bbA  for .11 −≤≤ ni  Then ( )∗  is called a monotone 

representation of ,x  abbreviated as mon. rep. 

(2) If ( ) ,00, >ji bbA ∧  for ,ji =/  then ( )∗  is called a disjoint 

representation of ,x  abbreviated as disj. rep. 

Theorem 3.3. Every element in a AlmostP -0  Distributive Fuzzy 

Lattice, ( )AR,  has both a monotone and a disjoint representation. 

Proof. Let ( )AR,  be an Almost Distributive Fuzzy Lattice and 

( )( )110 ,,,;, −neeeAR …  be a Almost-0P  Distributive Fuzzy Lattice. 
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(1) ( )ARx ,∈  and ( ( )) ( ( ),, 1
1

1
1

mebAmebmxA ii
n
iii

n
i

∧∧∨∧∧∨∧
−

=
−

= =  

) 1=mx ∧  be a disjoint representation of ,x  where ( ),RBb Ai ∈  for each .i  

Define ( ( )) ( ( ) ) ,1,, 1
1

1
1

== −
=

−
= ii

n
ii

n
ii cmbAmbcA ∧∨∧∨  for i≤1 .1−≤ n  

Then ( ),RBc Ai ∈  for each i  and 

( ) ( ( ) ( ) ( ))mbmbmbAcccA j
n

ijj
n

iji
n
iiii ∧∨∧∨∧∧∨∧

1
1

1
1

1
111 ,, −

+=
−

+=
−

=++ =  

 ( ( ) ( )) .1, 1
1

1
1

== −
+=

−
+= mbmbA j

n
ijj

n
ij

∧∨∧∨  

Hence ( ) .0, 11 >++ iii cccA ∧  Similarly ( ) .0, 11 >++ iii cccA ∧  Therefore 

.11 ++ = iii ccc ∧  So that we get .1 ii cc ≤+  Hence ( ) ,0,1 >+ ii ccA  for 

.11 −≤≤ ni  Also 

( ( ))mebmecA jj
n

ijii ∧∧∨∧∧
1, −

=  

([ ( ) ] ( )) .1, 11 == −
=

−
= mebmembA ij

n
ijij

n
ij

∧∧∨∧∧∧∨  

Hence ( ( )) .1, 1 =−
= mebmecA jj

n
ijii ∧∧∨∧∧  Similarly ( ( ∧∨ j

n
ij

bA 1−
=  

) ) .1, =mecme iii ∧∧∧  

Therefore ( ( )) ( ( ),, 11 mebAmebmecA ij
n

ijjj
n

ijii ∧∧∨∧∧∨∧∧
−
=

−
= =  

) .1=mec ii ∧∧  Then for ,11 −≤≤ nj  we get (( ) ( 1+iii cmecA ∨∧∧  

) ( ) ( )) ( ( )mebAmebmebme ij
n

ijiiiii ∧∧∨∧∧∨∧∧∧∧
1

111 , −
=+++ =  

( ) ( ) ( )) (( )mebAmebmebmeb iiijiiij
n

ij
∧∧∧∧∨∧∧∧∧∨∨ =++

−
+= 11

1
1

,  

( ) ( ) ( )) (( ∧∧∧∨∧∧∧∨∧∨∨ iiiiiiij
n

ij
bAmebmebmeeb =+++

−
+= 111

1
1

,  

) ( ) ) ( ) ( )) (( 1111
1

1
, ++++

−
+= = iiiiiij

n
iji bAmebmebmebme ∧∧∨∧∧∧∧∨∨∧  

) ( ) ( ) ( )) .1, 1111 =++++ mebmebmebme iiiiiii ∧∧∨∧∧∧∧∨∧∧  
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Hence (( ) ( ) ( ) ( 1111 , ++++ iiiiiiii ebmebmecmecA ∧∨∧∧∧∨∧∧  

)) .1=m∧  Similarly ( ) ( ) ( )mecmebmebA iiiiii ∧∧∧∧∨∧∧ ,11 ++  

( )) .111 =++ mec ii ∧∧∨  Therefore (( ) ( ),11 mecmecA iiii ∧∧∨∧∧ ++  

( ) ( )) (( ) ( ),1111 mebmebAmebmeb iiiiiiii ∧∧∨∧∧∧∧∨∧∧ ++++ =  

( ) ( )) .111 =++ mecmec iiii ∧∧∨∧∧  

( ( ) ) ( ( ( ) ) )mxmembAmxmecA ii
n
i

n
ijii

n
j

∧∧∧∧∨∨∧∧∧∨ ,, 1
1

11
1

−
=

−
=

−
= =  

( ( ) )mxmebA ii
n
i

∧∧∧∨ ,1
1
−

==  

( ) .1, == mxmxA ∧∧  

Similarly ( ( ) .1, 1
1

=−
= mebmxA ii

n
i

∧∧∨∧  Thus ( ( ),1
1

mecA ii
n
i

∧∧∨
−

=  

) ( ( )) 1, 1
1

== −
= mecmxAmx ii

n
i

∧∧∨∧∧  is a monotone representation 

of x  in ( )., AR  

(2) Let Rx ∈  and ( ( )) ( ( ∧∧∨∧∧∨∧ ii
n
iii

n
i

ebAmebmxA 1
1

1
1

, −
=

−
= =  

) ) 1, =mxm ∧  be a monotone representation of .x  Where ( )RBb Ai ∈  

for each .i  Define ( ) ( ) ,1,,
11

== ++ i
m
ii

m
iii cbbAbbcA ∧∧  for 21 −≤≤ ni  

and ( ) .0, 11 >−− nn ccA  Where m
i

b
1+  is the complement of mbi ∧1+  in 

[ ].,0 m  That is ( ( ) ) 00,11
>++ mbbA i

m
i

∧∧  and ( ( )) .0, 11
>++ mbbmA i

m
i

∧∨  

Where m is a maximal element in ( )., AR   ( ) ,00, >ji ccA ∧  for 

.11 +=/+⇒=/ jiji   

(( ) ( ) )0,
11

m
jj

m
ii bbbbA ++= ∧∧∧  since ∧ii bc =  ,,

11
m
jjj

m
i

bbcb ++ = ∧  

(( ) ( ) ) ( ) ( ) .010,00,00,
1111

>==== ++++ AbbAbbbbA m
j

m
i

m
jji

m
i

∧∧∧∧∧  

Hence ( ) ,00, >ji ccA ∧  for .ji =/  Now, we show ( ( ),1 mecA n
j

∧∧∨ kkk

−
=  

( )) ( ( ) ( )) ( ).1, 111 ∗== −
=

−
=

−
= mebmebAmeb n

j
n

j
n

j
∧∧∨∧∧∨∧∧∨ kkkkkkkkk
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By using induction on .j  Suppose .1−= nj  Then ( ) AbcA nn =−− 11 ,  

( ) .1, 11 =−− nn cb  So that ( ) ( 11111 , −−−−− = nnnnn bAmebmecA ∧∧∧∧  

) .1, 111 =−−− mecme nnn ∧∧∧∧  Thus ( )∗  is true for .1−= nj  

Assume 1>i  and ( )∗  holds for .ij =  That is ( ( ),1 mecA n
i

∧∧∨ kkk

−
=  

( )) ( ( ) ( )) .1, 111 == −
=

−
=

−
= mecmebAmeb n

i
n

i
n

i
∧∧∨∧∧∨∧∧∨ kkkkkkkkk

 To 

prove ( )∗  holds for .1−= ij  

( ( ) ( ))mebmecA n
i

n
i

∧∧∨∧∧∨ kkkkkk

1
1

1
1

, −
−=

−
−=  

(( ) ( ) ( ),1
111 mebmebmebA n

iiiii ∧∧∨∨∧∧∨∧∧ kkk

−
+=−−=  

( )) ( ( ),1
1

1
1

mebAmeb n
i

n
i

∧∧∨∧∧∨ kkkkkk

−
−=

−
−= =  

( )) .011
1

>=−
−= mebn

i
∧∧∨ kkk

 

Hence ( ( ) ( )) .0, 1
1

1
1

>−
−=

−
−= mebmecA n

i
n

i
∧∧∨∧∧∨ kkkkkk

 Similarly 

( ( ) ( )) .0, 1
1

1
1

>−
−=

−
−= mecmebA n

i
n

i
∧∧∨∧∧∨ kkkkkk

 Now, 

( ( ))mecmxA ii
n
i

∧∧∨∧
1

1
, −

=  

( ( ))mebmxA ii
n
i

∧∧∨∧
1

1
, −

==  

( ( ) ( ))mebmecA ii
n
iii

n
i

∧∧∨∧∧∨
1

1
1

1
, −

=
−

==  

( ( ) ( )) .01, 1
1

1
1

>== −
=

−
= mebmeb ii

n
iii

n
i

∧∧∨∧∧∨Α  

Hence ( ( )) ( ( ) ) 1,, 1
1

1
1

== −
=

−
= mxmecAmecmxA ii

n
iii

n
i

∧∧∧∨∧∧∨∧  

is a disjoint representation of x in ( )., AR   � 
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Corollary 3.1. Let ( )AR,  be an Almost Distributive Fuzzy Lattice 

with a maximal element m and Birkhoff center ( ) { ,,,0, 10 …eeRBA =  

} Ren ⊆−1  such that ( ) ,0,1 >− ii eeA  for 11 −≤≤ ni  and 

( ) 0,, 1 >− memA n ∧  and ( )AR ,0  be the sub Almost Distributive Fuzzy 

Lattice of ( )AR,  generated by ( ) { }.,,,, 1210 −nA eeeeRB …∪  Then every 

element of ( )AR ,0  has both a monotone and disjoint representation. 

Theorem 3.4. Let ( )AR,  be an Almost Distributive Fuzzy Lattice and 

( )( )110 ,,,;, −neeeAR …  be a AlmostP -0  Distributive Fuzzy Lattice. Let 

( ( )) ( ( ) ) 1,,, 1
1

1
1

==∈ −
=

−
= mxmebAmebmxARx ii

n
iii

n
i

∧∧∧∨∧∧∨∧  

be a disjoint representation of .Rx ∈  Define ( ( ∨∨∨∧ …1, +iii bbmcA  

) ) (( ) ) ,1,111 == −+− mcmbbbAmb iniin ∧∧∨∨∨∧ …  for ni ≤≤1 .2−  

Then ( ( )) ( ( ) ) 1,, 1
1

1
1

== −
=

−
= mxmecAmecmxA ii

n
iii

n
i

∧∧∧∨∧∧∨∧  is 

a monotone representation of x. 

Lemma 3.4. Let ( )( )110 ,,,;, −neeeAR …  be a AlmostP -0  Distributive 

Fuzzy Lattice, and ( ).,, ARyx ∈  If ( ( ))mebmxA ii
n
i

∧∧∨∧
1
1

, −
=  

( ( ) ) 1,1
1

== −
= mxmebA ii

n
i

∧∧∧∨  and ( ( ))mecmyA ii
n
i

∧∧∨∧
1
1

, −
=  

( ( ) ) 1,1
1

== −
= mymecA ii

n
i

∧∧∧∨  are mono. rep. of x and y respectively, 

then 

(1) ( ( )) ( ( ) yxmcbAmcbmyxA ii
n
iii

n
i

∧∧∧∨∧∧∨∧∧ ,, 1
1

1
1

−
=

−
= =  

) 1=m∧  is a mono. rep. of .yx ∧  

(2) (( ) ( )( )) ( (( ) iii
n
iiii

n
i

ecbAmecbmyxA ∧∨∨∧∧∨∨∧∨
1
1

1
1

, −
=

−
= =  

) ( ) ) 1, =myxm ∧∨∧  is a mono. rep. of .yx ∨  
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Proof. (1) Since ( ) 0,1 >+ ii bbA  and ( ) ,0,1 >+ ii ccA  we get ( ∧1+ibA  

) ( ),,, 1111111 +++++++ = iiiiiiiiiiiii cbcbccbbAcbcbc ∧∧∧∧∧∧∧∧∧  

since ( 11 ++ = iii bbb ∧  and ( ,1111 ++++ == iiiiiii cbcbAccc ∧∧∧∧  

) ,0111 >=++ iiii cbcb ∧∧∧  since 111 +++ = iiiiiii bcbccbb ∧∧∧∧∧  

.1+ic∧  Hence ( ) .0, 1111 >++++ iiiiii cbcbcbA ∧∧∧∧  Similarly 

( ) .0, 1111 >++++ iiiiii cbcbcbA ∧∧∧∧  Therefore ( iiii cbcbA ∧∧ ,11 ++   

) ( ) .1, 111111 == ++++++ iiiiiiii cbcbcbAcb ∧∧∧∧∧∧  

( ( ))mcbmyxA ii
n
i

∧∧∨∧∧
1

1
, −

=  

( ( )mecbmymxA iii
n
i

∧∧∧∨∧∧∧
1

1
, −

==  

( ( ) ( ) ( ))mecbmecmebA iii
n
iii

n
iii

n
i

∧∧∧∨∧∧∨∧∧∧∨
1

1
1

1
1

1
, −

=
−

=
−

==  

( ( ) ( )) .01, 1
1

1
1

>== −
=

−
= mecbmecbA iii

n
iiii

n
i

∧∧∧∨∧∧∧∨  

Hence ( ( )) .0, 1
1

>−
= mecbmyxA iii

n
i

∧∧∧∨∧∧  Similarly ( ( ∧∨ i
n
i

bA 1
1
−

=  

) ) .0, >myxmec ii ∧∧∧∧  Therefore ( ( ∧∧∨∧∧ ii
n
i

cbmyxA 1
1

, −
=  

)) ( ( ) ) 1,1
1

== −
= myxmecbAm iii

n
i

∧∧∧∧∧∨  are mono. rep. of .yx ∧  

(2) (( ) ( ) )1111 , ++++ iiiiii cbcbcbA ∨∨∧∨  

([( ) ] [( ) ] )1111 , ++++= iiiiiiii cbtccbbcbA ∨∧∧∨∨∧∨  

([( ) ( ) ( ) ( )] )111111 , ++++++= iiiiiiiiii cbtccbccbbbA ∨∧∧∨∧∨∧∨∧  

( ( ) ( ) ] )111111 , ++++++= iiiiiiii cbtcbccbbA ∨∧∨∧∨∧∨  

([ ] ),, 1111 ++++= iiii cbtscbA ∨∧∨∨  for ( ) ( )11 ++= iiii bccbs ∧∨∧  

and (( ) ) ( ) .1,,11 ==== ++ ttAttstAcbt ii ∧∨∨  Hence (( ) ∧∨ ii cbA  

( ) ) .01, 1111 >=++++ iiii cbcb ∨∨  Similarly ( ( ) ∧∨∨ iiii cbcbA ,11 ++  

( )) .111 =++ ii cb ∨  Therefore (( ) ( ) )1111 , ++++ iiiiii cbcbcbA ∨∨∧∨  

( ( ) ( )) .1, 1111 == ++++ iiiiii cbcbcbA ∨∧∨∨  Now,  
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(( ) ( ) ))mecbmyxA iii
n
i

∧∧∨∨∧∨
1
1

, −
=  

(( ) ( ) ( ) ))mecbmymxA iii
n
i

∧∧∨∨∧∨∧
1
1

, −
==  

( ( ) ( ) (( ) ))mecbmecmebA iii
n
iii

n
iii

n
i

∧∧∨∨∧∧∨∨∧∧∨
1

1
1

1
1

1
, −

=
−

=
−

==   

( (( ) ) (( ) )) .01, 1
1

1
1

>== −
=

−
= mecbmecbA iii

n
iiii

n
i

∧∧∨∨∧∧∨∨  

Hence (( ) (( ) ) .0, 1
1

>−
= mecbmyxA iii

n
i

∧∧∨∨∧∨  Similarly ( 1
1
−

=
n
i

A ∨  

(( ) ( ) ) .0, >myxmecb iii ∧∨∧∧∨  Therefore (( ) (( i
n
i

bmyxA 1
1

, −
=∨∧∨  

) ) ( (( ) ( ) ) 1,1
1

== −
= myxmecbAmec iii

n
iii ∧∨∧∧∨∨∧∧∨  are mono. 

rep. of .yx ∨   � 

4. Conclusion 

The concept of Almost-0P  Distributive Fuzzy Lattice with finite 

chain base has been introduced and we prove basic properties of 

Almost-0P  Distributive Fuzzy Lattice and the set of all principal ideal 

fuzzy lattice also discussed. Every element of a Almost-0P  Distributive 

Fuzzy Lattice has both a monotone and a disjoint representation. 
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