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Abstract 

This work proposes and investigates a delayed cell population model of 

hepatitis B virus (HBV) infection. We use the Hattaf-Yousfi incidence function 

to describe viral infection. The model takes into account a specific functional 

response and the usually neglected absorption effect. Moreover, we introduce a 

time delay to account for the transformation processes necessary for actual 
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HBV production. We naturally find a threshold parameter, namely, the basic 

reproduction number 0R  which ultimately determines the stability of the 

equilibria of the model obtained under other conditions. We determine the 

equilibria of our model known as uninfected equilibrium and infected 

equilibrium, and show that the model is well-posed, mathematically and 

biologically. By constructing appropriate Lyapunov functionals and using 

LaSalle’s invariance principle, we show that, if ,10 <R  the uninfected 

equilibrium is globally asymptotically stable. Furthermore, we prove that the 

uninfected equilibrium is locally asymptotically stable if .10 >R  

1. Introduction 

Hepatitis B virus (HBV) infection is a hepatological condition leading 

to critical global health concern. According to [17, 29, 4], the pathogenesis 

of HBV infection is typically two types in nature: (a) acute illness which 

lasts for several weeks before eventually getting resolved in majority of 

cases in presence of dominant immune responses; and (b) chronic illness 

which can potentially give rise to a range of severe long-term implications 

such as acute necrotizing vasculitis, liver cirrhosis, membranous 

glomerulonephritis and hepatocellular carcinoma (HCC). Due to this 

spectrum of severe long-term complications, about 780 thousand 

individuals die annually with roughly 240 million chronically infected 

individuals [33]. Transmission of HBV generally occurs through two 

different routes: (a) vertical transmission where the virus carries to 

infant from mother at the time of birth; and (b) horizontal transmission 

where the virus passes through bites, sanitary habits and lesions in case 

of infants, and through sexual contacts, drug uses and medical 

procedures in case of adults [33, 6, 26]. The liver is the human organ that 

performs the greatest number of chemical transformations necessary for 

the smooth functioning of the body. The functional unit of liver is the 

hepatic lobule, which consists mainly of hepatocytes. The hepatitis B 

virus (HBV) is a major public health problem. It was first discovered in 

1965 by Dr. Baruch Blumberg [3]. Originally, the virus was called the 

Australian antigen because it was named from Australian Aborigines 
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blood sample of that reacted with an antibody in the serum of an 

American hermophilia patient. It is called acute when it lasts less than 

six months, and chronic when it last more than six months. The evolution 

towards the chronicity is frequent with possible complications like 

cirrhosis and cancer. It is usually transmitted in the horst by two distinct 

modes of transmission either by a virus to healthy cells through the 

extracellular spaces or by a cell-to-cell infection involving direct contact 

between an infected cell and an uninfected cell [18, 21, 27]. Once in the 

blood the virus reaches the liver and multiplies itself in the liver cells 

(hepatocytes). The immune system destroy infected cells, by causing a 

liver inammation. Moreover, the hepatitis B virus infection usually 

disappears spontaneously and without treatment. On the other hand, 

vaccination against hepatitis B remains the principal and safest means to 

fight against this infection. If hepatitis B is not eliminated from the body 

by the immune system in the months following the onset of the infection 

it becomes chronic. 

Traditionally several mathematical models have been introduced in 

order to gain insights into the pathogenesis of HBV infection by using 

ordinary differential equations (ODEs) and delay differential equations 

(DDEs). Nowak et al. [22] first introduced a basic ODE-driven model for 

HBV infection comprising uninfected hepatocytes, infected hepatocytes 

and free virus particles, and an extension of this basic viral infection 

model by including CTL immune responses was presented in [24]. Min et 

al. [20] presented an improved HBV infection model by incorporating 

standard incidence function for the infection process and they pointed out 

that basic model leads to unrealistic relationship between susceptibility 

to infection and number of hepatocytes due to mass action term for the 

infection process. A delayed version of HBV infection model with 

standard incidence function was proposed and analyzed in [8] by taking 

into account the time required for production of the matured virions from 

the exposed cells. Eikenberry et al. [7] showed the existence of sustained 

oscillations apart from the other two well-known dynamical behaviours 
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such as convergence to an infection-free steady state and to a chronic 

steady state for a delayed HBV infection model with logistic hepatocyte 

growth. In [32], Wang et al. performed the global stability analysis for an 

HBV infection model with standard incidence function and cytokine-

mediated cure for infected hepatocytes based on empirical evidences. 

Hews et al. [15] proposed an improved HBV infection model by incorporating 

both logistic hepatocyte growth and standard incidence function.  

WHO [33] showed in one of his reports that millions of people around 

the world are chronically suffering from HBV infection and thousands die 

from the complications mentioned above. Africa and Asia are the most 

affected continents but other parts of the world are concerned as well. 

The WHO has as goal to eradicate by 90% and reduce death due to viral 

hepatitis by 65% by the year 2030. Many mathematical models have been 

developed to help understand and control infectious diseases in general 

and hepatitis B in particular. Many early basic models were proposed and 

studied by many authors (for example, in [22, 23, 31, 32] and references 

therein). The various models don’t really give account of experimental 

constants due to the fact that they don’t really take into account the 

past(delay). Meanwhile the hepatitis B virus infection begins with a silent 

incubation period of about 2 months, but can extend to 6 months. In order 

to make the models more realistic and more adequate, a new features 

were introduced, known as delay and absorption effect, and from where 

we obtain a mathematical models of infection with delay and absorption. 

This paper is organized as follows: 

• We formulate and describe the mathematical model of hepatitis B 

infection in Section 2 

• Section 3 is devoted to the existence and uniqueness, positivity, 

uniformly boundedness of solutions. 

• In Section 4, the threshold parameter 0R  of model (1) is derived 

and the existence of the equilibria, known as uninfected equilibrium and 

infected equilibrium, are discussed in relation to the value of 0R  under 

some conditions. 
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• In Section 5, local stability and global stability of the uninfected 

equilibria are completely discussed. 

• In Section 6, local asymptotic stability of the infected equilibrium is 

considered. 

• Finally, a brief conclusion is presented in Section 7. 

2. Description of the Model 

The dynamics of HBV infection is the result of the dynamics of 

uninfected hepatocytes, infected hepatocytes, and virions particle and the 

various interactions between them. We propose the following model, 

which is a delayed system of three differential equations: 

( )
( )

( ) ( ) ( )
( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )

( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( )
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321

tVtHtVtH

tVtH
tVtI

dt

tdV

tIa

tVtHtVtH

tVtH
e

dt

tdI

tI
tVtHtVtH

tVtH
tdH

dt

tdH

m

k

ττττ

ττ

  (1) 

where: 

(1) The first equation of system (1) represents the dynamics of the 

concentration of healthy hepatocytes denoted by H  where: the uninfected 

cells are produced in to the compartment at a rate λ  from the bone 

marrow, die at the rate d and become infected by virus via the incidence 

force ,
1 321 HVVH

H

α+α+α+

β
 (see [9, 10, 12] for details of such 

incidence and references therein) with β  being the rate of transmission of 

infection, that is the proportion at which uninfected cells becomes 

infected. The rate of blocking new infection is given by ( )η−1  and ρ  is 

the cure rate of the infected cells. 0,0,0 321 ≥α≥α≥α  are the 

saturation factors measuring the psychological or inhibitory effect. 
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(2) The second equation of system (1) represents the dynamics of the 

concentration of the infected hepatocytes denoted by I  where: the 

infected hepatocytes may be killed due to viral or immune response or 

they may be lost by non cytolytic elimination of the CCCDNA in their 

nucleus at a rate ( ) ,Ia ρ+  where a is the death rate of infected cells and 

ρ  is the cure rate [11]. As we need some time for the healthy hepatocytes 

to become infected, we introduce the notion of delay. Thus, the healthy 

hepatocytes become infected at the rate  

( ) ( )
( ) ( ) ( ) ( )

.
1 321 ττττ

τττ

−−α+−α+−α+

−−β−

tVtHtVtH

tVtH
e m  

The parameter τ  is a delay for the time between viral entry into target 

cells and production of new virus particles. The recruitment of virus 

producing cells at time t  is given by the number of cells that were newly 

infected at time τ−t  and are still alive at time t  here, m  is assumed to 

be a constant death rate for infected but not yet virus-producing cells. 

Thus the probability of surviving the time period from τ−t  to t  is .τme−  

This term contributes in increasing the number of infected cells with time. 

(3) The third equation of system (1) represents the dynamics of the 

concentration of the virus particles denoted by V  where: the infected 

hepatocytes produce virus at rate .k  The term ( )kε−1  is the proportion 

at which infected cells become uninfected. The rate of blocking the viral 

production by infected cells is given by .1 ε−  We note that the treatment 

reduces the rate of virus production by cells from Ik  to ( ) µε− .1 Ik  

represents the rate of disappearance of virus particle. The term 

( )
HVVH

HV

3211

1

α+α+α+

βη−
−  represents the absorption effect [28]. 

The model system (1) is subject to the following initial condition: 

( ) ( ) ( ) ( ) ( ) ( ) ,0,,, 321 ≤θ≤−θφ=θθφ=θθφ=θ τVIH  (2) 
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where ( ) ([ ] )3
321 ,0,,, +−∈φφφ=φ RτC  which the Banach space of 

continuous functions from [ ]0,τ−  to {( ) ,0,0\,, 33 ≥≥∈=+ IHVIH RR  

}.0≥V  

3. Well Posedness 

In this section, we show that model (1) is mathematically and 

biologically well posed. 

Theorem 3.1. The first quadrant 3
+R  is positively invariant with 

respect to model (1). Moreover, under the initial condition (2), the solution 

( ) ( ) ( )( )tVtItH ,,  of model (1) is existent, unique and all solutions of (1) 

are uniformly bounded in the compact subset 

( ) ( ) ( ) ( )
( )

,
1

,,,,, 3







 λε−

≤
λ

≤
λ

≤∈=Γ + c
tV

c
tI

c
tHVIH

ν

k
R  

where 

{ }.,,min mdac =  

Proof. Firstly, since 

,0
0

>ρ+λ== H
dt

dH
H

 

( ) ( ) ( )
( ) ( ) ( ) ( )

,0
1

1

321
0

>
−−α+−α+−α+

−−βη−
= −

=
ττττ

τττ

tVtHtVtH

tVtH
e

dt

dI m
I

 

for all ,0,0 ≥≥ VH  

( ) 01
0

>ε−== I
dt

dV
V

k  for all .0≥I  

We deduce that 3
+R  is positively invariant with respect to system (1). 
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Secondly, the existence and uniqueness of the solution ( ) ( ) ( )( )tVtItH ,,  

can be easily proved by using the theorems in [16, 13, 14]. 

Finally, let us show that the solution ( ) ( ) ( )( )tVtItH ,,  is uniformly 

bounded. 

For ,0≥t  define Z  as below 

( ) ( ) ( ) ( )βη−++= 1tItHtZ  

 ( ) ( ) ( )
( ) ( ) ( ) ( )

.
1 321

ds
sVsHsVsH

sVsH
e stm

t

t α+α+α+
× −−

−∫ τ

 

Taking the derivation of the previous expression along the solution, 

collecting and simplifying some terms, we obtain, for ,0≥t  

( )
( )

( ) ( ) ( )
( ) ( ) ( ) ( )

( )tI
tVtHtVtH

tVtH
tdH

dt

tdZ
ρ+

α+α+α+

βη−
−−λ=

3211

1
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( ) ( )

( ) ( )

( ) ( )tIa
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e m ρ+−
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ττ

ττ

τττ

3
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3211

1
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( ) ( ) ( ) ( )ττττ

τττ
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ds
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sVsH
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t

t 3211
1

α+α+α+
η−β− −−

−∫ τ

 

( ) ( ) ( )ββ−−−−λ= 1mtaItdH  

( ) ( ) ( )
( ) ( ) ( ) ( )

.
1 321

ds
sVsHsVsH

sVsH
e stm

t

t α+α+α+
× −−

−∫ τ
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It follows that 

( )
( ),tcZ

dt

tZ
−λ=  

where 

{ }.,,min mdac =  

From where, we have 

( ) .suplim
c

tZ
t

λ
≤

+∞→
 

From the third equation of system (1), it has that, for 0≥t  

( )
( ) ( ) ( ),1 tVtI

dt

tdV
µ−ε−≤ k  

from which we obtain 

( )
( )

.
1

suplim
µ

λε−
≤

+∞→− c
tV

t

k
 

This proves the uniform boundedness, and thus completes the proof of 

Theorem 3.1.  � 

Now, we determine the equilibria of system (1). 

4. Basic Reproduction Number and Equilibria 

4.1. Determination of the uninfected equilibrium point 

In this subsection, we are going to determinate the uninfected 

equilibrium point which will help us in the calculation of the basic 

reproduction number by the van den Driessche’s method [30]. It is easy to 

prove the following result: 

Proposition 4.1. The point ( ),0,0,00 HE =  where 
d

H
λ

=0  is the 

uninfected equilibrium point of model (1). 
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4.1.1. Determination of the basic reproduction number 0R  of our 

system 

Theorem 4.2. The basic reproduction number 0R  of system (1) is 

given by 

( ) ( )

( ) (( ) ( ) )
.

11

11
0

1
0

0

0
µα++βη−ρ+

βε−η−
=

−

HHa

He
R

mτ
k

 

Proof. We define the basic reproduction number 0R  of our model by 

( ( ) ( ( ) ) ( ),100
0 MEDVEDFR ϕ=⋅−ϕ=

−
 

where 

( )
( )

,max λ=ϕ
∈λ Msp

M  

( )
( ) ( )
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,
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0,0,10 00
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−
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=

−

K

HHfe
EDF

m

ε

τ
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( )

( ) ( )
,
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0

0
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ρ+−

=

Hf

a

EDV  
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1

0,0,
0

0
0

H

H
Hf
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Computation yields 

( ) ( ) ( )

( )( ( ) ( ))
.

0,0,1

0,0,11
0

0

0
Hfa

eHf
R

m

η−+µρ+

−η−
=

− τ
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� 
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4.2. The infected equilibrium point 

The  following theorem presents the existence and uniqueness of 

uninfected equilibrium if .10 >R  

4.2.1. Existence and uniqueness 

Theorem 4.3. If 10 >R  and ( ) ( ) ,01 >ρ+−ε− − ae mτ
k  then system 

(1) has a unique infected equilibrium point ( )∗∗∗∗ = VIHE ,,  with 

] [ 0,;0 0 >∈ ∗∗ IHH  and .0>∗V  

Proof. At any equilibrium, the following algebraic system holds: 

( ) ( ) ( ) ,0,,1 =ρ+η−−−λ IVVIHftdH   (3) 

( ) ( ) ( ) ,0,,1 =ρ+−η− τmIeaVVIHf   (4) 

( ) ( ) ( ) ,0,,11 =η−−µ−− VVIHfVIkε  (5) 

where 

( ) .
1

,,
321 HVVH

H
VIHf

α+α+α+

β
=  

By adding (3) and (4), we obtain 

( ) ( ) .0=ρ+ρ+−−λ IIaetdH mτ  

We have 
( )

( )
0≥

ρ+ρ+

−λ
=

ae

tdH
I

mτ
 implies that .

d
H

λ
≥  Hence there is no 

equilibrium point if .
d

H
λ

<  Now, by adding Equations (4) and (5), we 

obtain 

( ) ( ) ,01 =ρ+−µ−ε− IaeVI mτ
k  

this implies that 

[( ) ( )]
.

1

µ

ρ+−ε−
=

Iae
V

mτ
k

 (6) 
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Since ( ) ( ) Vaem ,01 >ρ+−ε− τ
k  is positive. Next substituting (6) into 

(4), we have 

{[( ) ( )] ( ) ( ) ( ) } ,0,,11
1

=ρ+−η−ρ+−ε−
µ

IeaVIHfae mm ττ
k  

which leads to 

{[( ) ( )] ( ) ( ) ( ) } 0,,11
1

=ρ+−η−ρ+−ε−
µ

ττ mm eaVIHfaek  

since .0>I  Now, we consider the function ϕ  defined on interval 

[ ]0;0 H  by 

( ) [( ) ( )] ( )] ( ) ( ) .,,11 ττ mm eaVIHfaeH ρ+µ−η−ρ+−ε−=ϕ k  

It follows that 

( ) ( ) ,00 <ρ+µ−=ϕ τme  

and 

( ) [( ) ( )] ( ) ( ) ( ) ττ mm eaHfaeH ρ+µ−η−ρ+−ε−=ϕ 0,0,11 00
k  

  ( ) ( ) ( ) ( ) ( ) ( )0,0,10,0,11 00 HfeaHf mτη−ρ+−η−ε−= k  

( ) τmea ρ+µ−  

  ( ) ( ) ( ) ( ) [( ) ( ) ]µ+η−ρ+−η−ε−= 0,0,10,0,11 00 HfeaHf mτ
k  

  
( ) ( ) ( )

( )(( ) ( ) )
(( ) ( )0,0,11

0,0,1

0,0,11 0

0

0

Hf
Hfa

Hfe m

η−







−

µ+η−ρ+

η−ε−
=

− τ

k
 

) ( ) τmea ρ+µ+  

  [ ] ( ) ( ( ) ( )).0,0,11 0
0 HfeaR m η−+µρ+−= τ  

Since 10 >R  it implies ( ) 00 >ϕ H  but ( ) 00 <ϕ  thus this assures the 

existence of at least an ] [ .;0 0HH ∈  
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We now prove the uniqueness of the .H  We proceed as follows: the 

derivative of ϕ  with respect to H  yields 

( ) [( ) ( ) ( )]
( )

( )






α+α+α+

βα+
η−ρ+−ε−=ϕ′

2
321

2

1

1
11

HVVH

V
aeH mτ

k  

( ) ( ( ) ( ))

( ) ( ( ) ) 






ρ+ρ+α+α+α+µ

ρ+−ε−α+αβ
+

aeHVVH

aeHH

m

m

τ

τ

2
321

32

1

1k
 

[( ) ( ) ( )]η−ρ+−ε−= 11 aemτ
k  

( ) ( )( )

( ) ( ( ) )






ρ+ρ+α+α+α+µ

ρ+ρ+α+βµ
×

aeHVVH

aeV

m

m

τ

τ

2
321

2

1

1
 

( ) ( ( ) ( ))

( ) ( ( ) )
.

1

1

2
321

32








ρ+ρ+α+α+α+µ

ρ+−ε−α+αβ
+

aeHVVH

aeHH

m

m

τ

τ

k
 

Moreover 

( ) ,0>ϕ′ H  

since 

( ) ( ) ( ) .011 >η−ρ+−ε− aemτ
k  

Thus the function ϕ  is strictly increasing on [ ]0;0 H  and according to 

the intermediate value theorem there exists a unique equilibrium point 

] [0;0 HH ∈∗  such that ( ) .0=ϕ ∗H  Thus, there exists a unique infected 

equilibrium point ( )∗∗∗∗ VIHE ,,  with 

] [,;0 0HH ∈∗  

( )

( )
,

ρ+ρ+

−λ
=

∗
∗

ae

tdH
I

mτ
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and 

[( ) ( )]
.

1

µ

ρ+−ε−
=

∗
∗ Iae

V
mτ

k
 

� 

5. Asymptotic Stability Analysis of the Uninfected Equilibrium 

The aim of this section is to study the local asymptotic stability of the 

uninfected and infected equilibria. For an arbitrary equilibrium 

( ),,, ∗∗∗= VIHE  the characteristic equation associated to system (1) is 

given by 

( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

,0

111

11

11

=

+βη−ε−−βη−

βη−+ρ+βη−

βη−ρ−+βη−+

+−+−

xML

MexaLe

MxLd

mxmx

k

ττ  (7) 

where 

( ) ( )

( )
,

1

11

2
321

2

∗∗∗∗

∗∗

α+α+α+

α+βη−
=

VHvH

VV
L  

and  

( ) ( )

( )
.

1

11

2
321

1

∗∗∗∗

∗∗

α+α+α+

α+βη−
=

VHvH

HH
M  

5.1. Local stability analysis of 0
E  

The characterization of the local stability of the uninfected 

equilibrium is given by the following proposition: 

Proposition 5.1. (1) If ,10 <R  then the uninfected equilibrium point 







 λ

= 0,0,0

d
E  is locally asymptotically stable. 

(2) If ,10 >R  then the uninfected equilibrium point 0E  is unstable. 
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Proof. (1) At ,0E  (7) reduces to 

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

,0

0,0,110

0,0,10

0,0,1

0

0

0

=

−η−−µ−−

η−−−ρ+−

η−−ρ−−

−−

xHf

Hfexa

Hfxd

xm

kε

ττ  

where 

( ) .
1

0,0,
0

1

0
0

H

H
Hf

α+

β
=  

That is: the characteristic equation of our model at uninfected equilibrium is 

of the form: 

( ) ( ) ,0=+ xZdx  (8) 

where 

( ) ( ( ) ( ) ( ))xHfaxxZ 0,0,1 02 η−+ρ++µ+=  

( ) ( ( ) ( )0,0,1 0Hfa η−+µρ++  

( ) ( ) ( ) ( ) ,0,0,11 0 τxmeHf +−η−−− kε   (9) 

which can rewritten as follows: 

( ) ( ( ) ( ) ( ))xHfaxxZ 0,0,1 02 η−+ρ++µ+=  

( ) ( ( ) ( ) ( ).10,0,1 0
0 τxeRHfa −−η−+µρ++   (10) 

It is clear that dx −=  is an eigenvalue for (8), and hence, the stability of 

0E  is determined by the distribution of the roots of equation ( ) .0=xZ  

For all solutions to have negative real part it suffices for the roots of the 

polynomial ( )xZ  to have roots with negative real part, this polynomial 

can also be rewritten in the form: 

( ) ( ) ( ) ,τmexQxPxZ −+=  
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with 

( ) ( ( ) ( ) ( ))xHfaxxP 0,0,1 02 η−+ρ++µ+=  

( ) ( ( ) ( )),0,0,1 0Hfa η−+µρ++  

and 

( ) ( ) ( ) ( ) ( ) .0,0,11 0 τxmeHfxQ +−η−−−= kε  

Note that when ,0=τ  then Equation (10) becomes 

( ) ( ( ) ( ) ( ))xHfaxxZ 0,0,1 02 η−+ρ++µ+=  

( )( ( ) ( ) ( ).10,0,1 0
0 RHfa −η−+µρ++   (11) 

If ,10 <R  then by Routh-Hurwitz criterion [1, 5], all the roots of 

Equation (11) have negative real parts. Thus the uninfected equilibrium 

0E  is locally asymptotically stable when .0=τ  

Next, we consider the case ,0>τ  and show that the polynomials P  

and Q  verify the properties below: 

(a) ( ) 0=/xP  for ( ) .0Re ≥x  

If ( ) ,0=xP  we deduce from the Routh-Hurwitz criterion that 

( ) 0Re <x  for all ,x  since 

( ( ) ( ) ( )) ,00,0,1 0 >η−+ρ++µ Hfa  

and 

( )( ( ) ( )) .00,0,1 0 >η−+µρ+ Hfa  

Hence ( ) 0=/xP  for ( ) .0Re ≥x  

(b) ( ) ( )ω=ω− iPiP  and ( ) ( )ω=ω iQiQ  with .0 ∞<ω≤  
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Evaluating ( )xP  and ( )xQ  for ω= ix  and for ω−= ix  with 

,0 ∞<ω≤  we obtain: 

( ) ( ( ) ( ) ( ))ωη−+ρ++µ+ω−=ω 0,0,1 02 HfaiiP  

 ( ) ( ( ) ( ));0,0,1 0Hfa η−+µρ++  

( ) ( ( ) ( ) ( ))ωη−+ρ++µ−ω−=ω− 0,0,1 02 HfaiiP  

 ( ) ( ( ) ( ));0,0,1 0Hfa η−+µρ++  

( ) ( ) ( ) ( ) ( ) ;0,0,11 0 τxmeHfiQ +−η−−−=ω kε  

( ) ( ) ( ) ( ) ( ) .0,0,11 0 τxmeHfiQ +−η−−−=ω kε  

Thus we have proved the following equalities: ( ) ( )ω=ω− iPiP  and 

( ) ( )ω=ω iQiQ  with .0 ∞<ω≤  

(c) ( ) ( )ω<ω iPiQ  with .0 ∞<ω≤  

We have 

( ) ( ( ) ( ) ( )) 2202
0,0,1 ωη−+ρ++µ=ω HfaiP  

( ) ( ( ) ( ))[ ] ;0,0,1
220 ω−η−+µρ++ Hfa  

we obtain 

( ) ( ( ) ) ( ( ( ) ( )) ).0,0,1
202222

HfaiP η−+µ+ωρ++ω=ω  

It follows that 

( ) ( ) ( ( ) ( )),0,0,1 0HfaiP η−+µρ+≥ω  

and since, 

,10 <R  
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then 

( ) ( ( ) ( )) ( ) ( ) ( ) ( )τxmeHfHfa +−η−−>η−+µρ+ 0,0,110,0,1 00
kε  

moreover, 

( ) ( ) ( ) ( ) ( ) ;0,0,11 0 τxmeHfiQ +−η−−=ω kε  

it follows that 

( ) ( ) ( ( ) ( ))0,0,1 0HfaiP η−+µρ+≥ω  

  ( ) ( ) ( ) ( ) ( ) .0,0,11 0 ω=η−−> +− iQeHf xm τ
kε  

That is, 

( ) ( ) ;ω≥ω iQiP  

hence for all, ∞<ω≤0  

( ) ( ) .ω≥ω iQiP  

(d) Finally we have 

( )

( )
( )

( )
∞→∞→

>>

=
xx

xx
xP

xQ

0Re0Re

limlim  

( ) ( ) ( ) ( )

( ( ) ( ) ( )) ( ) ( ( ) ( ))0,0,10,0,1

0,0,11
002

0

HfaxHfax

eHf xm

η−+µρ++η−+ρ++µ+

η−−
×

+− τ

kε
 

.0=  

The solutions of equation ( ) 0=xZ  have negative real part if 10 <R  

in the light of ([2], Theorem 1, p. 187). We can conclude that the 

equilibrium point 0E  is locally asymptotically stable. 
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(2) On the other hand, it is easy to show that (10) has a real positive 

root when .00 >R  Indeed, we put 

( ) ( ) ( ) ( )( )xHfaxx 0,0,1 02 η−+ρ++µ+=Φ  

( ) ( ( ) ( ) ( ).10,0,1 0
0 τxeRHfa −−η−+µρ++  

We have ( ) ( ) ( ( ) ( ) ( )0
0 10,0,10 RHfa −η−+µρ+=Φ  and ( ) .lim ∞+=Φ

+∞→−
x

x
  

Therefore, Φ  has a positive real root and the uninfected equilibrium is 

unstable. This proves the theorem.  � 

In what follows we will show that the global stability of the 

uninfected equilibrium point using a suitable Lyapunov functional. 

5.2. Global stability of the uninfected equilibrium 0
E  

In this section, we will discuss the global stability of the uninfected 

equilibrium point .0E  

Theorem 5.2. If 10 ≤R  and ( ) ( ) τmea −ε−=/ρ+ 1k  the uninfected 

equilibrium 0E  is globally asymptotically stable for any time delay .0≥τ  

Proof. The proof of the theorem is done by using two cases. For 

convenience let us define the function ,g  by 

( ) .
1

,
321 HVVH

HV
VHg

α+α+α+
=  

Case I: ( ) ( ) .1 τmea −ε−<ρ+ k  

Define the following Lyapunov functional: 

( )
( )

,
,

,
lim 321

0

0

0

0
UVIdS

VSg

VHg
HHL

V

H

H
kkk +++−−=

+∫
֏
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where the constants ,, 21 kk  and 3k  are to be determined later and 

( ) ( ) ( )( ) .,1
0

θθ+θ+η−= ∫−
dtVtHgU

τ

 

By computing the derivative of L  along the solutions of model (1), we 

have that for ,0≥t  

( )
( )

( ) ( ) ( )[ ]IVHgtdH
VSg

VHg

dt

dL

V

ρ+βη−−−λ









−=

+
,1

,

,
lim1

0

0֏

 

[ ( ) ( ) ( )( ) ( ) ]IatVtHge m ρ+−−−η−β+ −
ττ

τ ,11k  

[( ) ( ) ( )]VHgVI ,112 βη−−µ−ε−+ kk  

[( ) ( ) ( ) ( ) ( )( )].,1,13 ττ −−⋅βη−−βη−+ tVtHgVHgk  

Denoting that 0dH=λ  and letting 
( )

( ) ( )
,

1

1
1

ρ+−ε−

ε−
=

− ae mτ
k

k
k  

( )
( )

,
1
1

2
k

k
k

ε−

ρ+
=

a
 and .13

τme−= kk  We have that for ,0≥t  

( )
( ) 










−








−=

+ VSg

VHg

H

H
dH

dt

dL

V ,

,
lim11

0

0
0

0

֏

 

( )
( )

( ) ( )
( )

( )
I

VSg

VHg
VHg

VSg

VHg

VV

ρ









−+βη−










−−

++ ,

,
lim1,1

,

,
lim1

0

0

0

0 ֏֏

 

( ) ( ) ( )( ) ( ) IatVtHge m
11 ,1 kk ρ+−−−η−β+ −

ττ
τ  

( ) ( ) ( ) 222 ,11 kkkk VHgVI βη−−µ−ε−+ ( ) ( )VHge m ,11 η−β+ − τ
k  

( ) ( ) ( )( ),,11 ττ
τ −−η−β− − tVtHge m

k  

since 

( )
( )

.
12

1 ρ+

ε−
=

a

kk
k  
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Then 

( )
( ) 










−








−=

+ VHg

VHg

H

H
dH

dt

dL

V ,

,
lim11

0

0
0

0

֏

 

( )
( )

( ) ( )
( )
( ) 










−ρ+βη−










−−

++ VHg

VHg
IVHg

VHg

VHg

VV ,

,
lim1,1

,

,
lim1

0

0

0

0 ֏֏

 

( )
( )

( ) ( ) ( )( )ττ

τ

−−η−β
ρ+

ε−
+

−

tVtHg
a

e m

,1
12kk  

( ) ( ) ( ) ( ) 2222 ,111 kkkkkk VHgVII βη−−µ−ε−+ε−−  

( )
( )

( ) ( )VHg
a

e m

,1
12 η−β
ρ+

ε−
+

− τ
kk

 

( )
( )

( ) ( ) ( )( ).,1
12

ττ

τ

−−η−β
ρ+

ε−
−

−

tVtHg
a

e m
kk

 

As 

( )
( )

( )

( ) ( )ρ+−ε−

ε−
=

ρ+

ε−
− aea m

k

kkk

1

112
τ

 

implies that 

( )
( )

.
1

1

2

2

k

e
a

m

+

ε−
=ρ+

− τ
kk

 

Then we have 

( )
( ) 










−








−=

+ VHg

VHg

H

H
dH

dt

dL

V ,

,
lim11

0

0
0

0

֏

 

( )
( )

( ) ( )VHg
VHg

VHg

V

,1
,

,
lim1

0

0

βη−









−−

+
֏

 

( )
( ) 2

0

0 ,

,
lim1 kV

VHg

VHg
I

V

µ−









−ρ+

+
֏
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( ) ( )

( )
( ) ( ),,1

1

11

2

22 VHg
e

e

m

m

βη−
ε−

+ε−
+

−

−

τ

τ

kk

kkk
 

( )
( )

( )
( )

I
VHg

VHg

VHg

VHg

H

H
dH

vV

ρ









−+










−








−=

++ ,

,
lim1

,

,
lim11

0

0

0

0
0

0

֏֏

 

( ) ( ) ( )
( )

.1
,

,
lim

,1 0

02
2 










−⋅

µ

βη−
µ+

+ VHg

VHg

V

VHg
V

V֏k
k   (12) 

It is easy to see that the function g  is positive, differentiable and 

increasing on [ [.,0 ∞+  Furthermore, the function g  is concave with 

respect to ,V  and satisfies the following properties: 

(i) For all ( ) ( )VHgVHgVH H ,,,0, ′≥  and ( )VHgV ,′  are positive 

and ( )VHgV ,′′  is negative 

(ii) ( )0,,0 HgH V′>  is monotonically increasing that is 

( )
( )

1
0,

0,0

>
′

′

Hg

Hg

V

V  for ( )0,0 HH ∈  and 
( )
( )

1
0,

0,0

<
′

′

Hg

Hg

V

V  for .0HH >  (13) 

From (12) and (13) we have that 

( )
( )

( )
( )

,0
0,

0,
11

,

,
lim11

0

0

0

0
0

≤













′

′
−








−=










−








−

+ Hg

Hg

H

H

VHg

VHg

H

H

V

V

V֏

 

and 

( )
( )

1
0,

0,0

>
′

′

Hg

Hg

V

V  for ( )HH ,0∈  and for all .0>I  (14) 

From (12) and (14) we have that 

( )
( )

( )
( )

.0
0,

0,
1

,

,
lim1

00

0

≤













′

′
−=ρ










−

+
I

Hg

Hg
I

VHg

VHg

V

V

V֏
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Next, let us consider the term by concavity of the function g we have the 

following: 

( ) ( ) ( )
( )

1
,

,
lim

,1 0

02

−⋅
µ

βη−

+ VHg

VHg

V

VHg

v֏k
 

( ) ( ) ( )
( )

1
0,

0,,1
0

2

−
′

′

µ

βη−
=

Hg

Hg

V

VHg

V

V

k
 

( )
( )

( )
( )

1
0,

,
0since10,

1 0

2

<
′

<−′
µ

βη−
≤

HgV

VHg
Hg

V
V

k
 

( ) ( ( ) ( ))
( )

( ) 10,
11 0 −′

µρ+

ρ+−ε−βη−
≤

−

Hg
a

ae
V

mτ
k

 

( ) ( ( ) ( ))

( ) ( )
1

1

11 0

0
1

−
µρ+α+

ρ+−ε−βη−
≤

−

H
aH

ae mτ
k

 since 
( )

( ) ( )ρ+−ε−

ρ+
=

− ae

a
m 1

2
τ

k

k  

( ) ( ) ( ) (( ) ( ) )

( ) ( )µρ+α+

µα++βη−ρ+−βε−η−
≤

−

aH

HHaHe m

0
1

0
1

00

1

1111 τ

k
 

( ) (( ) ( ) )

( ) ( )
( ).1

1

11
00

1

0
1

0

−
µρ+α+

µα++βη−ρ+
≤ R

aH

HHa
 

Then from (12), we have that for 0≥t  

( )
( )

( )
( )

I
Hg

Hg

Hg

Hg

H

H
dH

dt

dL

V

V

V

V














′

′
−+














′

′
−








−≤

0,

0,
1

0,

0,
11

00

0

0  

( ) (( ) ( ) )

( ) ( )
( ) .1

1

11
00

1

0
1

0

2 












−

µρ+α+

µα++βη−ρ+
µ+ R

aH

HHa
Vk  

If ,10 ≤R  we have that for .0,0 ≤≥
dt

dL
t  This shows that the uninfected 

equilibrium 0E  is stable. 
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Next, we are going to show that the uninfected equilibrium 0E  is 

globally attractive. Let us define the subset 

( ) ( ) .0,,,, 321321






 =ϕϕϕ∈ϕϕϕ=ϕ=

dt

dL
E

T
C  

Let M  be the largest invariance set with respect to the model (1) in E.    

It is easy to see that M  includes at least one point .0E  

For any ( ) ,,, 321 M
T ∈ϕϕϕ=ϕ  let us use ( ) ( ) ( )( )TVItH ,,  to denote 

the solution of model (1) with the initial condition, where 

( ) ( ) ( ) ( ) ( ) ( ) ( ).0,0,,, ≥≤θ≤−θ+=θ+=θ+= ttVtVtItItHtH τ  

From the invariance of the subset ,M  we have that for all ( ( ),, tHt R∈  

( ) ( )) ., EMVI
T ⊂∈  Hence, it follows that for any ( ) .,0 0HtHt =≥  

Again from the invariance of the subset, we have that ( ) 0
1 HtH ≡ϕ≡  

for any .R∈t  Hence, from the equation of model (1) and the invariance 

of the subset ,M  we have that, for any, ( ) ( ).,0 tItVt =≥  This show that 

{ }.0EM =  By means of the LaSalle’s invariance principle, we have that 

the uninfected equilibrium 0E  is globally asymptotically stable when 

.10 ≤R  

Case II: ( ) ( ) .1 τmea −ε−>ρ+ k   

Let us define a Lyapunov functional of the form 

( )η−++= 1211 VcIcL  

( ) ( )
( ) ( ) ( ) ( )

,
1 321

0

θ
θ+θ+α+θ+α+θ+α+

θ+θ+
× ∫−

d
tVtHtVtH

tVtH

τ

 

 

 



STABILITY OF A DELAYED HEPATITIS B VIRUS … 25 

where 1c  and 2c  are to be determined later. Then, it follows that, for 

0≥t  

( ) ( ) ( )
( ) ( )

( ) ( )

( ) ( )





















ρ+−

−−α+

−α+−α+

−−βη−
= − tIa

tVtH

tVtH

tVtH
ec

dt

dL m

ττ

ττ

τττ

3

21
1

1

1

1
 

( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( )





α+α+α+

βη−
−µ−ε−+

tVtHtVtH

tVtH
tVIc

321
2 1

1
1 k  

( )
( ) ( ) ( ) ( )tVtHtVtH

HV

3211

1

α+α+α+

η−
+  

( ) ( ) ( )
( ) ( ) ( ) ( )

.
1

1

321 ττττ

τττ

−−α+−α+−α+

−−η−
− −

tVtHtVtH

tVtH
e m  

By choosing 
β

=
τme

c1  and 
( )

( ) βε−

ρ+
=

−

k12
ae

c
mτ

 we have that, for ,0≥t  

( ) ( ) ( )
( ) ( ) ( ) ( )

( )
I

ae

tVtHtVtH

tVtH

dt

dL m

β

ρ+
−

−−α+−α+−α+

−−η−
=

τ

ττττ

ττ

321

1

1

1
 

( ) ( )
( )

( )
( )kk ε−

ρ+
−

βε−

µρ+
−

β

ρ+
+

11

aeVae
I

ae mmm τττ

 

( )
( ) ( ) ( ) ( )tVtHtVtH

HV

3211

1

α+α+α+

η−
×  

( )
( ) ( ) ( ) ( )tVtHtVtH

HV

3211

1

α+α+α+

η−
+  

( ) ( ) ( )
( ) ( ) ( ) ( )

.
1

1

321 ττττ

ττ

−−α+−α+−α+

−−η−
−

tVtHtVtH

tVtH
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We have 

( )
( )

( )
( ) ( ) ( ) ( )

( )
( )

,
1

1
1

1

1 321

1











ε−

ρ+
−

α+α+α+

η−
+

βε−

µρ+
−=

kk

ae

tVtHtVtH

HVVae

dt

dL mm ττ

 

( )
( )

( )
( ) ( ) ( ) ( )

( )
( )

,
11

1

1 321








ε−

ρ+
−

α+α+α+

η−
+

βε−

ρ+
−= −

kk

a
e

tVtHtVtH

HVeae m
mm

τ

ττ

 

( )
( )

( )(( ) ( ))
( ) ( ( ) ( ) ( ) ( ))

.
11

11

1 321 tVtHtVtH

aeHVeae mmm

α+α+α+ε−

ρ+−ε−η−
+

βε−

ρ+
−=

−

kk

τττ

 

Similarly, let us also define the subset 

( ) ( ) .0,,,, 321
1

3211








=ϕϕϕ∈ϕϕϕ=ϕ=
dt

dL
E

T
C  

Let 1M  be the largest invariance set with respect to model (1) in .1E  It 

has that .1
0 ME ∈  For any ( ) ,,, 1321 M

T ∈ϕϕϕ=ϕ  let ( )Tttt VIH ,,  be 

the solution of model (1) with the initial condition (2). From the 

invariance of the subset ,1M  it also has that, for all ( )Tttt VIHt ,,,R∈  

.1 EM ⊂∈  Hence, it has that, for any ( ) .0,0 =≥ tVt  From the 

invariance of the subset ,1M  it further has that 03 =φ≡tV  for any 

.R∈t  From the second and first equation of model (1) and the invariance 

of the subset ,1M  it finally has that, for any ,0≥t ( ) 0=tI  and 

( ) .0HtH =  This shows that .0
1 EM =  Therefore, it follows from 

LaSalle’s invariance principle that the uninfected 0E  is globally 

asymptotically stable when .10 ≤R  This completes the proof.  � 

6. Local Asymptotic Stability Analysis of the  

Infected Equilibrium 

The aim of this section is to study the local and global stability of the 

uninfected equilibrium. 
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Proposition 6.1. If ( ) ( ( ) ) ( ) ( ) 2222222
111 MMa βη−ε−−βη−+µρ+ k  

( ) ( ( ) ) 011,0
2222 >βη−+−βη−>− LdLMe mτ  and ( ) ( )η−−+ρ+ 1222

da  

( ) ,0>ρ+β aL  then the infected equilibrium point ( )∗∗∗∗ = VIHE ,,  is 

locally asymptotically stable for any time delay .0≥τ  

Proof. At ,∗E  (7) reduces to 

( ) ,00101
2

2
3 =+++++ − τxeqxqpxpxpx  (15) 

where 

( )( ) ( ) ( ( ) ),112 MaLdp βη−+µ+ρ++βη−+=  

( ) ( ( ) ( )( )Mdap βη−+µ+βη−+ρ+= 111  

 ( ( ) ) ( ) ,11 MMd βη−µ+βη−+µ+  

( )( ) ( ) ( ( ) ) ( ) ( ) ,111 22
0 βη−ρ+−βη−+µρ+βη−+= aLMMaLdp  

( ) ( ) ( ( ) ( ) ,1111 22
1

ττ mm eLMMeq −− ε−βη−ρ−η−−= kkε  

( )( ) ( ) ( ) ττ mm eLMeLdq −− βη−+ε−βη−+−= 22
0 111 k  

 ( ) ( ( ) ) ( ) .111 22 τmeML −ε−βη−+µβη−ρ− k  

If ,0=τ  Equation (15) is reduced to the following form: 

( ) .00011
2

2
3 =+++++ qpxqpxpx  

Hence, it follows from the Routh-Hurwitz criterion that the infected 

equilibrium ∗E  of model (1) is locally asymptotically stable when .0=τ  
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Now, let us consider the case .0>τ  Let us show that Equation (15) 

has all its roots with real negative part. Let ( ) 01
2

2
3 pxpxpxxp +++=  

and ( ) .01 qxqxq +=  It follows that (15) is equivalent to 

( ) ( ) .0=+ − τxexqxp   (16) 

We show that (16) only has solutions with negative real parts on the light 

of ([2], Theorem 1, p. 187). 

If ( ) ,0=xp  then from the Routh-Hurwitz criteria for all C∈x  such 

that ( ) 0=xp  it is obvious that 

,0,0,0 210 >>> ppp  

and 

( )( ) ( )( )2021 1 Ldadppp βη−+ρ++=−  

( ) ( ( )( ) ( )( ))MLda βη−+µ+βη−+ρ++ 11
2

 

( ) ( )( ) ( )( )LdMa βη−+βη−+µρ++ 121  

( ) ( )( )21 Ma βη−+µρ++  

( )( ) ( )( )LdMd βη−+βη−+µ+ 11  

( ) ( )( )da +ρ+βη−µ+ 1  

( ) ( ) ( )( ))MLL βη−+µβη−µ+βη−µ+ 111 222
 

( ) ( ) .01 22 ≥βη−ρ++ aLM  

Since the hypothesis of Routh-Hurwitz criteria are satisfied, then the 

roots of ( )xp  have negative real parts, hence ( ) 0=/xp  for all C∈x  such 

that ( ) .0Re ≥x   
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Evaluating now ( )xp  and ( )xq  for izx =  and izx −=  with 

,0 ∞<≤ z  for all ,0 ∞<≤ z  we obtain 

( ) ;01
2

2
3 pzipzpizizp ++−−=  

 ( ) ;01
2

2
3 pzipzpizizp +−−=−  

( ) ;01 qziqizq +=  

( ) .01 qziqizq +−=−  

Hence we deduce that 

( ) ( );izpizp =−  

( ) ( ).izqizq =−  

For all .0 ∞<≤ z  

We now show that ( ) ( )izqizp >  for all .0 ∞<≤ z  Let [ [∞∈ ,0z  

we obtain 

( ) ( ) ( ) ;
23

1
22

20
2

zzpzppizp −+−=  

 ( ) ( ) ,22 2
0

2
20

2
1

4
1

2
2

6 pzpppzppz +−+−+=  

and 

( ) .22
1

2
0

2
zqqizq +=  

Thus, 

( ) ( ) ( ) ( ) 2
20

2
1

4
1

2
2

622
22 zpppzppzizqizq −+−+=− ;22

1
2
0

2
0 zqqp −−+  

( ) ( ) .22 2
0

2
0

22
120

2
1

4
1

2
2

6 qpzqpppzppz −+−−+−+=  

Showing ( ) ( ) ,
22

izqizp >  is equivalent to showing that 

( ) ( ) .0
22 >− izqizp  
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That is, 

;02 1
2
22 >−= ppa  

;02 2
120

2
11 >−−= qpppa  

.02
0

2
03 >−= qpa  

By simple computation we obtain 

( ) ( )( ) ( )( ) ( )ρ+βη−++βη−++ρ+= aLdLdaa 121
22

2  

( )( ) ( ) ( ) LMLMdd 22
1212122 βη−+µβη−+βη−+µ++  

( ) ( )( ) ( ) ( )( )LdaM βη−+ρ+−βη−+µρ+α+ 1212  

( ) ( )( ) ( )( ) ( ) .121212 µβη−−βη−+µ−βη−+µρ+− LMdMa  

We deduce that 

( ) ( )( ) .012
22

1
2
2 >βη−++ρ+=− Ldapp  

Moreover, 

( ) ( )( ) (( ) ( )( ) )222
1 1112 LdLMMaa βη−+−βη−βη−+µρ+=  

( )( ) ( ) ( ) ( ) ( ) LMaaLMLd 2222
12112 βη−ρ++ρ+η−βη−++  

( )( ) (( ) ( ) ( ))ρ+βη−−+ρ+βη−+µ+ aLdaM 121 222
 

( ) ( )( ) ( ) 22222
11 LLda βη−µ+βη−+ρ++  

( ) ( )( )MLd βη−+µβη−µ+ 112  

( ) ( )( ) ( ( )( ) ( ) )LMdLda βη−µ+βη−+µβη−+ρ++ 1112  

( ) ( )( ) ( )( )LMa βη−µβη−+µρ++ 112  

(( ) ( )( )) ,0111
2 >+η−ρβε−+ − LMe mτ

k  
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since, 

( ) ( )( ) ,011
222 >βη−+−βη− LdLM  

and 

( ) ( ) ( ) .01222 >ρ+βη−−+ρ+ aLda  

Therefore, 

.02 2
120

2
1 >−− qppp  

However 

( )( ) (( ) ( )( )222
0 11 MaLda βη−+µρ+βη−+=  

( ) ( ) )τmeM 222222
11 −βη−ε−− k  

( ) (( ) ( ( ) ( )( ) ) )τmeMMMaL 2222424
111 −−βη−+µε−ρ−ρ+βη−+ k  

( )( ) ( ) (( ) ( )ε−βη−βη−βη−++ 11112 22
kLMLd  

( ( ) ( )( ) ) ) ,011 2 >−βη−+µε−ρ× − τmeMMk  

since 

( ) ( )( ) ( ) ( ) ,0111 22222222 >βη−ε−−βη−+µρ+ − τmeMMa k  

and 

( ) ( ( ) ( )( ) ) .011
222 >−βη−+µε−ρ−ρ+ MMMa k  

We deduce that, ,02
0

2
0 >− qp  consequently, 

( ) ( ) .0
22 >− izqizp  
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Finally, we have 

( )

( )
( )

( )

.0limlim

01
2

2
3

01

0Re0Re

=
+++

+
=

∞→∞→

>>
pxpxpx

qxq

xP

xQ

xx

xx

 

Hence all solutions of the characteristics equation (16) have negative real 

parts according to ([2], Theorem 1, p. 187). Consequently ∗E  is locally 

asymptotically stable. This completes the proof.  � 

Remark 6.2. Most of the results obtained in this work generalize 

those of works that dealt with the stability of the basic models of the 

dynamics of HBV infection with the particular incidence function such as 

incidence function of: Crowley-Martin, Beddington-DeAngelis and 

without forgetting the saturated and standard incidence functions and 

that resulting from the mass action principle. 

7. Conclusion 

The study was centered on the analysis of the stability of a delayed 

hepatitis B virus infection model with a specific functional response and 

absorption effect. The originality of this work is to have studied the 

dynamics of hepatitis B virus with a generalized incidence function as 

well as absorption effect. First, we showed the existence of local and 

global existence of solutions and the positivity of solution of the model. 

Then we obtained sufficient conditions for the local asymptotic stability 

for the infected and uninfected equilibria as well as the global asymptotic 

stability for the uninfected and infected equilibria with the help of the 

basic reproduction number .0R  Moreover, we showed that when the basic 

reproduction number ,10 <R  the uninfected equilibrium is globally 

asymptotically stable using a suitable Lyapunov functional and that 

when ,10 >R  the infected equilibrium point is locally asymptotically 

stable. Therefore, the basic reproduction number 0R  directly involves 

deciding whether the host becomes infected or not. Regarding global 
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stability analysis, some elegant Lyapunov functionals have been 

constructed for various models (see, for example, [19] and [25] and the 

references therein). However, it is somewhat complicated to find a 

suitable Lyapunov functional to show global asymptotic stability of the 

infected equilibrium .∗E  We left this for future investigation. We can also 

undertake an analysis of the bifurcation of the actual by following the 

work done in [37, 36, 34, 35]. Furthermore, for our future studies, we will 

extend our study on a more realistic model than the one on which we are 

working, which will take into account: the notion of diffusion, which will 

lead to partial delay differential equations, and we will replace discrete 

delay with a distributed delay. 
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