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Abstract 

Shrinkage estimators are usually applied to estimate wavelet coefficients by 

reducing the magnitudes of wavelet empirical coefficients in nonparametric 

regression modelling. There are several well succeeded available wavelet 

shrinkage estimators in the literature, but most of them work under the 

assumption of Gaussian noise in the original data. Although Gaussian noise 

might be observed in practice and allows several good estimation properties, it 

is not a general case. One might have data with additive non-gaussian noise 

and, specifically for this work, strictly positive noise. This paper evaluates the 

performance of standard wavelet shrinkage estimators in denoising data under 
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positive noise by the conduction of simulation studies involving the so called 

Donoho and Johnstone test functions. It was observed good performances of 

bayesian shrinkage rules in terms of averaged mean squared and averaged 

median absolute errors measures. 

1. Introduction 

Statistical curve estimation techniques have been applied in several 

fields, such as engineering, economy, geology, among others. One of the 

most used techniques considers a nonparametric regression model, where 

points are observed from an unknown function with an additive random 

noise. The function can be estimated by its representation in terms of a 

linear combination of basis functions, such as polynomials, splines, 

Fourier, wavelets, and others, in such a way that the problem of 

estimating the function becomes a problem of estimating a finite number 

of basis coefficients of the expansion. The choice of the convenient basis to 

be considered depends on the function space that the unknown function 

belongs to, and also on the features of the function, if they are known. 

The focus of this work is wavelets basis expansion, which is very 

suitable for estimating functions with important local features, as 

discontinuities, peaks and oscillations, once wavelets are well localized 

both in time and frequency, i.e., the nonzero wavelet coefficients are 

usually localized at features to be recovered of the function to be 

estimated, and most of the remaining coefficients are zero or very close to 

zero, at smooth regions of the function. Thus, wavelets typically represent 

a function in a sparse way. See Vidakovic [23] for more details about 

wavelet-based methods in Statistics. Further, see also Daubechies [5] and 

Mallat [17] for theoretical descriptions about wavelets. 

Although most of the wavelet coefficients of a function representation 

are zero, noisy wavelet coefficients, that are usually called empirical 

wavelet coefficients, are obtained in practice after the application of a 

discrete wavelet transformation on the data. In this sense, several 

shrinkage and thresholding estimators have been proposed to estimate 

the wavelet coefficients by reducing the magnitudes of their empirical 

counterparts, or even estimating them as zero if the empirical coefficients 
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are smaller than a certain threshold value. The seminal papers of Donoho 

[6-9] and Donoho and Johnstone [10-12] brought the spirit of these ideas, 

with the proposition of the so called soft and hard thresholding estimators 

and their properties, among other important results. Since these series of 

papers, shrinkage and thresholding rules have been developed and can be 

seen in Vidakovic [23], Jansen [14], and Nason [20]. 

One common feature of standard shrinkage and thresholding 

methods for wavelet coefficients estimation is the Gaussian noise 

assumption on the data. Although this context might occur in practice, it 

is not a general case. Few works concerning to wavelet shrinkage in 

nongaussian noise data can be found in the literature. Neumann and von 

Sachs [21], Leporini and Pesquet [16], Antoniadis et al. [2], and Averkamp 

and Houdré [3] are some of relevant works in this sense, but no one of 

them considers data under strictly positive noise. Recently, Sousa and 

Garcia [22] proposed bayesian wavelet shrinkage rules based on the 

logistic and beta priors to the wavelet coefficients of original data under 

exponential and log-normal noises, and they had good performances in 

the simulation studies against standard techniques. However, the 

proposed estimators are computational expensive, infeasible for large 

sample sizes, once they require Markov Chain Monte Carlo methods 

implementation. In this sense, it is easy to formulate a simple question: 

how do standard shrinkage and thresholding methods perform when 

dealing with data with positive noise? This work addresses this question. 

The goal of this work is to evaluate the performances of standard 

wavelet shrinkage and thresholding methods in nonparametric regression 

models with positive noise. Simulation studies were conducted by 

considering eight standard and well known methods: Universal 

thresholding, that was proposed by Donoho and Johnstone [10], False 

Discovery Rate (FDR) by Abramovich and Benjamini [1], Cross Validation 

by Nason [19], SUREshrink by Donoho and Johnstone [12], Bayesian 

Adaptive Multiresolution Smoother (BAMS) by Vidakovic and Ruggeri 

[24], Large Posterior Mode (LPM) by Cutillo et al. [4], Amplitude-Scale 
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Invariant Bayes Estimator (ABE) by Figueiredo and Nowak [13], and 

Empirical Bayes Thresholding by Johnstone and Silverman [15]. Further, 

we considered positive random noises under uniform, exponential and 

lognormal distributions. 

This paper is organized as follows: the considered statistical models 

and some background about discrete wavelet transformation and wavelet 

shrinkage are provided in Section 2. The considered shrinkage and 

thresholding methods in the simulation studies are described in Section 3. 

Simulation studies and results are analyzed in Section 4. We conclude the 

paper with some considerations in Section 5. 

2. Statistical Models and Wavelet Analysis 

We consider ,,2 N∈= Jn J  points ( ) ( )nn yxyx ,,,, 11 ⋯  from the 

nonparametric regression model 

( ) ,,,1, niexfy iii ⋯=+=  (2.1) 

where ,,,1, nixi ⋯=  are equispaced scalars, ( ) { }∞<=∈ ∫
22 : ffLf R  

is an unknown function and ie  are independent and identically 

distributed (iid) random noises such that .,,1,0 niei ⋯=>  The goal is 

to estimate f  without assumptions about its functional structure, i.e., the 

estimation procedure will take only the data points into account. To do so, 

we represent f  in wavelet basis expansion as 

( ) ( ),,,

,

xxf jj

j

kk

k

υ/θ= ∑
∈Z

 (2.2) 

where { ( ) ( ) }Z∈−/=/ kkk ,,22 2
, jxx jj

j υυ  is an orthonormal wavelet 

basis for ( )R2L  that is constructed by dilations j  and translations k  of a 

function υ/  called wavelet or mother wavelet and k,jθ  are wavelet 

coefficients that describe features of f  at spatial location k
j−2  and scale 

j2  or resolution level .j  
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We consider here random noises under uniform, exponential and 

lognormal distributions. Their densities are given by 

• Uniform noise: ( )bei ,0U~  

( ) ( )( ) ;0,
1

; ,0 >= be
b

beh ibi I   (2.3) 

• Exponential noise: ( )βExp~ie  

( ) ( )( ) ;0,exp
1

; ,0 >β








β
−

β
=β ∞ i

i
i e

e
eh I   (2.4) 

• Lognormal noise: ( )τ,0LN~ie  

( )
( )

( )( ) ,0,
2

log
exp

1
; ,02

2

>












−
π

= ∞ τ

τ2τ

τ i
i

i
i e

e

e
eh I   (2.5) 

where ( )⋅AI  is the usual indicator function on the set A  and ( )⋅log  is the 

natural logarithm. 

The estimation process of f  starts by estimation of the wavelet 

coefficients. In vector notation, model (2.1) can be written as 

,efy +=  (2.6) 

where [ ] ( ) ( )[ ]′=′= nn xfxfyy ,,,,, 11 ⋯⋯ fy  and [ ] .,,1 'ee n⋯=e  A 

discrete wavelet transform (DWT), which is typically represented by an 

orthonormal transformation matrix ( ) ,
,1 njiijnn w

≤≤× =W  is applied on 

both sides of (2.6), obtaining the following model in wavelet domain: 

,εθ +=d   (2.7) 

where Wyd =  is called empirical coefficients vector, Wf=θ  is the 

wavelet coefficients vector, and We=ε  is the random noise vector. It 

should be observed that although the random noises ie  in the original 

nonparametric model are positive, the random noises iε  in the wavelet 
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domain are not necessarily positive. The estimation of θ  is done by the 

application of a shrinkage estimator δ  on the empirical coefficients ,d  

which acts coefficient by coefficient due to the decorrelation property of 

DWT, i.e., ( ) ( ) ( )[ ] .,,1 'dd nδδ= ⋯dδ  Thus, the estimator θ̂  of a single 

wavelet coefficient θ  is  

( ),ˆ dδ=θ  

where d  is the respective single empirical coefficient at the same vector 

position of .θ  Finally, f  is then estimated by the inverse discrete wavelet 

transform (IDWT), 

.ˆˆ θtWf =  

The assumption of zero mean Gaussian noises in the original regression 

model (2.1) brings several estimation advantages. The most important 

one is that random noises in the wavelet domain remain zero mean 

gaussian with the same scale parameter as in the original model. Thus, 

the wavelet coefficient estimation problem becomes a normal location 

parameter estimation issue. In this sense, most of the standard shrinkage 

and thresholding methods were developed under Gaussian noise 

assumption. 

In this work, we are interested in analyzing the performance of some 

of the most applied standard techniques in estimating wavelet coefficients 

under positive noise in the original model. It is clear that most of the 

statistical properties of the estimators are lost under this setup, but it 

would be interesting if these methods could still be applied in these 

contexts. 

3. Comparison Methods 

In this section, we describe the considered methods for empirical 

wavelet coefficients denoising in the simulation studies. These methods 

may be shrinkage or thresholding. A shrinkage rule reduces the 
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magnitude of an empirical coefficient but does not necessarily assign it to 

zero. On the other hand, a thresholding rule shrinks a small coefficient to 

exactly zero. Moreover, a thresholding rule may have different criteria for 

choosing the threshold value. It will be seen that Universal, FDR, Cross 

Validation, and SUREshrink methods provide criteria for eliciting the 

threshold value for one considered thresholding policy, the soft 

thresholding. These four methods are considered here as classical 

thresholding methods. Further, we also considered four bayesian 

methods, such that one of them is a shrinker, BAMS, and the three 

remaining ones are thresholding, LPM, ABE, and EBAYES. 

The eight considered methods were developed under the model (2.1), 

but with the assumption that the random noises ie  are i.i.d. normal with 

zero mean and variance .2σ  The noise standard deviation σ  can be 

estimated by the Median Absolute Deviation (MAD) of the empirical 

coefficients of the finest resolution level, according Donoho and Johnstone 

[10], 

{ }
.

6745.0

2,,0:median
ˆ

1
,1

−
− =

=σ

J
Jd …kk

  (3.1) 

Although the techniques were originally proposed under gaussian 

noise assumption, we are interested in evaluate if they can be applied for 

denoising data under positive noise. A direct impact of this assumption is 

that the random noises do not have zero mean, but a mean greater than 

zero. This is an important structural change, but the above mentioned 

fact that the random noises in the wavelet domain (2.7) are not 

necessarily positive must be in mind. The shrinkage and thresholding 

methods will act on empirical coefficients with real valued random noises, 

although original data are positive noisy in (2.1). Then, we will keep (3.1) 

as a suitable estimate of σ  for the standard methods applications, once 

the empirical coefficients at finest resolution level remain the best source 

of information about random noises in the wavelet domain. 
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Next, we give a brief description about the considered methods. 

Observe that the chosen methods were developed according to a variety of 

properties and approaches. For example, some of them are based on 

nonparametric methods (Cross Validation), on hypothesis testing (FDR), 

on probabilistic approach (Universal) and on a risk measure 

(SUREshrink). Further, the Bayesian rules are built based on the 

posterior mean (BAMS and ABE), posterior mode (LPM), and posterior 

median (EBAYES) of the wavelet coefficient distributions. Again, the fact 

that noises in wavelet domain are not positive assures that these 

estimators remain suitable even under positive noise in the original data. 

3.1. Standard thresholding techniques 

The thresholding techniques in the simulation studies are based on 

the soft thresholding policy introduced by Donoho and Johnstone [11] and 

given by 

( )
( )( )





λ>λ−

λ≤

=δ

,if,sgn

,if,0

ddd

d

d   (3.2) 

where 0>λ  is the threshold value and ( )dsgn  represents the sign of .d  

In fact, the thresholding rule (3.2) shrinks empirical wavelet coefficients 

with magnitudes in [ ]λλ− ,  to zero and reduces their magnitudes in λ  

unities for those outside this interval. Larger values of λ  imply in higher 

degrees of thresholding performed by the rule, resulting in a more sparse 

estimated coefficients vector .θ̂  Figure 1 shows an example of a soft 

thresholding rule for 5=λ  and [ ].20,20−∈d  
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Figure 1. Soft thresholding rule (3.2) for .5=λ  

There are several methods for choosing λ  in the literature, see 

Vidakovic [23]. For the simulation studies of this work, we considered 

four of them, Universal, False Discovery Rate, Cross Validation and 

SUREshrink techniques, that will be described in the next subsections. 

3.1.1. Universal (UNIV) 

Donoho and Johnstone [11] proposed to choose λ  depending only on 

the sample size n and the noise standard deviation σ  as 

( ).log2UNIV nσ=λ   (3.3) 

The universal threshold rule has important asymptotic minimax 

properties and its threshold value ( )nlog2σ  can be viewed by a 

probabilistic approach, once for independent standard normal random 

variables { } { } ( )( ) ,0log2max,1 →>= nXX i
n
ii P  as .∞→n  Thus 

universal thresholding has a high probability of Gaussian noise removal 

from the empirical coefficients, see Vidakovic [23] for more details. 
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3.1.2. False discovery rate (FDR) 

False discovery rate method was proposed by Abramovich and 

Benjamini [1] and selects a threshold value based on hypothesis testing 

involving the wavelet coefficients. It works by the following steps, that 

were obtained by Nason [20]: 

• For each ,id  calculate the associated p-value ip  for testing 0:0 =θiH  

against ,0:1 =/θiH  given by ( )(( ) .,,1,12 nidp ii ⋯=σΦ−=  

• Order the obtained p-values: ( ) ( ) ( ).21 nppp ≤≤≤ ⋯  

• Let 0i  be the largest i  such that ( ) ( )qnip i ≤  for some level .q  

• The threshold value is given by 

( ),21
0

1
FDR ip−Φσ=λ −   (3.4) 

where ( )⋅Φ  is the standard normal cumulative distribution. 

3.1.3. Cross validation (CV) 

Cross validation methods are commonly used to estimate predictive 

errors. Their main idea is to separate the original sample in two parts, 

one to adjust the statistical model by estimating parameters (trainning 

set) and the other one to evaluate the quality of adjustment (test set) by 

applying it on the estimated model and comparing their predictions 

against the observed values. Nason [19] proposed the threshold to be 

chosen according to the following cross validation criterion, that was 

obtained by Morettin [18]: 

• Remove observations iy  with odd index .i  

• Estimate f  by ( )evenf̂  based on the remaining observations iy  with 

even indexes and a particular threshold value .λ  
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• Obtain 
( )

( )

( )





=+

−=+

=

−

+−

.2for,2

,12,,1for,2

11

1212
odd

niyy

niyy

y

n

ii

i

⋯

  

Obtain ( )oddf̂  and 
( )even
i

y  similarly. 

• The optimal threshold value is given by 

( ),ˆminargCV λ=λ λM  (3.5) 

where 

( ) [( ( )( ) ( ) ) ( ( )( ) ( ) ) ].ˆˆˆ 2evenodd2oddeven
iiii

i

yxfyxfM −+−=λ ∑   (3.6) 

3.1.4. SUREshrink (SURE) 

Donoho and Johnstone [12] proposed a threshold choice based on the 

Stein's unbiased risk estimation (SURE) given by 

( ) { } {( ) },,min2;SURE 22

11

λσ+λσ≤−=λ ∑∑
==

i

n

i

i

n

i

ddn Id   (3.7) 

that estimates the risk [ ( )( ) ]2
dd −δE  for ( )dδ  being the soft thresholding 

rule (3.2). Thus, the optimal threshold value SUREλ  is the argument that 

minimizes (3.7), 

( ) ( ).;SUREminarg
log20SURE dλ=λ

≤λ≤ n
  (3.8) 

3.2. Bayesian techniques 

3.2.1. Bayesian adaptive multiresolution smoother (BAMS) 

BAMS was proposed by Vidakovic and Ruggeri [24] and is obtained by 

considering ( ) ,0,1Exp~2 >µµσ  and the following prior distribution π  

to a single wavelet coefficient: 

( ) ( ) ( ) ( ),,0DE10 τα−+θαδ=θπ   (3.9) 
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where ( ) ( )⋅δ∈α 0,1,0  is a point mass function at zero and ( )τ,0DE  is 

the double exponential density with location parameter equals to zero 

and scale parameter ,0, >ττ  given by ( ) .,exp,0;
2
1

R∈θ






 θ

−=θ
τ

τ
τ

g  

The associated shrinkage rule under squared error loss, ( ) ( )dd θ=δ EBAMS  

is 

( )
( ) ( ) ( )

( ) ( )

,

2

1
,0DE1

1
BAMS










µ
α+α−

δα−
=δ

dm

ddm
d   (3.10) 

where ( )⋅m  and ( )⋅δ  are the predictive distribution of d  and the 

shrinkage rule respectively under assumption that ( )τ,0DE~θ  and 

given by 

( )

{ }
,

1
2

2exp
2

1
exp

2

µ
−

µ−
µ

−








−

=

τ

τ
τ d

d

dm  

and 

( )
{ } { } { }( )

{ } { }
.

2exp
2

1
exp

2

1

exp2expexp
2

1

2

2
2









µ−

µ
−−








µ
−

−−µ−
µ

+−







µ
−

=δ

dd

dddd

d

τττ

τ
τ

τττ

 

3.2.2. Large posterior mode (LPM) 

Cutillo et al. [4] proposed a bayesian thresholding rule that is based 

on the Maximum a Posteriori (MAP) principle. Under the model (2.1) with 

Gaussian noise, it is assumed a normal prior for ,θ  i.e., ( ),,0~ 22 tNtθ  

where ( ) .21,~ 22 >−
k

k
tt  The LPM thresholding rule picks the larger 

mode in absolute value of the posterior distribution of .dθ  Further, there 

is an interesting feature of the posterior that allows the Bayes rule to be 

thresholding. The posterior can be unimodal at zero or bimodal trivially 
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at zero and at another local mode. For the unimodal case, the empirical 

coefficient is then shrunk to zero. For the second one, it is shrunk slightly 

to the local mode. The closed form of the rule is 

( )
( ) ( )

[ )( ),
2

124sgn
,LPM

22

LMP d
ddd

d
∞+λ

−σ−+
=δ I

k
  (3.11) 

where .122LPM −σ=λ k  

3.2.3. Amplitude-scale invariant Bayes estimator (ABE) 

Figueiredo and Nowak [13] proposed a bayesian thresholding rule 

that does not depend on prior hyperparameters, which must be elicited 

for other bayesian shrinkage/thresholding methods. It assumes an 

amplitude-scale invariant (noninformative) prior ( ) 1−θ∝θπ  for θ  from 

the model (2.7). The Bayes rule is thresholding, given by 

( )
( )

,
3 22

ABE d

d
d +σ−

=δ   (3.12) 

where ( ) { }.,0max xx =+  Note that the rule depends only on the noise 

variance parameter .2σ  

Figure 2 shows BAMS, LPM and ABE rules. It is clear the shrinkage 

behaviour of BAMS, i.e., although it shrinks the empirical coefficient 

magnitude, the shrunk coefficient is not necessarily zero. On the other 

hand, LPM and ABE rules are thresholding, once they shrink a 

sufficiently small coefficient to zero. 
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Figure 2. BAMS, LPM and ABE bayesian rules. The first one is a 

shrinkage rule while LPM and ABE are thresholding rules. 

3.2.4. Empirical Bayes thresholding (EBAYES) 

This method was proposed by Johnstone and Silverman [15] and 

provides a thresholding rule based on the posterior median of dθ  

(although the method is also developed for the posterior mean in the 

original paper). The proposed prior for θ  is 

( ) ( ) ( ) ( ),;10 aθα−+θαδ=θπ g   (3.13) 

where ( )1,0∈α  and g  is a heavy-tailed unimodal and symmetric 

distribution, such as double exponential or a quasi-Cauchy distributions. 

The hyperparameters α  and a  are estimated by the marginal maximum 

likelihood (MML) of the empirical coefficient ,d  i.e., they are obtained 

from the data, which is typical for empirical Bayes procedures. If 

( ) ( )dududF π=θ ∫
∞

θ

~
 and ( )dα̂  is the estimate of α  by the MML, then 

( )

( ) ( )

( )
















α

≤α

=δ
− .otherwise,

ˆ2

1~

,210
~

ˆif,0

1EBAYES
d

d
F

dFd

d   (3.14) 
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4. Simulation Studies and Results 

The performances of the rules in denoising artificial data and 

estimating curves were obtained in simulation studies. The considered 

underlying functions in model (2.1) were the Donoho-Johnstone (D-J) test 

functions called Bumps, Blocks, Doppler, and Heavisine, which are 

extremely applied in wavelet-based methods research. These functions 

have interesting features such as peaks, discontinuities, oscillations and 

constant parts that usually appear in practice to be recovered. Table 1 

shows D-J functions definitions for [ ]1,0∈x  and Figure 3 presents their 

respective plots. 
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Table 1. Donoho-Johnstone test functions definitions for [ ]1,0∈x  used 

as underlying functions in the simulation studies 

Donoho-Johnstone test functions 

BUMPS 

( ) 






 −
= ∑ = l

l
l

l w

xx
Khxf

11

1
 

where 

( ) ( ) 41 −+= xxK  

( ) ==
11

1llx (0.1, 0.13, 0.15, 0.23, 0.25, 0.40, 0.44, 0.65, 0.76, 0.78, 0.81) 

( ) ==
11

1llh (4, 5, 3, 4, 5, 4.2, 2.1, 4.3, 3.1, 5.1, 4.2) 

( ) ==
11

1llw  (0.005, 0.005, 0.006, 0.01, 0.01, 0.03, 0.01, 0.01, 0.005, 0.008, 0.005) 

BLOCKS 

( ) ( )ll
l

xxKhxf −= ∑ =

11

1
 

where 

( ) ( )( ) 2sgn1 xxK +=  

( ) ==
11

1llx (0.1, 0.13, 0.15, 0.23, 0.25, 0.40, 0.44, 0.65, 0.76, 0.78, 0.81) 

( ) ==
11

1llh (4, � 5, 3, � 4, 5, � 4.2, 2.1, 4.3, � 3.1, 2.1, � 4.2) 

DOPPLER 

( ) ( ) 







+

π
−=

05.0

1.2
sin1

x
xxxf  

HEAVISINE 

( ) ( ) ( ) ( )xxxxf −−−−π= 72.0sgn3.0sgn4sin4  
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Figure 3. Donoho-Johnstone test functions. 

For each underlying function, datasets were generated by adding 

random noise according to model (2.1) with uniform, exponential and 

lognormal noise distributions (2.3), (2.4), and (2.5), respectively. For this 

data generation process, we considered two sample sizes, 32=n  and 

2048, and the parameters of the noise distributions were determined 

according to two considered signal to noise ratio (SNR) values, 3SNR =  

and 9. 

We adopted 200=M  replications for each scenario of underlying 

function, noise distribution, sample size and signal to noise ratio value 

and, for each shrinkage/thresholding rule, two performance measures 

were calculated, the averaged mean squared error (AMSE) given by 

[ ( )( ) ( )] ,ˆ1
AMSE

2

11

ii
m

n

i

M

m

xfxf
Mn

−= ∑∑
==

 

 



ALEX RODRIGO DOS S. SOUSA 30 

where ( )( )⋅mf̂  is the estimate of the function at a particular point in the 

m-th replication and the averaged median absolute error (AMAE), 

{ ( )( ) ( ) }.,,1:ˆmedian
1

AMAE

1

nixfxf
M ii

m
M

m

⋯=−= ∑
=

 

Tables 2, 3, and 4 show the AMSEs and AMAEs of the methods in the 

simulation studies under uniform, exponential and lognormal noises 

respectively, with the best method performance in bold for each scenario. 

For the three noise distributions, the methods had performances closed to 

each other for both measures, but mainly for AMAE. In general, the 

methods performed better for denoising data under exponential noise 

than uniform and lognormal noises and the worst general performances 

were under uniform noise. Further, the methods worked better for 

scenarios with 2048=n  and ,9SNR =  as expected. The increasing 

performances occured mainly for 9SNR =  against ,3SNR =  i.e., the 

SNR value had more impact on the performance measures than the 

sample size, although better works were observed for 2048=n  than for 

.32=n  
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Table 2. AMSE and AMAE of the shrinkage and thresholding rules in 

the simulation study for DJ-test functions under uniform noise 

Signal n Method SNR = 3 SNR = 9 

   AMSE (AMAE) AMSE (AMAE) 

Bumps 32 UNIV 46.583 (5.380) 8.224 (2.249) 

  FDR 43.597 (5.229) 15.167 (2.398) 

  CV 50.158 (5.438) 24.662 (2.638) 

  SURE 44.402 (5.159) 8.993 (1.874) 

  BAMS 20.650 (3.906) 4.380 (1.599) 

  LPM 21.865 (4.038) 2.414 (1.310) 

  ABE 31.470 (5.159) 3.454 (1.378) 

  EBAYES 27.789 (4.517) 3.575 (1.538) 

 2048 UNIV 28.694 (4.676) 4.516 (1.508) 

  FDR 20.280 (4.216) 2.497 (1.413) 

  CV 17.822 (4.122) 2.187 (1.392) 

  SURE 18.075 (4.138) 2.082 (1.382) 

  BAMS 17.579 (4.022) 2.216 (1.364) 

  LPM 21.734 (4.035) 2.417 (1.348) 

  ABE 18.515 (4.143) 2.128 (1.381) 

  EBAYES 17.427 (4.092) 1.987 (1.367) 

Doppler 32 UNIV 26.793 (4.107) 4.995 (1.440) 

  FDR 29.564 (4.079) 6.659 (1.473) 

  CV 23.956 (4.054) 5.117 (1.445) 

  SURE 22.764 (4.053) 2.522 (1.348) 

  BAMS 18.358 (3.766) 2.696 (1.261) 

  LPM 21.629 (4.020) 2.367 (1.347) 

  ABE 23.618 (3.941) 2.630 (1.315) 

  EBAYES 21.634 (4.130) 3.152 (1.440) 

 2048 UNIV 19.064 (4.065) 2.475 (1.387) 

  FDR 17.491 (4.087) 2.042 (1.366) 

  CV 16.813 (4.056) 1.905 (1.354) 

  SURE 16.899 (4.065) 1.916 (1.357) 

  BAMS 17.034 (4.024) 1.894 (1.304) 

  LPM 21.750 (4.051) 2.419 (1.345) 

  ABE 16.823 (4.090) 1.917 (1.358) 

  EBAYES 16.625 (4.049) 1.877 (1.349) 
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Table 2. (Continued) right part 

Signal n Method SNR = 3 SNR = 9 

   AMSE (AMAE) AMSE (AMAE) 

Blocks 32 UNIV 33.111 (3.618) 9.488 (1.760) 

  FDR 32.943 (3.634) 17.459 (2.010) 

  CV 32.759 (3.628) 16.679 (1.922) 

  SURE 33.051 (3.627) 17.467 (2.004) 

  BAMS 21.450 (3.834) 5.298 (1.542) 

  LPM 21.930 (4.131) 2.440 (1.345) 

  ABE 31.607 (4.383) 4.298 (1.530) 

  EBAYES 29.154 (4.231) 14.268 (2.263) 

 2048 UNIV 23.886 (3.751) 3.837 (1.365) 

  FDR 19.316 (3.956) 2.386 (1.349) 

  CV 17.588 (4.027) 2.052 (1.342) 

  SURE 17.816 (4.017) 2.049 (1.341) 

  BAMS 17.508 (4.018) 2.154 (1.328) 

  LPM 21.809 (4.042) 2.419 (1.345) 

  ABE 18.148 (4.078) 2.110 (1.362) 

  EBAYES 17.410 (4.047) 1.964 (1.350) 

Heavisine 32 UNIV 17.888 (4.029) 2.516 (1.317) 

  FDR 17.887 (4.031) 2.491 (1.316) 

  CV 17.923 (4.029) 2.459 (1.312) 

  SURE 17.895 (4.030) 2.474 (1.314) 

  BAMS 16.024 (3.680) 4.001 (1.562) 

  LPM 21.457 (4.058) 2.482 (1.335) 

  ABE 13.996 (3.010) 3.893 (1.633) 

  EBAYES 18.419 (4.022) 2.423 (1.311) 

 2048 UNIV 16.824 (4.045) 2.063 (1.333) 

  FDR 16.730 (4.038) 1.937 (1.346) 

  CV 16.551 (4.042) 1.867 (1.346) 

  SURE 16.683 (4.037) 1.944 (1.345) 

  BAMS 16.941 (4.030) 1.831 (1.318) 

  LPM 21.758 (4.048) 2.414 (1.349) 

  ABE 16.464 (4.025) 1.895 (1.357) 

  EBAYES 16.483 (4.055) 1.851 (1.350) 
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Table 3. AMSE and AMAE of the shrinkage and thresholding rules in 

the simulation study for DJ-test functions under exponential noise 

Signal n Method SNR = 3 SNR = 9 

   AMSE (AMAE) AMSE (AMAE) 

Bumps 32 UNIV 1.528 (0.887) 10.277 (2.265) 

  FDR 9.427 (1.634) 19.113 (2.410) 

  CV 20.712 (1.798) 28.800 (2.639) 

  SURE 2.754 (1.088) 16.869 (2.100) 

  BAMS 2.911 (1.175) 5.020 (1.580) 

  LPM 0.357 (0.304) 3.398 (0.9072) 

  ABE 0.512 (0.453) 4.756 (1.483) 

  EBAYES 1.307 (0.698) 5.203 (1.576) 

 2048 UNIV 0.801 (0.546) 5.108 (1.528) 

  FDR 0.334 (0.461) 2.638 (1.369) 

  CV 0.490 (0.493) 2.397 (1.333) 

  SURE 0.270 (0.412) 2.308 (12.441) 

  BAMS 0.602 (0.527) 2.225 (1.267) 

  LPM 0.369 (0.297) 3.313 (0.895) 

  ABE 0.251 (0.427) 2.207 (1.312) 

  EBAYES 0.263 (0.398) 2.290 (1.208) 

Doppler 32 UNIV 0.910 (0.628) 5.741 (1.443) 

  FDR 2.090 (0.685)  10.102 (1.501) 

  CV 1.895 (0.722)  6.426 (1.461) 

  SURE 0.474 (0.506)  3.509 (1.268) 

  BAMS 1.394 (0.736)  3.016 (1.213 

  LPM 0.353 (0.310)  3.311 (0.911) 

  ABE 0.377 (0.462)  3.261 (1.292 

  EBAYES 0.521 (0.560)  4.426 (1.476) 

 2048 UNIV 0.358 (0.470)  2.464 (1.336) 

  FDR 0.232 (0.438)  1.962 (1.295) 

  CV 0.228 (0.435)  1.930 (1.283) 

  SURE 0.232 (0.405)  2.046 (1.213) 

  BAMS 0.300 (0.402)  1.842 (1.206) 

  LPM 0.367 (0.297)  3.299 (0.887) 

  ABE 0.210 (0.426)  1.881 (1.280) 

  EBAYES 0.234 (0.406)  2.091 (1.225) 
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Table 3. (Continued) right part 

Signal n Method SNR = 3 SNR = 9 

   AMSE (AMAE) AMSE (AMAE) 

Blocks 32 UNIV 1.840 (0.881) 10.865 (1.891) 

  FDR 15.734 (2.449) 17.479 (2.133) 

  CV 14.712 (2.387) 16.872 (2.073) 

  SURE 15.734 (2.449) 17.486 (2.130) 

  BAMS 3.877 (1.286) 5.816 (1.532) 

  LPM 0.378 (0.307) 3.378 (0.939) 

  ABE 0.548 (0.446) 5.821 (1.607) 

  EBAYES 12.255 (2.023) 14.001 (2.271) 

 2048 UNIV 0.693 (0.491) 4.160 (1.312) 

  FDR 0.317 (0.434) 2.469 (1.281) 

  CV 0.334 (0.437) 2.255 (1.255) 

  SURE 0.264 (0.401) 2.252 (1.198) 

  BAMS 0.545 (0.467) 2.151 (1.230) 

  LPM 0.368 (0.298) 3.325 (0.890) 

  ABE 0.249 (0.427) 2.174 (1.290) 

  EBAYES 0.258 (0.397) 2.251 (1.201) 

Heavisine 32 UNIV 0.573 (0.486)  2.457 (1.257) 

  FDR 0.559 (0.472)  2.468 (1.242) 

  CV 0.609 (0.492)  2.437 (1.237) 

  SURE 0.559 (0.476)  2.461 (1.234) 

  BAMS 1.148 (0.627)  3.766 (1.479) 

  LPM 0.371 (0.308)  3.097 (0.926) 

  ABE 0.432 (0.451)  3.701 (1.581) 

  EBAYES 0.375 (0.406)  2.629 (1.176) 

 2048 UNIV 0.273 (0.436)  1.941 (1.274) 

  FDR 0.216 (0.424)  1.817 (1.278) 

  CV 0.212 (0.421)  1.815 (1.277) 

  SURE 0.226 (0.404)  1.882 (1.264) 

  BAMS 0.244 (0.402)  1.771 (1.226) 

  LPM 0.366 (0.296)  3.297 (0.893) 

  ABE 0.207 (0.425)  1.842 (1.289) 

  EBAYES 0.229 (0.411)  2.030 (1.245) 
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Table 4. AMSE and AMAE of the shrinkage and thresholding rules in 

the simulation study for DJ-test functions under lognormal noise 

Signal n Method SNR = 3 SNR = 9 

   AMSE (AMAE) AMSE (AMAE) 

Bumps 32 UNIV 18.345 (2.837)  6.779 (2.065) 

  FDR 23.773 (2.884)  12.772 (2.313) 

  CV 33.447 (3.109)  23.781 (2.490) 

  SURE 24.057 (2.665)  7.610 (1.792) 

  BAMS 8.768 (1.669)  4.030 (1.550) 

  LPM 8.217 (1.031)  2.014 (1.029) 

  ABE 10.424 (2.144)  2.813 (1.192) 

  EBAYES 9.900 (1.950)  2.996 (1.389) 

 2048 UNIV 9.993 (2.116)  3.782 (1.347) 

  FDR 5.620 (1.707)  1.856 (1.238) 

  CV 5.635 (1.730)  1.843 (1.236) 

  SURE 6.124 (1.470)  1.688 (1.168) 

  BAMS 5.897 (1.524)  1.840 (1.207) 

  LPM 8.470 (1.000)  2.026 (1.002) 

  ABE 5.570 (1.692)  1.715 (1.219) 

  EBAYES 6.696 (1.388)  1.673 (1.147) 

Doppler 32 UNIV 10.195 (1.805)  4.253 (1.320) 

  FDR 13.568 (1.857)  5.663 (1.340) 

  CV 10.681 (1.797)  4.360 (1.322) 

  SURE 9.040 (1.575)  2.123 (1.186) 

  BAMS 8.783 (1.385)  2.388 (1.178) 

  LPM 9.924 (1.017)  2.010 (1.020) 

  ABE 8.156 (1.750)  2.182 (1.205) 

  EBAYES 9.610 (1.766)  2.544 (1.316) 

 2048 UNIV 4.529 (1.758)  2.014 (1.235) 

  FDR 4.384 (1.638)  1.573 (1.205) 

  CV 4.084 (1.699)  1.554 (1.197) 

  SURE 5.476 (1.443)  1.586 (1.156) 

  BAMS 5.040 (1.497)  1.521 (1.145) 

  LPM 8.122 (1.000)  2.033 (1.000) 

  ABE 4.480 (1.662)  1.535 (1.201) 

  EBAYES 6.132 (1.410)  1.596 (1.158) 
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Table 4. (Continued) right part 

Signal n Method SNR = 3 SNR = 9 

   AMSE (AMAE) AMSE (AMAE) 

Blocks 32 UNIV 16.109 (2.103)  8.000 (1.695) 

  FDR 19.834 (2.222)  17.067 (2.027) 

  CV 19.660 (2.179)  16.252 (1.923) 

  SURE 20.165 (2.222)  17.051 (2.026) 

  BAMS 10.385 (1.653)  4.897 (1.516) 

  LPM 9.165 (1.025)  2.047 (1.006) 

  ABE 12.096 (2.134)  3.382 (1.335) 

  EBAYES 17.141 (2.386)  13.769 (2.200) 

 2048 UNIV 7.556 (1.688)  3.226 (1.234) 

  FDR 5.266 (1.614)  1.796 (1.185) 

  CV 5.242 (1.632)  1.712 (1.177) 

  SURE 5.976 (1.437)  1.668 (1.145) 

  BAMS 5.704 (1.499)  1.778 (1.171) 

  LPM 8.425 (1.003)  2.029 (1.000) 

  ABE 5.380 (1.674)  1.699 (1.202) 

  EBAYES 6.555 (1.391)  1.657 (1.142) 

Heavisine 32 UNIV 5.078 (1.546)  2.052 (1.168) 

  FDR 5.916 (1.504)  2.013 (1.159) 

  CV 5.820 (1.506)  1.993 (1.163) 

  SURE 6.539 (1.471)  2.001 (1.160) 

  BAMS 8.032 (1.589)  3.408 (1.375) 

  LPM 9.125 (1.012)  2.018 (1.008) 

  ABE 7.543 (1.886)  2.899 (1.386) 

  EBAYES 7.578 (1.387)  1.952 (1.134) 

 2048 UNIV 3.521 (1.684)  1.657 (1.177) 

  FDR 4.319 (1.631)  1.512 (1.185) 

  CV 3.798 (1.677)  1.508 (1.181) 

  SURE 5.582 (1.442)  1.556 (1.152) 

  BAMS 5.184 (1.520)  1.457 (1.153) 

  LPM 8.339 (1.001)  2.026 (0.997) 

  ABE 4.670 (1.709)  1.512 (1.192) 

  EBAYES 6.255 (1.430)  1.573 (1.162) 
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Table 5 summarizes the number of scenarios in terms of underlying 

function, sample size and signal to noise ratio that each method had the 

best performance, according to uniform, exponential and lognormal 

noises. In general, we observed that bayesian methods performed better 

than the classical ones. Under uniform noise, EBAYES was the best for 

AMSE measure and BAMS for AMAE. LPM and ABE also were the best 

in some scenarios. In the considered classical methods set, only universal 

thresholding won some scenarios. Under exponential noise, LPM had 

great superiority, being the best considering AMSE in six of the sixteen 

scenarios and also for AMAE, which was the best in all the contexts. This 

behaviour also occured under lognormal noise, where LPM was the best 

in all scenarios in terms of AMAE and in five of the sixteen contexts in 

terms of AMSE. Thus, for AMAE measure, LPM was the best one for all 

scenarios under exponential and lognormal noises. It should be noted that 

FDR and SURE methods did not win any scenario for both measures. 

Moreover, UNIV and CV won only a few number of scenarios, if compared 

with bayesian methods performances. 

Table 5. Number of scenarios that each method was the best in terms of 

AMSE and AMAE according to noise distribution in the simulation study 

 Noise Distribution 

 Uniform Exponential Lognormal 

Method AMSE AMAE AMSE AMAE AMSE AMAE 

UNIV 0 2 0 0 2 0 

FDR 0 0 0 0 0 0 

CV 0 0 1 0 2 0 

SURE 0 0 0 0 0 0 

BAMS 4 8 4 0 2 0 

LPM 3 3 6 16 5 16 

ABE 2 2 5 0 2 0 

EBAYES 7 1 0 0 3 0 
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Finally, Figures 4 and 5 show boxplots of the mean squared error 

(MSE) of the methods in the replications under 2048=n  and 9SNR =  

for each underlying function and Figures 6 and 7 present the boxplots of 

the median absolute error (MAE) of them. In general, both the MSEs and 

MAEs of the methods had small variation in their replications, which 

means precision in the obtained values. Moreover, it is possible to 

visualize that there were not meaningful differences in MSEs among the 

methods in most of the scenarios but LPM was predominant in terms of 

MAEs. 

 

Figure 4. Boxplots of MSE of the methods in simulation studies for 

Bumps and Blocks functions, 2048=n  and .9SNR =  The associated 

methods are: 1-UNIV, 2-FDR, 3-CV, 4-SURE, 5-BAMS, 6-LPM, 7-ABE, 

and 8-EBAYES. 
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Figure 5. Boxplots of MSE of the methods in simulation studies for 

Doppler and Heavisine functions, 2048=n  and .9SNR =  The 

associated methods are: 1-UNIV, 2-FDR, 3-CV, 4-SURE, 5-BAMS, 6-LPM, 

7-ABE, and 8-EBAYES. 
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Figure 6. Boxplots of MAE of the methods in simulation studies for 

Bumps and Blocks functions, 2048=n  and .9SNR =  The associated 

methods are: 1-UNIV, 2-FDR, 3-CV, 4-SURE, 5-BAMS, 6-LPM, 7-ABE, 

and 8-EBAYES. 

 

 

 

 

 



A COMPARISON SIMULATION STUDY OF STANDARD … 41 

 

Figure 7. Boxplots of MAE of the methods in simulation studies for 

Doppler and Heavisine functions, 2048=n  and .9SNR =  The 

associated methods are: 1-UNIV, 2-FDR, 3-CV, 4-SURE, 5-BAMS, 6-LPM, 

7-ABE, and 8-EBAYES. 

5. Final Considerations 

This work proposed the evaluation of the performances of standard 

wavelet shrinkage and thresholding methods in estimating an unknown 

function in a nonparametric regression model with strictly positive noise. 

It was considered the uniform, exponential and lognormal distributions to 

the random noise in the nonparametric regression model and eight 

shrinkage and thresholding estimators were considered in the simulation 

studies. 

In general, the bayesian shrinkage estimators performed better in 

terms of averaged mean squared error (AMSE) and averaged median 

absolute error (AMAE). Under AMAE measure, Large Posterior Mode 

(LPM) method had the best results in all the scenarios under exponential 
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and lognormal noises. Moreover, False Discovery Rate (FDR) and 

SUREshrink (SURE) methods were not the best in any considered 

scenario. It should be emphasized that the methods were developed under 

gaussian noise assumption, thus the simulation results suggest some kind 

of flexibility in terms of noise distribution for the bayesian shrinkage 

methods, i.e., they can even be applied successfully in denoising data 

under strictly positive noise. 

The performances of the methods under the assumption of other noise 

distributions with positive support or even a theoretical generalization in 

this sense, the consideration of other shrinkage and thresholding 

estimators and the impact of the chosen wavelet basis in the estimation 

process are some welcome future works in this area. 
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