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Abstract 

Closed forms are obtained for maximum likelihood estimates (MLE) of 

multivariate normal with missing data using auxiliary information. The 

likelihood function is obtained as product of several independent normal and 

conditional normal likelihood functions. The parameters are transformed into a 

new set of parameters of which the MLEs are easy to derive. Since the MLEs 

are invariant, the MLEs of the original parameters are derived using the 

inverse transformation. 
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1. Introduction 

In statistical practice, missing data arises in many situations, 

especially in public survey. For example, during data gathering and 

recording, when the experiment is involved a group of individuals over a 

period of time like in clinical trials or in a planned experiment where the 

variables that are expensive to measure are collected only from a subset 

of a sample. The causes for missing data are not our concern, but to 

ignore the process that causes missing data it is assumed that the data 

are missing at random (MAR). Lu and Copas [13] pointed out that 

inference from the likelihood method ignoring the missing data 

mechanism is valid if and only if the missing data mechanism is MAR. 

For formal definition and exposition of MAR or missing completely at 

random, we refer to Little and Rubin [11] or Little [12]. 

Anderson [1], one of the earliest papers in this area, gives a simple 

approach to derive the MLEs and present them for a special case of 

monotone pattern. Krishnamoorthy and Pannala [6, 8] provided an 

accurate, simple approach to construct a confidence region for a normal 

mean vector. Hao and Krishnamoorthy [3] developed an inferential 

procedure on a normal covariance matrix. Yu et al. [23] considered the 

problem of testing equality of two normal mean vectors with the 

assumption that the two covariance matrices are equal. Based on the 

work of Krishnamoorthy and Yu [9] on the multivariate Behrens Fisher 

problem with complete data, Krishnamoorthy and Yu [10] provided an 

approximate solution to the multivariate Behrens-Fisher problem with 

missing data. Krishnamoorthy [7] considered the inference on simple 

correlation coefficients with monotone missing data, and pointed out that 

the inference based on incomplete samples and those based on samples 

after listwise or pairwise deletion are similar, and the loss of efficiency by 

ignoring additional data is not appreciable. Yagi et al. [20] obtained an 

asymptotic solution of ANOVA with monotone missing data using Taylor 

expansion. Yu et al. [24] considered the problem of testing equality of two 

normal covariance matrices with monotone missing data. Yamada et al. 
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[21] used the Mardia statistics to test whether the monotone missing data 

is multivariate normal, while Raykov et al. [15] solved the same problem 

through combining several simple tests. 

On the other hand, auxiliary variables are also very common in 

practice. They are usually highly related to the research variables. For 

example, if the research variable is sleeping time, auxiliary variables can 

be age, blood pressure, gender, etc. Making full use of auxiliary 

information can effectively improve the accuracy of inference. For 

instance, we usually use sample mean to estimate the population mean. 

However, if there are auxiliary variables, other estimates using the 

auxiliary information are much better. Cochran [2] proposed the ratio 

estimation of the population mean in simple random sample survey, and 

pointed out that the ratio estimation reached the best when the research 

variables and auxiliary variables were highly positively correlated and 

the regression line passed through the origin. The product estimation was 

first proposed by Robson [16] and rediscovered by Murthy [14], which is 

suitable for the situation where the research variables and auxiliary 

variables are highly negatively correlated. The regression estimation 

proposed by Watson [19] is suitable for the case that the regression line of 

the research variable and auxiliary variable does not pass through the 

origin. In later years, many scholars proposed various methods to 

improve the estimation of population mean in Simple Random Sampling. 

For details, see Singh and Tailor [17], Singh et al. [18], Yan and Tian [22], 

Khan et al. [5] Kadilar [4], etc. 

In this paper, we consider the MLEs for multivariate normal with 

incomplete data in presence of auxiliary information. Suppose that the p 

dimensional variable y with expectation µ  and covariance matrix ∑  is 

the research variable that we are interested in, but its observations are 

not complete. In addition, suppose that there is q dimensional auxiliary 

variables x with a known expectation c. For simplicity, we assume that 

the samples of y are of two-step monotone missing pattern. It is easy to 

generalize the ideas and results to higher steps, but the notation will 

become very complicated.  
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2. Maximum Likelihood Estimation 

Let the research variable ,
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 but there are 

32 nn −  samples missing on ,2y  the second component of the research 

variable. Moreover, there are additional 21 nnm −=  observations solely 

on .x  In other words, we have a random sample like this: 
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where mnn += 21  and the sample of the research variable is incomplete. 
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Partition the data in (1) as follows: 
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Denote the sample mean vector and the sum of squares and sum of 

products matrix based on iE  by ( ), ,i iVE  ,3,2,1=i  and partition these 

means and matrices accordingly as follows: 
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Define 
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Consider the density function of data in (1). We note that the density 

of x  and y  can be written as the marginal density of x  times the 

conditional density of 1y  given x  times the conditional density of 2y  

given 1, yx  (we denote the density of normal distribution by ( )⋅n  here). 

After some calculation, the likelihood function can be written as 
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The maximum likelihood estimates of ,,,,, 21.31.21.21.211
µµ ∑∑ B   

∑ 21.321.3 ,B are those values that maximize (5). To maximize (5) with 

respect to ,
11∑  we maximize ( ).,

111 ∑∏
+

=
cxn i

mn

i
 This gives us the 

usual maximum likelihood estimates of the parameters of a normal 
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To maximize (5) with respect to 1.21.2 , Bµ  and ,
1.2∑  we maximize 

the second term of the right hand side of (5). This gives the usual 

estimates of regression parameters, namely, 
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To maximize (5) with respect to 21.321.3 , Bµ  and ,
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maximize the third term of the right hand side of (5). This gives the usual 
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It is easy to see that the maximum likelihood estimates of the original 

parameters 
332313222121 ,,,,,, ∑∑∑∑∑ µµ  are obtained by solving 
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It is obvious that µ̂  is determined completely by 2E  and ,3E  which are 

not related to the last 21 nn −  observations of the auxiliary variables .x  

However, 
�

∑  is different. It is not only related to 2E  and ,3E  but also 

related to the extra observations on x in .1E  
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