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Abstract
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1. Introduction

A strong stationary time (SST) introduced by Aldous and Diaconis
[1, 2] is a randomized stopping time T for the discrete time chain X such

that X7 has the stationary distribution and is independent of 7. The

SST is a powerful tool to deal with the convergence to stationarity for a
Markov chain. In order to get the SST, Diaconis and Fill [4] suggested a
way to construct strong stationary duality (SSD), such that the absorption
time of the SSD chain is equal in distribution to an SST for X. Then one
can bound the SST in the original chain through the absorption time.
Especially, Diaconis and Fill showed a tractable case in [4] (Theorem 4.6)
on the linearly ordered state space. In this case, they showed how to
construct SSD, under the assumption of stochastic monotonicity. Diaconis
and Fill [5] extended the theory of SSD for the discrete time chain on the
countable state space. Fill [6] extended the theory of SSD for the

continuous time chain.

Lorek and Szekli [9, 10] generalized the above tractable case for the
discrete time chain, they considered the finite partially ordered state
space instead of the linearly ordered state space. Since stochastic
monotonicity is not sufficient in this case, they used Mo6bius monotone

instead of stochastic monotone.

In this paper, we construct SSD for continuous time Mdbius monotone
Markov chains on the finite partially ordered state space. Also, we

construct a nonexplosive algebraic duality for continuous time Markov
chains on Zf. In order to state conveniently, we introduce some symbols
and definitions in [6].

Let X = (X;),5o be an ergodic continuous time Markov chain on the
finite state space E, with initial distribution my, the conservative @

matrix @, the stationary distribution ®, and the transition function P(t).

We write X ~ (ny, @, P(t)) for short below. Let X* ~ (w5, @, P(t)) on
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the finite state space E*. Assume X" has an absorbing state x,. Let
Alx, y), x € E*, ye E, be a link, or a transition kernel such that

A(xy, ) = m. From [6], we know that X* is an SSD for X with respect to

A if and only if the algebraic duality equations
Ty = ToA and AQ = Q@A (1.1)

hold. Moreover, AQ = @“A is equivalent to AP(t) = P*(t)A for all ¢ > 0.
In this case, the absorbing time T;a that X" hits x, is an SST for X.
For the countable state space E, Fill also gived SSD theory with some
assumptions, which are called as “general setting” in [6]. However, if
E = Zf, the assumptions are not easy to tractable. But we can construct

a nonexplosive algebraic duality, which satisfies (1.1) and can also be

used to study the convergence to stationarity for the Markov chain.

We will assume E 1is a finite partially ordered state space or Zf
below. If E is a finite partially ordered state space, define a partial order
<on E.If E = Zf, define the natural partial order <, i.e., for x, y € E,
x<yex <y (V1<i<d).

From [8] and [9], we define |-Mobius monotonicity of a nonnegative

function and a @ matrix on E as follows.

Definition 1.1. A nonnegative function f on E is {-Mébius monotone:

if there exists a nonnegative function m on E such that

flx) = zyeE:yixm(y) for any x € E.

Define {x}i ={ye E:y=<x} for any xe E. Let Q(x, {y}i) =

ZZEE:ijQ(x, z) forany x, y € E.
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Definition 1.2. A @ matrix @ on E x E is {-Mo6bius monotone: if on
E x E, there exists a matrix M which is nonnegative off the diagonal

such that

Qx. )= > M@y, Vryek
zeE:z>x
Definition 1.3. Let X ~ (ny, @, P(¢)) on the countable state space.
Suppose P(t) is the minimal @ process and let 7, be the n-th jumping
time of X, then @ 1is called nonexplosive if for any initial distribution,

P(lim,,_,,, 7, = =) =1.
Now we can state our main theorems.
Theorem 1.4. Let X ~ (mng, @, P(t)) be an ergodic continuous time

Markov chain on a finite partially ordered state space E = {xl, . xM},

M

with a unique maximal state x™ and the stationary distribution T.

Suppose @ is conservative, and define the time reversal of @ as

= = . - T
Q@ =(q, ,) with q, :&qy’x, let H(x) =)

) (y) and

yeE:y<x

glx) = T;O(—Ecx)). Then there exists an SSD chain X* ~ (ny, @, P*(t)) on

m(y)

E with the link kernel: Ax, y) = I(y~y) ,x,ye E, if and only if
the following two conditions hold:

() g is \-Mobius monotone on E;

(i) @ is L-Mibius monotone on E.

In this case, the SSD chain (for details, see Section 3) is uniquely
determined by

T (X) _ n*(y) — 1 3 H(x) .
ERRPI o RGP -
yeliiy-x zeE:z>y

forany x, y € E.
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Theorem 1.5. Let X ~ (ng, @, P(t)) be an ergodic continuous time Markov

chain on E = Zf, with the stationary distribution = Suppose @ is

—

conservative and nonexplosive. Define the time reversal of @ as @ = (q X y)

o (x)

1 6)) _
with q, , =—5dy x, let H(x)—z )

ni(x)
Then  there exists a nonexplosive algebraic duality chain

X* ~ (my, @, P(t)) (P*(t) is the minimal @ process) on E with the

m(y)
H(x)

By <x ™) and glx) =

link kernel: A(x, y) = Iy y) ,x, ye E, if and only if the following

three conditions hold:

() g is \-Mobius monotone on E;
(i1) 5 is L-M6bius monotone on E;

(i) Q" is nonexplosive on E.

In this case, the nonexplosive algebraic duality chain (for details, see

Section 3) is uniquely determined by

To(x) _ mo(y) 5 Iy H(x)
T EZ ) @nd Qy ) = EZ Hez) Toos
YEL:Yy =X ez Y

forany x, y € E.

Let m; be the law of X;. The variation distance is defined by |n; — 7|
= max 4 g|n;(A) - 7(A)|. One advantage in establishing SSD is that

useful bounds on variation distance can be obtained by stopping the
process before absorption. Through this method, the early stopping
theorem in [6] yielded useful bounds. Moreover, the early stopping
theorem can apply to the algebraic duality. An argument similar to the
early stopping theorem in [5] (Corollary 2.1) shows the following
corollary, which transforms analysis of convergence rate for X into the

first passage time for the dual chain.
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Corollary 1.6. For the chain (X*, X) of Theorem 1.4 or Theorem 1.5, let
T be the first hitting time of A c E for X*, where A ={xe E : x = x"},

x" € E. Then
||7tt - 7r|| <(A-H(x)+ H")P{T >t}, t=>0.

Here is an outline for the paper. Section 2 of this paper studies the
Moébius function and Mobius monotonicity. Section 3 of this paper shows
the proof of Theorem 1.4 and Theorem 1.5. Section 4 of this paper gives

examples of the two-dimensional birth and death chain.
2. M6bius Monotonicity
Define E as a finite partially ordered set or Zf. The zeta function {

of E is denoted by V x,ye E,{(x, y)=1 if x <y and {(x, y)=0

otherwise. The inverse to { is the Mobius function 1, which satisfies

D HE Y= Y e y) =8y, @D

zeE:x<z=<y zeE:x<z=<y

where 8(x, y) =1 if x = y and 8(x, y) = 0 otherwise. From Proposition 5

in [11], we obtain for any x = (x1, ..., xg), ¥ = (31, ---» Yq) € Zf,

H((xl’ ) xd)’ (yl’ (R yd))

d
(- 1)zi=1(yi_xi), if each y; —x; =0 or 1,
- 2.2)

0, otherwise.

With the help of Moébius function |, we will give criteria on the
MGobius monotonicity of nonnegative functions and @ matrices. From [9],

we can obtain the following proposition:
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Proposition 2.1. If E is a finite partially ordered set, then a nonnegative

function f on E is \-Mobius monotone if and only if Z

zeE:z>y

w(y, 2)f(z) 20 forany y e E.

Proposition 2.2. If E is a finite partially ordered set, then a @ matrix
Q on ExE is l-Mébius monotone if and only if z

zeE:z>y
wy, 2)Q(z, {x}i) >0 forany x, ye E and x # y.

Proof. Suppose @ is {-Mébius monotone, then from Definition 1.2, there

exists a matrix M which is nonnegative off the diagonal such that

Qafct)= Y ME.x). Vrzek

ZeE:Z -z
Since E is finite and (2.1), we can get

> ou 2R )= Y ul,2) M(Z, x)

zeE:z>y zeE:z>y ZeE:Z »z
= Z Mz, x) Wy, 2)
ZeE:zZ -y zeE:y<z=<27

= Z M, x)d(y, 2) = M(y, x) 20, x # y.
ZeE:Z »y

Conversely, let M(z, y) = Z wz, 2)Q(z, {y}i) for any z, y e E,

ZeE:Z ~z
then M is nonnegative off the diagonal. Since E is finite and (2.1), we

can obtain

Z M(z, y)

D ue DRE b

zeE:z>x 2€E:z-x2cE:z ~z
_ ’ J/ ’
= Q(Z, {y}") iz, 2
ZeE:Z -« zeEx<z=<2

Q2 1 ), 2) = Qa, ).
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Thus @ is {-M&bius monotone. O

Note that, if E = Zf, then lim,_,, f(x) = 0 is to say for every e > 0,
there is a finite set A ¢ E such that | f(x)| < € for any x € E\A. Then
from [7] (Proposition 2.4 and Remark 2.5), we can get the following

proposition.

Proposition 2.3. If E = Zf, then a nonnegative function f on E is

l-Mo6bius monotone if and only if lim,_,. f(x) =0 and ZzeE'Z>—y
Wy, 2)f(z) 2 0 forany y e E.

Proposition 2.4. If E:Zf, then ¢ @ matrix @ on EXE is

l-Mébius monotone if and only if lim,_,,, dx,y =0 for any y e E, and
ZZGE:Ztyu(y, 2)Q(z, {x}i) >0 forany x, ye E and x + y.

Proof. Suppose @ is {-Mo6bius monotone, then from Definition 1.2, there

exists a matrix M which is nonnegative off the diagonal such that

Q. {et)= > M(n2), v zek

yeE:y>=x

We will prove lim, _, ., Q(x, {z}i) =lim,_,, Z M(y, z) = 0. Since

yeE:y>=x

for fixed z € E,

M(y, 2) = Q(x, {2} ) - M(z, 2) < =,

we have lim,_, Z M(y, z) =0, where A, ={(n, ..., n)}¢,

y#¥z, ye E\A,
that is to say for any € > 0, there exists N > 0, such that when n > N,

we have Z M(y, z) < €. Then, for any € > 0, for enough large

y+z,ye E\ A,

M > 0, there exists Ay, such that when x € E\A);, we have z / x and

Z M(y, z) < Z M(y, z) < &
yeE:y>=x y#z,ye E\Aps
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Therefore, lim,, _,, z M(y, z) = lim, ., Q(x, {z}¢) = 0. Also, since

yeE:y>x

Qe = D> D gl )

zeE:z=<y zeE:z<yzZeE:Z' <z

Z dx, 2 Z “(27 y)

ZeE:Z'<y zeE:Z'<z=<y

Z I, 292,y = Qx,y-

ZeE:Z'<y

We get lim,_,., g, , = 0. By using (2.1), we obtain

D ou 2R ) = D w2 Y MEx)

zeE:z>y zeE:z»y ZeE:Z -z
= Z M(Z, x) u(y, 2)
ZeE:Z »y zeE:y<z=<z

The second equality above is followed by the dominated convergence

theorem. Therefore, Z w(y, 2)Q(z, {x}i) > 0 for any x # y.

zeE:z-y

Conversely, let M(z, y)= Z wz, 2)Q(z, {y}i ), for any

ZeE:Z -z

z,ye E. We need to prove Q(x, {y}¢)= Z M(z, y) for any

zeE:z-x
x, y € E. For convenience, we take x = (0, ..., 0), and the proof is

similar for any other x € E. Define e¢; = (0, ..., 0,1, 0, ..., 0) with 1 at

z
the i-th coordinate, for convenience, we define z = Z Then by

y=x

yx<y=<z

using (2.2), we get
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(n,...,n)
Mz y) = lim > M, y)
n—eo
zeE:z>(0,...,0) z=(0,...,0)
(n,...,n), z+(@1,...,1) .
=lim > Y u2)QE )

—>00
n z2=(0,...,0) 2=z

d
= lim| QUO, .., 0), ")+ D (- Q((n + ey, {y}*)

n—>o0 ;
1=1

Y DT QU+ e + (1 + e, {51)
i#j
1<i,j<d

bt (R 41, o, n 1), OFY)

= Q(O, ..., 0), {3}).
A similar proof of Lemma 2.4 in [12] shows that, for any y € E, lim, _,,
qx,y = 0 implies lim . g, , =0 for any x" € Zd\E with Z_+ =Z,
Heo}. Thus, the last equality above is followed by lim,_,., g, , =0 for

any y e E. O

3. Proof of Theorem 1.4 and Theorem 1.5

With the help of Proposition 2.1 and Proposition 2.2, the proof of
Theorem 1.4 is similar to that of Theorem 1.5. Thus, we now only prove

Theorem 1.5, using the Propositions 2.3 and 2.4.

Proof of Theorem 1.5. Let E = Zf, from [6], to prove the existence of

nonexplosive algebraic duality, we need to check the algebraic duality

equations

Tg = ToA,  AQ = QpA.
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Also, we need to check that @" is nonexplosive on E. As for my = nyA,

we have

_molx) mo(y)
g) = = yeE;>x He) VEeE

Then we get my = TyA has a nonnegative solution if and only if g is
l-Mobius monotone, which from Proposition 2.3 is equivalent to

lim,_,. g(x) =0 and ZZEE:Z>yu(y, z)g(z) 2 0, for any y € E. Also, in

this case, we get

mo(y) = H(y) Z Wy, 2)g(z) 20, VyeE.

zeE:z>y

From m, = myA, it is clear that the solution sums to unity. Therefore,

is a probability vector.

As for AQ = Q"A, we have

Z Alx, 2)q;, y = Zqﬁ’é,z/\(z, y), Vux yekE,

zeE zeE
that is,
*
1 7(z) q _ dx,z
2,y = :
H(x) zeE:z<x () zeE:z=y H()

Using @qz,y = Ey »» we have

m(y)

Q)= Y THai. vayeE

zeE:z>y

Then we get AQ = @ A has a solution which is nonnegative off the

diagonal, if and only if @ is {-Mébius monotone, which from Proposition
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2.4 is equivalent to lim,_,,, Ex y =0 for any y e E, and z

zeE:z>y
w(y, 2)6(2, {x}¢) > 0 for any x # y. Also, in this case, we get
«  _ H() = !
Ty = FH(x) D uly, 2R x)), Y, ye E, (3.1)
zeE:z>y

E . . *
We now prove @ is a conservative ¢ matrix. From AQ = @ A, we have

D Al 2z y = D ai AR y), YV ye k.

zeE zeE

If x € E, since {y € E : y < x} is finite and @ is conservative, we get

Z ZA(x’ Z)qz,y = ZA(x’ Z)Zqz,y =0,

yek zeE zeE yeE

and

DD Ay = D D A = Y

yeE zeE zek yeE zeE

So ZZEEQ;,Z =0 for any x € E. Since for any x # y,

* H S
Gy =S w2 ) 20
zeE:z>y
we get Q" is a conservative @ matrix. O

4. A Two-Dimensional Birth and Death Chain

Assume E =1{0,1,..., N} or Z2, e =(1,0), e5 = (0,1). The @
matrix of the two-dimensional birth and death chain X = (X;), is given

as follows; for each x = (x1, x9), ¥y = (y1, ¥9) € E, let
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b;, if y=x+e,
Q;, if y=x-e,

Ax,y = (4.1)
0 else,

where a; > 0,5, >0, and a; # b;,1 =1, 2. As is well known, X is time

reversible, that is 6 = @, and it has the unique stationary distribution:

for any x = (xq, x9) € E,

- {2 8"

with ¢ a normalizing constant.

Theorem 4.1. Assume E = {0, 1, ..., N}, let X ~ (mg, @, P(¢)) be a two-
dimensional birth and death chain with @ given in (4.1), a; > 0, b; > 0,
and a; + b;,1 =1, 2. Assume X starts at (0, 0), then there exists an SSD

chain X* ~ (ny, @, P*(t)) (P*(¢t) is the @ process) starting at (0, 0)

with the link kernel: Alx, y) = I(y~y) n({c) which is an absorbing

Markov chain (with (N, N) being the absorbing state) on E, with the

following @ matrix (for x = (x1, x9), ¥y = (y1, ¥2) € E),
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1-(b;/a;)%it? .
W“ Tysare
l l
1-(bi/a)"

1—(b;/a; )t if y=x-epx #N,
l l

Gy = _Ziz:1(ai+bi)’ if y=x,% #N,x5 # N,
—ag — by, if y=x,% =N,x9 # N,
—a; - b, if y=x,% #N,x9 =N,
0 else.

Theorem 4.2. Assume E =72, let X ~ (ng, @, P(t)) be a two-
dimensional birth and death chain with @ given in (4.1), a; > 0, b; > 0,
and a; # b;,i =1, 2. Suppose @ is nonexplosive. Assume X starts at

(0, 0), then there exists a nonexplosive algebraic duality chain
X* ~ (m, @, P*(t)) (P*(t) is the minimal Q" process) on E with the

link kernel: Alx, y) = I(ij)M which starts at (0, 0), with the

(x)°
following @ matrix (for x = (x1, x3), ¥ = (1, ¥2) € E),

1- (b/a;)"i"? o
1- (b /a5t
. 1-(b/a)"
Qx,y = 1—(bi/ai)xi+l i

2 .
- lavb), i y=w

if y=x+e,
lf y = x—ei, (42)

0 else.

We will only prove Theorem 4.2. With the help of Theorem 1.4,

Theorem 4.1 can be proved similarly.
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Proof of Theorem 4.2. Since H(x) = ZyEE:ijn(y), we have H(x) =

el =by/a;) (1 —by/ay)™ . Define g(x) = mo(x)/n(x). Assume the chain
starts at (0, 0), then g(x) = my(x)/n(x) is {-Mobius monotone. To prove

the existence of the nonexplosive algebraic duality chain, from the proof

of Theorem 1.5, we need to show that
1 1 — >
(i) lim, ., g(x) = 0, and ZZEE;Q;V“(% 2)g(z) 20, ye E,
1 B NS
(i) lim, soo gy = 0,and 3wy, 2)Q(z, fa}) 2 0, x #y,

(iii) @" is nonexplosive on E.

In this case, there exists a nonexplosive algebraic duality chain with

the link kernel: A(x, y) = I(ij)%, x, ye E, and @ in (3.1). Since

the chain starts at (0, 0), (1) is satisfied and the dual chain starts at
(0,0). We will prove @ in (4.1) also satisfies (ii). Obviously,

lim, ;. gy, =0 forany y e E. Let

Z u(y, 2)Q(z, {x}").

Using (2.2), we will calculate M(y, x) for any x, y € E, and show
M(y, x) 2 0 for any x # y.

DIfy=x+e,

M+e, )= Y ula+e, 2Q )

zeE:z>x+e;

=ux +e, x+e)Q(x + e, {x}i) = a;.
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84
@QIf y=x,
M(x, x) = u(x, 2)Q(z, {x}*)
zeE:z>x
2
= u(x, {x}i +Zux X +e) x+ei,{x}¢)
=1

—Zzl bi + Zzl (— 1)ai = —Zzl (ai + bl)
1=1

i=1 1=1
B)If y=x-e;, for j +1,
M -e,x)= Y plx-e;, 2)Q )

zeE:z - x—e;

= plx —ej, x —¢;)Q(x — ¢, )

+ iu —e; +ep).
=
Qx —e; + e, I} )+ plx — e, x +))Qx + ¢, {x}*)
=1 (- b)) + nlx - ¢, )@, {x}")
rul -, x—e+e;) Qx—e +ej, (x)+q;
=~ bj +(~1) (b — by) + (~1)a; + a; = b;.

) = 0 for any other x, y € E. Then we

Thus, Q" in (4.2) is
O

Similarly, we can calculate M(y, x

get @ in (4.2), which is bounded obviously.

nonexplosive and satisfies (iii).
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