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Abstract 

Under the assumption of Möbius monotonicity, we develop the theory of strong stationary 

duality for continuous time Markov chains on the finite partially ordered state space, we 

also construct a nonexplosive algebraic duality for continuous time Markov chains on .d
+Z  

Finally, we present an application to the two-dimensional birth and death chain. 
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1. Introduction 

A strong stationary time (SST) introduced by Aldous and Diaconis    

[1, 2] is a randomized stopping time T for the discrete time chain X such 

that TX  has the stationary distribution and is independent of .T  The 

SST is a powerful tool to deal with the convergence to stationarity for a 

Markov chain. In order to get the SST, Diaconis and Fill [4] suggested a 

way to construct strong stationary duality (SSD), such that the absorption 

time of the SSD chain is equal in distribution to an SST for X. Then one 

can bound the SST in the original chain through the absorption time. 

Especially, Diaconis and Fill showed a tractable case in [4] (Theorem 4.6) 

on the linearly ordered state space. In this case, they showed how to 

construct SSD, under the assumption of stochastic monotonicity. Diaconis 

and Fill [5] extended the theory of SSD for the discrete time chain on the 

countable state space. Fill [6] extended the theory of SSD for the 

continuous time chain.  

Lorek and Szekli [9, 10] generalized the above tractable case for the 

discrete time chain, they considered the finite partially ordered state 

space instead of the linearly ordered state space. Since stochastic 

monotonicity is not sufficient in this case, they used Möbius monotone 

instead of stochastic monotone. 

In this paper, we construct SSD for continuous time Möbius monotone 

Markov chains on the finite partially ordered state space. Also, we 

construct a nonexplosive algebraic duality for continuous time Markov 

chains on .d
+Z  In order to state conveniently, we introduce some symbols 

and definitions in [6]. 

Let ( ) 0≥= ttXX  be an ergodic continuous time Markov chain on the 

finite state space ,E  with initial distribution ,0π  the conservative Q  

matrix ,Q  the stationary distribution ,π  and the transition function ( ).tP  

We write ( )( )tPQ,,~ 0πX  for short below. Let ( ( ))tPQ ,,~ 0
∗∗∗ πX  on 
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the finite state space .∗E  Assume ∗X  has an absorbing state .ax  Let 

( ) ,,,, EyExyx ∈∈Λ ∗  be a link, or a transition kernel such that 

( ) ., π=⋅Λ ax  From [6], we know that ∗X  is an SSD for X  with respect to 

Λ  if and only if the algebraic duality equations 

Λπ=π ∗
00  and Λ=Λ ∗QQ  (1.1) 

hold. Moreover, Λ=Λ ∗QQ  is equivalent to ( ) ( )Λ=Λ ∗ tPtP  for all .0≥t  

In this case, the absorbing time ∗
axT  that ∗X  hits ax  is an SST for .X  

For the countable state space ,E  Fill also gived SSD theory with some 

assumptions, which are called as “general setting” in [6]. However, if 

,dE += Z  the assumptions are not easy to tractable. But we can construct 

a nonexplosive algebraic duality, which satisfies (1.1) and can also be 

used to study the convergence to stationarity for the Markov chain.  

We will assume E  is a finite partially ordered state space or d
+Z  

below. If E  is a finite partially ordered state space, define a partial order 

≺  on .E  If ,dE += Z  define the natural partial order ,≺  i.e., for ,, Eyx ∈  

( ).1 diyxyx ii ≤≤∀≤⇔≺   

From [8] and [9], we define ↓-Möbius monotonicity of a nonnegative 

function and a Q  matrix on E as follows. 

Definition 1.1. A nonnegative function f on E  is ↓-Möbius monotone:    

if there exists a nonnegative function m on E such that 

( ) ( )ymxf
xyEy∑ ∈

=
≻:

 for any .Ex ∈  

Define { } { }xyEyx ≺:∈=↓
 for any .Ex ∈  Let ( { } ) =↓

yxQ ,  

( )zxQ
yzEz

,
:∑ ∈ ≺

 for any ., Eyx ∈  
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Definition 1.2. A Q  matrix Q  on EE ×  is ↓-Möbius monotone: if on 

,EE ×  there exists a matrix M  which is nonnegative off the diagonal 

such that  

( { } ) ( ) .,,,,

:

EyxyzMyxQ

xzEz

∈∀= ∑
∈

↓

≻

 

Definition 1.3. Let ( )( )tPQ,,~ 0πX  on the countable state space. 

Suppose ( )tP  is the minimal Q  process and let nτ  be the n-th jumping 

time of ,X  then Q  is called nonexplosive if for any initial distribution, 

( ) .1lim =∞=∞→ nn τP  

Now we can state our main theorems. 

Theorem 1.4. Let ( )( )tPQ,,~ 0πX  be an ergodic continuous time 

Markov chain on a finite partially ordered state space { },,,1 MxxE …=  

with a unique maximal state Mx  and the stationary distribution .π  

Suppose Q  is conservative, and define the time reversal of Q  as  

( )yxqQ ,=  with  
( )
( )

,,, xyyx q
x

y
q

π
π

=  let ( ) ( )yxH
xyEy

π= ∑ ∈ ≺:
 and 

( )
( )

( )
.0

x

x
xg

π
π

=  Then there exists an SSD chain ( ( ))tPQ ∗∗∗∗ π ,,~ 0X  on 

E  with the link kernel: ( ) ( )
( )
( )

,,,, Eyx
xH

y
Iyx xy ∈

π
=Λ ≺  if and only if 

the following two conditions hold: 

(i) g  is ↓-Möbius monotone on ;E  

(ii) Q  is ↓-Möbius monotone on .E  

In this case, the SSD chain (for details, see Section 3) is uniquely 

determined by 

( )
( )

( )
( )yH

y

x

x

xyEy

∗

∈

π
=

π
π

∑ 0

:

0

≻

 and ( { } ) ( )
( )

,, ,

:

∗

∈

↓ ∑= zx

yzEz

q
zH

xH
xyQ

≻

 

for any ., Eyx ∈  
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Theorem 1.5. Let ( )( )tPQ,,~ 0πX  be an ergodic continuous time Markov 

chain on ,dE += Z  with the stationary distribution .π  Suppose Q  is 

conservative and nonexplosive. Define the time reversal of Q  as  ( )yxqQ ,=  

with 
( )
( )

,,, xyyx q
x

y
q

π
π

=  let ( ) ( )yxH
xyEy

π= ∑ ∈ ≺:
 and ( )

( )
( )

.0

x

x
xg

π
π

=  

Then there exists a nonexplosive algebraic duality chain 

( ( )) ( ( )tPtPQ ∗∗∗∗ π ,,~ 0X  is the minimal ∗Q  process) on E  with the 

link kernel: ( ) ( )
( )
( )

,,,, Eyx
xH

y
Iyx xy ∈

π
=Λ ≺  if and only if the following 

three conditions hold: 

(i) g  is ↓-Möbius monotone on ;E  

(ii) Q  is ↓-Möbius monotone on ;E  

(iii) ∗Q  is nonexplosive on .E  

In this case, the nonexplosive algebraic duality chain (for details, see 

Section 3) is uniquely determined by 

( )
( )

( )
( )yH

y

x

x

xyEy

∗

∈

π
=

π
π

∑ 0

:

0

≻

 and ( { } ) ( )
( )

∗

∈

↓ ∑= zx

yzEz

q
zH

xH
xyQ ,

:

,

≻

 

for any ., Eyx ∈  

Let tπ  be the law of .tX  The variation distance is defined by π−πt  

( ) ( ) .max AAtEA π−π= ⊂  One advantage in establishing SSD is that 

useful bounds on variation distance can be obtained by stopping the 

process before absorption. Through this method, the early stopping 

theorem in [6] yielded useful bounds. Moreover, the early stopping 

theorem can apply to the algebraic duality. An argument similar to the 

early stopping theorem in [5] (Corollary 2.1) shows the following 

corollary, which transforms analysis of convergence rate for X  into the 

first passage time for the dual chain. 
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Corollary 1.6. For the chain ( )XX ,∗  of Theorem 1.4 or Theorem 1.5, let 

T  be the first hitting time of EA ⊂  for ,∗X  where { },: ∗∈= xxExA ≻  

.Ex ∈∗  Then 

( ( )) ( ) { } .0,1 ≥>+−≤π−π ∗∗ ttTPxHxHt  

Here is an outline for the paper. Section 2 of this paper studies the 

Möbius function and Möbius monotonicity. Section 3 of this paper shows 

the proof of Theorem 1.4 and Theorem 1.5. Section 4 of this paper gives 

examples of the two-dimensional birth and death chain. 

2. Möbius Monotonicity 

Define E  as a finite partially ordered set or .d
+Z  The zeta function ζ  

of E  is denoted by ( ) 1,,, =ζ∈∀ yxEyx  if yx ≺  and ( ) 0, =ζ yx  

otherwise. The inverse to ζ  is the Möbius function ,µ  which satisfies 

( ) ( ) ( ) ( ) ( ),,,,,,

::

yxyzzxyzzx

yzxEzyzxEz

δ=µζ=ζµ ∑∑
∈∈ ≺≺≺≺

  (2.1) 

where ( ) 1, =δ yx  if yx =  and ( ) 0, =δ yx  otherwise. From Proposition 5 

in [11], we obtain for any ( ) ( ) ,,,,,, 11
d

dd yyyxxx +∈== Z……  

( ) ( )( )dd yyxx ,,,,, 11 ……µ  

( ) ( )







 =−−
=

−∑ =

.otherwise,0

,1or0eachif,1 1 ii
xy

xyii
d

i

  (2.2) 

With the help of Möbius function ,µ  we will give criteria on the 

Möbius monotonicity of nonnegative functions and Q  matrices. From [9], 

we can obtain the following proposition: 
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Proposition 2.1. If E  is a finite partially ordered set, then a nonnegative 

function f on E  is ↓-Möbius monotone if and only if ∑ ∈ yzEz ≻:
 

( ) ( ) 0, ≥µ zfzy  for any .Ey ∈  

Proposition 2.2. If E  is a finite partially ordered set, then a Q  matrix 

Q  on EE ×  is ↓-Möbius monotone if and only if ∑ ∈ yzEz ≻:
 

( ) ( { } ) 0,, ≥µ ↓
xzQzy  for any Eyx ∈,  and .yx =/  

Proof. Suppose Q  is ↓-Möbius monotone, then from Definition 1.2, there 

exists a matrix M  which is nonnegative off the diagonal such that 

( { } ) ( ) .,,,,

:

EzxxzMxzQ

zzEz

∈∀′= ∑
′∈′

↓

≻

 

Since E  is finite and (2.1), we can get 

( ) ( { } ) ( ) ( )xzMzyxzQzy

zzEzyzEzyzEz

,,,,

:::

′µ=µ ∑∑∑
′∈′∈

↓

∈ ≻≻≻

 

( ) ( )zyxzM

zzyEzyzEz

,,

::

µ′= ∑∑
′∈′∈′ ≺≺≻

 

( ) ( ) ( ) .,0,,,

:

yxxyMzyxzM

yzEz

=/≥=′δ′= ∑
′∈′ ≻

 

Conversely, let ( ) ( ) ( { } )↓
′∈′

′′µ= ∑ yzQzzyzM
zzEz

,,,
: ≻

 for any ,, Eyz ∈  

then M  is nonnegative off the diagonal. Since E  is finite and (2.1), we 

can obtain 

( ) ( ) ( { } )↓

′∈′∈∈

′′µ= ∑∑∑ yzQzzyzM

zzEzxzEzxzEz

,,,

::: ≻≻≻

 

 ( { } ) ( )zzyzQ

zzxEzxzEz

′µ′= ∑∑
′∈

↓

′∈′

,,

:: ≺≺≻

 

 ( { } ) ( ) ( { } ).,,,

:

↓↓

′∈′

=′δ′= ∑ yxQzxyzQ

xzEz ≻
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Thus Q  is ↓-Möbius monotone.  � 

Note that, if ,dE += Z  then ( ) 0lim =∞→ xfx  is to say for every ,0>ε  

there is a finite set EA ⊂  such that ( ) ε≤xf  for any .AEx \∈  Then 

from [7] (Proposition 2.4 and Remark 2.5), we can get the following 

proposition. 

Proposition 2.3. If ,dE += Z  then a nonnegative function f  on E  is       

↓-Möbius monotone if and only if ( ) 0lim =∞→ xfx  and ∑ ∈ yzEz ≻:
 

( ) ( ) 0, ≥µ zfzy  for any .Ey ∈  

Proposition 2.4. If ,dE += Z  then a Q  matrix Q  on EE ×  is                  

↓-Möbius monotone if and only if 0lim , =∞→ yxx q  for any ,Ey ∈  and 

( ) ( { } ) 0,,
:

≥µ ↓
∈∑ xzQzy

yzEz ≻
 for any Eyx ∈,  and .yx =/  

Proof. Suppose Q  is ↓-Möbius monotone, then from Definition 1.2, there 

exists a matrix M  which is nonnegative off the diagonal such that 

( { } ) ( ) .,,,,

:

EzxzyMzxQ

xyEy

∈∀= ∑
∈

↓

≻

 

We will prove ( { } ) ( ) .0,lim,lim
:

== ∑ ∈∞→
↓

∞→ zyMzxQ
xyEyxx ≻

 Since 

for fixed ,Ez ∈  

( )

( ) ( { } ) ( ) ,,,,

0,,0:

∞<−= ↓∑
∈

=/

zzMzxQzyM

yEy
zy
…≻

 

we have ( ) ,0,lim
,

=∑ ∈=/∞→ zyM
nAEyzyn \

 where ( ){ } ,,,
↓= nnAn …  

that is to say for any ,0>ε  there exists ,0≥N  such that when ,Nn ≥  

we have ( ) .,
,

ε≤∑ ∈=/
zyM

nAEyzy \
 Then, for any ,0>ε  for enough large 

,0≥M  there exists MA  such that when ,MAEx \∈  we have xz �  and  

( ) ( ) .,,

,:

ε≤≤ ∑∑
∈=/∈

zyMzyM

MAEyzyxyEy \≻
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Therefore, ( ) ( { } ) .0,lim,lim
:

== ↓
∞→∈∞→ ∑ zxQzyM xxyEyx ≻

 Also, since 

( { } ) ( ) ( )yzqyzzxQ zx

zzEzyzEzyzEz

,,, ,

:::

µ=µ ′
′∈′∈

↓

∈
∑∑∑
≺≺≺

 

 ( )yzq

yzzEz

zx

yzEz

,

:

,

:

µ= ∑∑
′∈

′
′∈′ ≺≺≺

 

 .,,,

:

yxyzzx

yzEz

qq =δ= ′′
′∈′
∑
≺

 

We get .0lim , =∞→ yxx q  By using (2.1), we obtain 

( ) ( { } ) ( ) ( )xzMzyxzQzy

zzEzyzEzyzEz

,,,,

:::

′µ=µ ∑∑∑
′∈′∈

↓

∈ ≻≻≻

 

( ) ( )zyxzM

zzyEzyzEz

,,

::

µ′= ∑∑
′∈′∈′ ≺≺≻

 

( ) ( ) ( ) .,0,,,

:

yxxyMzyxzM

yzEz

=/≥=′δ′= ∑
′∈′ ≻

 

The second equality above is followed by the dominated convergence 

theorem. Therefore, ( ) ( { } ) 0,,
:

≥µ ↓
∈∑ xzQzy

yzEz ≻
 for any .yx =/  

Conversely, let ( ) ( ) ( { } ),,,,
:

↓
′∈′

′′µ= ∑ yzQzzyzM
zzEz ≻

 for any 

., Eyz ∈  We need to prove ( { } ) ( )yzMyxQ
xzEz

,,
:∑ ∈

↓ =
≻

 for any 

., Eyx ∈  For convenience, we take ( ),0,,0 …=x  and the proof is 

similar for any other .Ex ∈  Define ( )0,,0,1,0,,0 ……=ie  with 1 at 

the i-th coordinate, for convenience, we define .
:∑∑ =

=
zyxy

z

xy
≺≺

 Then by 

using (2.2), we get 
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( )
( )

( )

( )

( )yzMyzM

nn

z
n

zEz

,lim,

,,

0,,00,,0:
∑∑

=
∞→

∈

=
…

……≻

 

 

( )

( ) ( )

( ) ( { } )↓
+

=′=
∞→

′′µ= ∑∑ yzQzz

z

zz

nn

z
n

,,lim

1,,1,,,

0,,0

……

…

 

 ( ) { }( ) ( ) (( ) { } )↓

=

↓

∞→
+−







+= ∑ yenQyQ i

d

i
n

,11,0,,0lim

1

…  

( ) (( ) ( ) { } )↓+++⋅−+ ∑
=/

≤≤

yenenQ ji

ji
dji

,111
2

,1

 

( ) (( ) { } )






++−++ ↓

ynnQ
d

,1,,11 ……  

 (( ) { } ).,0,,0
↓= yQ …  

A similar proof of Lemma 2.4 in [12] shows that, for any ∞→∈ xEy lim,  

0, =yxq  implies 0lim , =∗→ yxxx
q  for any Ex

d
\+

∗ ∈ Z  with ++ = ZZ  

{ }.∞∪  Thus, the last equality above is followed by 0lim , =∞→ yxx q  for 

any .Ey ∈  � 

3. Proof of Theorem 1.4 and Theorem 1.5 

With the help of Proposition 2.1 and Proposition 2.2, the proof of 

Theorem 1.4 is similar to that of Theorem 1.5. Thus, we now only prove 

Theorem 1.5, using the Propositions 2.3 and 2.4. 

Proof of Theorem 1.5. Let ,dE += Z  from [6], to prove the existence of 

nonexplosive algebraic duality, we need to check the algebraic duality 

equations 

., 000 Λ=ΛΛπ=π ∗∗ QQ  
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Also, we need to check that ∗Q  is nonexplosive on .E  As for ,00 Λπ=π ∗  

we have 

( )
( )

( )
( )
( )

.,0

:

0 Ex
yH

y

x

x
xg

xyEy

∈∀
π

=
π

π
=

∗

∈
∑
≻

 

Then we get Λπ=π ∗
00  has a nonnegative solution if and only if g  is        

↓-Möbius monotone, which from Proposition 2.3 is equivalent to 

( ) 0lim =∞→ xgx  and ( ) ( ) ,0,
:

≥µ∑ ∈
zgzy

yzEz ≻
 for any .Ey ∈  Also, in 

this case, we get 

( ) ( ) ( ) ( ) .,0,

:

0 EyzgzyyHy

yzEz

∈∀≥µ=π ∑
∈

∗

≻

 

From ,00 Λπ=π ∗  it is clear that the solution sums to unity. Therefore, ∗π0  

is a probability vector. 

As for ,Λ=Λ ∗QQ  we have 

( ) ( ) ,,,,, ,, Eyxyzqqzx zx

Ez

yz

Ez

∈∀Λ=Λ ∗

∈∈
∑∑  

that is, 

( )
( )
( ) ( )

.
1 ,

:

,

:
zH

q
q

y

z

xH

zx

yzEz

yz

xzEz

∗

∈∈
∑∑ =

π
π

≻≺

 

Using 
( )
( )

,,, zyyz qq
y

z
=

π
π

 we have 

( { } ) ( )
( )

.,,, ,

:

Eyxq
zH

xH
xyQ zx

yzEz

∈∀= ∗

∈

↓ ∑
≻

 

Then we get Λ=Λ ∗QQ  has a solution which is nonnegative off the 

diagonal, if and only if Q  is ↓-Möbius monotone, which from Proposition 
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2.4 is equivalent to 0lim , =∞→ yxx q  for any ,Ey ∈  and ∑ ∈ yzEz ≻:
 

( ) ( { } ) 0,, ≥µ ↓
xzQzy  for any .yx =/  Also, in this case, we get 

( )
( )

( ) ( { } ) .,,,,

:

, EyxxzQzy
xH

yH
q

yzEz

yx ∈∀µ= ↓

∈

∗ ∑
≻

  (3.1) 

We now prove ∗Q  is a conservative Q  matrix. From ,Λ=Λ ∗QQ  we have 

( ) ( ) .,,,, ,, Eyxyzqqzx zx

Ez

yz

Ez

∈∀Λ=Λ ∗

∈∈
∑∑  

If ,Ex ∈  since { }xyEy ≺:∈  is finite and Q  is conservative, we get 

( ) ( ) ,0,, ,, =Λ=Λ ∑∑∑∑
∈∈∈∈

yz

EyEz

yz

EzEy

qzxqzx  

and  

( ) ( ) .,, ,,,
∗

∈∈

∗

∈

∗

∈∈
∑∑∑∑∑ =Λ=Λ zx

EzEy

zx

Ez

zx

EzEy

qyzqyzq  

So 0, =∗
∈∑ zxEz

q  for any .Ex ∈  Since for any ,yx =/  

( )
( )

( ) ( { } ) ,0,,

:

, ≥µ= ↓

∈

∗ ∑ xzQzy
xH

yH
q

yzEz

yx

≻

 

we get ∗Q  is a conservative Q  matrix.   � 

4. A Two-Dimensional Birth and Death Chain 

Assume { }2
,,1,0 NE …=  or ( ) ( ).1,0,0,1, 21

2 ==+ eeZ  The Q  

matrix of the two-dimensional birth and death chain ( ) 0≥= ttXX  is given 

as follows; for each ( ) ( ) ,,,, 2121 Eyyyxxx ∈==  let 
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=−

−=

+=

=

∑ =/

,else0

,if,

,if,

,if,

,

,

xyq

exya

exyb

q

zx
xz

ii

ii

yx   (4.1) 

where ,0,0 >> ii ba  and .2,1, ==/ iba ii  As is well known, X  is time 

reversible, that is ,QQ =  and it has the unique stationary distribution: 

for any ( ) ,, 21 Exxx ∈=  

( ) ,,
21

2

2

1

1
21

xx

a

b

a

b
cxx 















=π  

with c a normalizing constant. 

Theorem 4.1. Assume { } ,,,1,0
2

NE …=  let ( )( )tPQ,,~ 0πX  be a two-

dimensional birth and death chain with Q  given in (4.1), ,0,0 >> ii ba  

and .2,1, ==/ iba ii  Assume X  starts at ( ),0,0  then there exists an SSD 

chain ( ( )) ( ( )tPtPQ ∗∗∗∗∗ π ,,~ 0X  is the ∗Q  process) starting at ( )0,0  

with the link kernel: ( ) ( )
( )
( )

,,
xH

y
Iyx xy

π
=Λ ≺  which is an absorbing 

Markov chain (with ( )NN ,  being the absorbing state) on ,E  with the 

following Q  matrix (for ( ) ( ) ),,,, 2121 Eyyyxxx ∈==  
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( )

( )
( )

( )

( )























==/=−−

=/==−−

=/=/=+−

=/−=
−

−

+=
−

−

= ∑ =

+

+

+

∗

.0

,,,,

,,,,

,,,,

,,,
1

1
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1
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2

1

1

1
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q ii
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iiix
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x
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iix
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x
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yx

i

i
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Theorem 4.2. Assume ,2
+= ZE  let ( )( )tPQ,,~ 0πX  be a two-

dimensional birth and death chain with Q  given in (4.1), ,0,0 >> ii ba  

and .2,1, ==/ iba ii  Suppose Q  is nonexplosive. Assume X  starts at 

( ),0,0  then there exists a nonexplosive algebraic duality chain 

( ( )) ( ( )tPtPQ ∗∗∗∗∗ π ,,~ 0X  is the minimal ∗Q  process) on E  with the 

link kernel: ( ) ( )
( )
( )

,,
xH

y
Iyx xy

π
=Λ ≺  which starts at ( ),0,0  with the 

following Q  matrix (for ( ) ( ) ),,,, 2121 Eyyyxxx ∈==  

( )

( )
( )

( )

( )


















=+−

−=
−

−

+=
−

−

=

∑ =

+

+

+

∗

.0

,,

,,
1

1

,,
1

1

2

1

1

1

2

,

else

xyifba

exyifb
ab

ab

exyifa
ab

ab

q

ii
i

iix
ii

x
ii

iix
ii

x
ii

yx i

i

i

i

  (4.2) 

We will only prove Theorem 4.2. With the help of Theorem 1.4, 

Theorem 4.1 can be proved similarly. 
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Proof of Theorem 4.2. Since ( ) ( ),
:

yxH
xyEy

π= ∑ ∈ ≺
 we have ( ) =xH  

( ) ( ) .11
1

22
1

11
−− −− ababc  Define ( ) ( ) ( ).0 xxxg ππ=  Assume the chain 

starts at ( ),0,0  then ( ) ( ) ( )xxxg ππ= 0  is ↓-Möbius monotone. To prove 

the existence of the nonexplosive algebraic duality chain, from the proof 

of Theorem 1.5, we need to show that 

( ) ( ) ( ) ( )

( ) ( ) ( { } )

( )











=/≥µ=

∈≥µ=

∗

↓

∈∞→

∈∞→

∑
∑

.onvenonexplosiisiii

,,0,,and,0limii

,,0,and,0limi

:
,

:

EQ

yxxzQzyq

Eyzgzyxg

yzEz
yxx

yzEz
x

≻

≻

 

In this case, there exists a nonexplosive algebraic duality chain with 

the link kernel: ( ) ( )
( )
( )

,,,, Eyx
xH

y
Iyx xy ∈

π
=Λ ≺  and ∗Q  in (3.1). Since 

the chain starts at ( ),0,0  (i) is satisfied and the dual chain starts at 

( ).0,0  We will prove Q  in (4.1) also satisfies (ii). Obviously, 

0lim , =∞→ yxx q  for any .Ey ∈  Let 

( ) ( ) ( { } ).,,,

:

↓

∈

µ= ∑ xzQzyxyM

yzEz ≻

 

Using (2.2), we will calculate ( )xyM ,  for any ,, Eyx ∈  and show 

( ) 0, ≥xyM  for any .yx =/  

(1) If ,iexy +=  

( ) ( ) ( { } )↓

+∈

+µ=+ ∑ xzQzexxexM i

exzEz

i

i

,,,

: ≻

 

 ( ) ( { } ) .,, iiii axexQexex =+++µ= ↓
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(2) If ,xy =  

( ) ( ) ( { } )↓

∈

µ= ∑ xzQzxxxM

xzEz

,,,

: ≻

 

( ) ( { } ) ( ) ( { } )↓

=

↓ ++µ+µ= ∑ xexQexxxxQxx ii

i

,,,,

2

1

 

( ) ( ).1

2

1

2

1

2

1

ii

i

i

i

i

i

baab +−=−+−= ∑∑∑
===

 

(3) If ,iexy −=  for ,ij =/  

( ) ( ) ( { } )↓

−∈

−µ=− ∑ xzQzexxexM i

exzEz

i

i

,,,

: ≻

 

( ) ( { } )↓−−−µ= xexQexex iii ,,  

( ).,

2

1

k

k

eexex ii +−−µ+ ∑
=

 

( { } ) ( ) ( { } )↓↓ ++−µ++− xexQexexxeexQ jjii ,,,k  

( ) ( ) ( { } )↓−µ+−⋅= xxQxexb ij ,,1  

( ) ( { } ) jjijii axeexQeexex ++−⋅+−−µ+ ↓
,,  

( ) ( ) ( ) .11 21 ijjj baabbb =+−+−−−+−=  

Similarly, we can calculate ( ) 0, =xyM  for any other ., Eyx ∈  Then we 

get ∗Q  in (4.2), which is bounded obviously. Thus, ∗Q  in (4.2) is 

nonexplosive and satisfies (iii).  � 
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