
Journal of Mathematical Sciences: Advances and Applications 

Volume 68, 2021, Pages 1-28 

Available at http://scientificadvances.co.in 

DOI: http://dx.doi.org/10.18642/jmsaa_7100122224 

2020 Mathematics Subject Classification: 76A05, 76A10. 

Keywords and phrases: steady-state solutions, Maxwell fluids, pressure-dependent viscosity, 

shear stress on the boundary. 

Received August 30, 2021 

 2021 Scientific Advances Publishers 

This work is licensed under the Creative Commons Attribution International License            

(CC BY 3.0). 

http://creativecommons.org/licenses/by/3.0/deed.en_US 

Open Access 
 

 

STEADY-STATE SOLUTIONS FOR SOME MOTIONS 

OF MAXWELL FLUIDS WITH PRESSURE-

DEPENDENCE OF VISCOSITY  

CONSTANTIN FETECAU1, DUMITRU VIERU2, ABDUL RAUF3  

and TAHIR MUSHTAQ QURESHI4  

1Section of Mathematics 

Academy of Romanian Scientists 

050094 Bucharest 

Romania 

e-mail: c_fetecau@yahoo.com 

2Department of Theoretical Mechanics 

Technical University of Iasi 

700050, Iasi 

Romania 

e-mail: dumitru_vieru@yahoo.com 

 

 



CONSTANTIN FETECAU et al.  2 

3Department of Mathematics 

Air University Islamabad 

Multan Campus (60000) 

Pakistan 

e-mail: attari_ab092@yahoo.com 

4Department of Mathematics 

COMSATS University Islamabad 

Vehari Campus (61100) 

Pakistan 

e-mail: tahmush@hotmail.com 

Abstract 

Two isothermal motions of incompressible Maxwell fluids with power-law 

dependence of viscosity on the pressure are investigated when gravity effects 

are taken into account. The fluid motion, between two infinite horizontal 

parallel plates, is generated by the lower plate that applies a time-dependent 

shear stress to the fluid. Exact expressions are established for the steady-state 

components of the dimensionless start-up velocity, shear stress, and normal 

stress. They are used to find the needed time to touch the steady-state and to 

provide corresponding solutions for the motion of the same fluids induced by an 

exponential shear stress on the boundary. This time is useful for 

experimentalists who want to eliminate transients from their experiments. It is 

higher for motions of ordinary fluids as compared to fluids with pressure-

dependent viscosity. The variation of starting solutions (numerical solutions) in 

time and space is graphically represented and some characteristics of the fluid 

motion are brought to light. 

1. Introduction 

The fact that the fluid viscosity could increase at high pressures has 

been early enough remarked by Stokes [1]. Later, the experimental 

research of Cutler et al. [2], Johnson and Cameron [3], Johnson and 

Tewaarwerk [4], Bair and Winer [5], Bair et al. [6], Prusa et al. [7] and 

many others certified this observation. Renardy [8], for instance, 

remarked that the fluid viscosity increases more than an order of 

magnitude at a pressure of 1.000 atm and such pressures appear at the 

polymer processing operations [9], the fluid film lubrication [10], 
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microfluidics [11], pharmaceutical manufacturing, food processing etc. 

After his experimental research at high pressures, Bridgman [12] 

observed a meaningful dependence of viscosity on the pressure and 

nowadays the fluid models with pressure-dependent viscosity are used to 

describe the behaviour of fluids in different applications. On the other 

hand, Dowson and Higginson [13] as well as Rajagopal [14] remarked 

that the variation of fluid density is small enough at changes of the 

viscosity of the order %.108  Consequently, these liquids can be treated as 

incompressible fluids with pressure-dependent viscosity. 

In the same time, the gravity effects are important in many flows of 

the fluids with engineering applications. Its influence on the fluid motion 

is more pronounced if the pressure varies lengthways the direction in 

which the gravity acts. The first exact solutions for steady motions 

between parallel plates of incompressible Newtonian fluids with 

pressure-dependent viscosity in which the gravity effects are taken into 

consideration are those of Rajagopal [15]. The Poiseuille flow between 

parallel plates, as well as the flow down on an inclined plane of the same 

fluids, was also studied by Rajagopal [16]. Closed form expressions for the 

steady-state (permanent or long time) solutions corresponding to the 

modified Stokes’ problems of the same fluids have been established by 

Prusa [17], Fetecau and Agop [18] and Fetecau et al. [19]. Other 

interesting steady solutions for the flow of such fluids in rectangular 

domains have been obtained by Akyildiz and Siginer [20] and Housiadas 

and Georgiou [21]. 

During the time some geologists tried to refine their models for the 

viscosity involving non-Newtonian fluids. Wu and Wang [22], for 

instance, one asked why the dependence of material moduli on pressure is 

not taken into consideration. A general study concerning unsteady 

motions of incompressible upper-convected Maxwell (IUCM) fluids with 

viscosity and relaxation time depending on the pressure was presented by 

Karra et al. [23]. Steady solutions for pressure driven flows of such fluids 
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have been established by Housiadas [24, 25] in straight and circular 

tubes. However, the first steady-state solutions for unsteady motions of 

the IUCM fluids with pressure-dependent viscosity in which the gravity 

effects are taken in consideration seem to be those of Fetecau and Rauf 

[26]. 

The main purpose of this note is to determine the needed time to 

touch the steady-state for some motions of IUCM fluids with power-law 

dependence of viscosity on the pressure between infinite horizontal 

parallel plates. The fluid motion is generated by the lower plate that 

applies a time-dependent shear stress to the fluid and the no-slip 

condition on the upper plate is taken into consideration. Exact 

expressions are determined for the dimensionless steady-state velocity, 

shear stress and normal stress. The convergence of start-up velocities 

(numerical solutions) to their steady-state components is graphically 

proved and the needed time to touch the steady-state is graphically 

determined. This time is higher for motions of ordinary fluids than for 

fluids with pressure-dependent viscosity. Corresponding solutions for 

same motions of ordinary IUCM fluids, as well as the solutions for the 

motion induced by an exponential shear stress on the lower plate, are 

acquired as limiting cases of main results. 

2. Constitutive and Governing Equations 

The constitutive equations of IUCM fluids with pressure-dependent 

viscosity, as it results from the work of Karra et al. [23], are given by the 

following relations: 

( )( ),, TT p
dt

d
p LLSLLS

S
SSIT +η=






 −−λ++−=   (1) 

where T  is the Cauchy stress tensor, Ip−  represents the undetermined 

spherical stress due to the constraint of incompressibility, S  is the 

constitutively determined extra-stress, L  is the gradient of the velocity 
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vector v , λ is the relaxation time, ( )⋅η  is the viscosity function, and dtd  

denotes the material time derivative. If ,0=λ  the constitutive equations 

(1) define incompressible Newtonian fluids with pressure-dependent 

viscosity. In the following, we will refer to the Lagrange multiplier p as 

pressure although, for the rate type fluids, it is not the mean normal 

stress [23]. The viscosity function ( )pη  to be here used, has the form 

( ) ( )[ ] ,1
2

0ppp −α+µ=η   (2) 

where µ  is the fluid viscosity at the reference pressure 0p  and the 

constant α  is dimensional pressure-viscosity coefficient. If 0=α  in 

Equation (2), the constitutive equations (1) define ordinary IUCM fluids 

and the fact that ( ) ∞→η p  for ∞→p  is in accordance with a property 

that was experimentally confirmed. 

In the following as well as Karra et al. [23], we shall consider motions 

whose velocity field v and the pressure p have the forms 

( ) ( ) ( ),,,, ypptyuty x === evv   (3) 

where xe  is the unit vector in the x-direction of a convenient Cartesian 

coordinate system ,, yx  and .z  Assuming that, as well as the velocity 

field ,v  the extra-stress tensor S  depends of y  and t only and the fluid 

is at rest at the initial moment, it is not difficult to show that its 

components yzyyxz SSS ,,  and zzS  are zero while the non-trivial shear 

and normal stresses ( ) ( )tySty xy ,, =τ  and ( ) ( )tySty xx ,, =σ  have to 

satisfy the next differential equations 

( ) ( )
( )

( ) ( )
( )

.
,

,2,1,
,

,1
y

tyu
tyty

ty

tyu
pty

t ∂

∂
λτ=σ








∂

∂
λ+

∂

∂
η=τ








∂

∂
λ+  

(4) 
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The continuity equation is identically satisfied while the motion 

equations, in the absence of a pressure gradient in the flow direction, 

reduce to the following relevant partial and ordinary differential 

equations: 

( ) ( )
,,

,,
g

dy

dp

y

ty

t

tyu
ρ−=

∂

τ∂
=

∂

∂
ρ   (5) 

where ρ  is the fluid density and g is the gravitational acceleration. 

Let us now assume that an IUCM fluid with power-law dependence of 

viscosity on the pressure of the form (2) is at rest between two infinite 

horizontal parallel plates at the distance d apart. We also assume that 

the lower plate begins to apply at the moment += 0t  a time-dependent 

shear stress of the form 

( )
( ) ( )

( ) ( )
,exp

1

1

1

sincos
,0

22
S

ttt
t




















λ
−

+λω
−

+λω

ωλω+ω
=τ   (6) 

( )
( ) ( )

( ) ( )
,exp

11

cossin
,0

22
S

ttt
t




















λ
−

+λω

λω
+

+λω

ωλω+ω
=τ   (7) 

to the fluid. If ,0→λ  Equations (1) characterize incompressible 

Newtonian fluids with power-law dependence of viscosity on the pressure 

and Equations (6) and (7) take to the simple forms 

( ) ( ),cos,0 tSt ω=τ  respectively ( ) ( ).sin,0 tSt ω=τ  (8) 

In this case S and ω  are the amplitude and the frequency of the 

oscillations, respectively. 

Owing to the shear the fluid begins to move and, since the plates are 

boundless, it is reasonable to assume that all physical entities which 

characterize the fluid motion are functions of y and t only. Integrating 

Equation ( )25  with respect to y between 0 and d, it result that 

( ) ( ),0 ydgpyp −ρ+=  where ( ).0 dpp =  (9) 
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Eliminating ( )ty,τ  between Equations ( )14  and ( )15  and bearing in mind 

the expressions of ( )pη  and p from the equalities (2), respectively (9) one 

obtains for the dimensional velocity field ( )tyu ,  the following partial 

differential equation: 

( )[ ]
( )

( )[ ]
( )
y

tyu
ydgg

y

tyu
ydg

∂

∂
−αρ+µαρ−

∂

∂
−αρ+µ

,
12

,
1

2

2
2

 

( )
.0,0;

,
1 ><<

∂

∂








∂

∂
λ+ρ= tdy

t

tyu

t
  (10) 

The corresponding initial and boundary conditions are 

( )
( )

,0;0
,

,00,
0

dy
t

tyu
yu

t

≤≤=
∂

∂
=

=

  (11) 

( )
( )

( )[ ]
( )

0

2 ,
1

,0
,0

=







∂

∂
−αρ+µ=

∂

τ∂
λ+τ

yy

tyu
ydg

t

t
t  

 ( ) ( ) ,0,0,,cos >=ω= ttdutS   (12) 

or the initial conditions (11) together with the boundary conditions 

( )
( )

( )[ ]
( )

0

2 ,
1

,0
,0

=







∂

∂
−αρ+µ=

∂

τ∂
λ+τ

yy

tyu
ydg

t

t
t  

 ( ) ( ) .0,0,,sin >=ω= ttdutS   (13) 

We mention that the solutions of the ordinary differential equations 

(12) and (13) with the initial condition ( ) 00,0 =τ  are given by the 

equalities (6), respectively (7). If the velocity field ( )tyu ,  is known, the 

corresponding non-trivial stresses ( )ty,τ  and ( )ty,σ  can easily be 

determined solving the next ordinary differential equations with initial 

conditions 

( ) ( )[ ]
( )

( ) ,00,;
,

1,1
2 =τ

∂

∂
−αρ+µ=τ








∂

∂
λ+ y

y

tyu
ydgty

t
 (14) 
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( ) ( )
( )

( ) .00,;
,

,2,1 =σ
∂

∂
λτ=σ








∂

∂
λ+ y

y

tyu
tyty

t
  (15) 

Knowing ( ),, tyτ  we can determine the frictional forces exerted by the 

fluid to the plates. 

To determine solutions that are independent of the flow geometry, we 

introduce the next non-dimensional variables, functions and parameters 

.,,,,,, gd
SSS

u
Sd

ut
S

t
d

y
y αρ=αω

µ
=ω

σ
=σ

τ
=τ

µ
=

µ
== ∗∗∗∗∗∗∗  

(16) 

In the terms of the new dimensionless physical entities, dropping out the 

star notation, the equalities (10)-(13) take the simpler forms 

( )[ ]
( )

( )[ ]
( )
y

tyu
y

y

tyu
y

∂

∂
−α+α−

∂

∂
−α+

,
112

,
11

2

2
2

  

( )
,0,10;

,
We1Re ><<

∂

∂








∂

∂
+= ty

t

tyu

t
  (17) 

( )
( )

,10;0
,

,00,
0

≤≤=
∂

∂
=

=

y
t

tyu
yu

t

  (18) 

( )

( )
( ),cos

1

1,
2

0

t
y

tyu

y

ω
α+

=
∂

∂

=

 

or  

( )

( )
( ) ( ) .0;0,1,sin

1

1,
2

0

>=ω
α+

=
∂

∂

=

ttut
y

tyu

y

  (19) 

In Equation (17), ( µ=ν= SdVVdRe  being a characteristic velocity) 

and ( Stt µ=λ= 00We  being a characteristic time) are Reynolds 

number, respectively the Weissenberg number. 
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As soon as the dimensionless velocity field is known, the adequate 

stresses ( )ty,τ  and ( )ty,σ  are obtained solving the next ordinary 

differential equations with initial conditions 

( ) ( )[ ]
( )

( ) ,00,,
,

11,We1
2 =τ

∂

∂
−α+=τ








∂

∂
+ y

y

tyu
yty

t
  (20) 

( ) ( )
( )

( ) .00,,
,

,We2,We1 =σ
∂

∂
τ=σ








∂

∂
+ y

y

tyu
tyty

t
 (21) 

3. Solution of the Problem 

To avert a possible confusion, we denote by ( ) ( ) ( )tytytyu ccc ,,,,, στ  

and ( ) ( ) ( )tytytyu sss ,,,,, στ  the start-up (starting) dimensionless 

velocity, shear stress and normal stress corresponding to the two distinct 

motions induced by cosine, respectively sine oscillations of ( ) ytyu ∂∂ ,  on 

the boundary. Such motions become steady in time and their solutions 

can be presented as sum of their steady-state and transient components, 

namely, 

( ) ( ) ( ) ( ) ( ) ( ),,,,,,,, tytytytyutyutyu ctcpcctcpc τ+τ=τ+=  

( ) ( ) ( ),,,, tytyty ctcpc σ+σ=σ   (22) 

( ) ( ) ( ) ( ) ( ) ( ),,,,,,,, tytytytyutyutyu stspsstsps τ+τ=τ+=  

( ) ( ) ( ).,,, tytyty stsps σ+σ=σ   (23) 

Some time after the motion initiation, the fluid moves according to the 

start-up solutions ( ) ( ) ( )tytytyu ccc ,,,,, στ  or ( ) ( ) ( ).,,,,, tytytyu sss στ  

After this time, when the transients disappear or can be neglected, the 

fluid behaviour is fully characterized by their steady-state components 

( ) ( ) ( ),,,,,, tytytyu cpcpcp στ  respectively ( ) ( ) ( ).,,,,, tytytyu spspsp στ  

This is the need time to reach the steady-state. In practice, it is important 

for the experimentalists which want to eliminate the transients from 
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their experiments. In order to determine this time for a prescribed 

motion, at least the steady-state or transient components have to be 

known. However, if the transient components are determined only, there 

is no manner to verify their correctness. It is not the same inconvenience 

with the steady-state solutions. This is the reason that, in the following, 

closed form expressions for the steady-state solutions corresponding to 

these motions will be determined. These solutions satisfy the governing 

equations and the boundary conditions but are independent of the initial 

conditions. 

To determine them in the same time and in a simple way, let us 

define the complex velocity ( )tyup ,  and the complex stresses ( )typ ,τ  

and ( )typ ,σ  by the relations 

( ) ( ) ( ) ( ) ( ) ( ),,,,,,,, tyitytytyiutyutyu spcppspcpp τ+τ=τ+=   

( ) ( ) ( ),,,, tyityty spcpp σ+σ=σ   (24) 

where i is the imaginary unit. According to the equalities (17) and (19) 

( )tyup ,  has to satisfy the following boundary value problem: 

( )[ ]
( )

( )[ ]
( )

y

tyu
y

y

tyu
y

pp

∂

∂
−α+α−

∂

∂
−α+

,
112

,
11

2

2
2

 

( )
,,10;

,
We1Re Rty

t

tyu

t

p
∈<<

∂

∂








∂

∂
+=   (25) 

( )

( )
( ) ,;0,1,

1

1,

2
0

Rttue
y

tyu
p

iwt

y

p
∈=

α+
=

∂

∂

=

  (26) 
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while ( )typ ,τ  and ( )typ ,σ  are solutions of the ordinary differential 

equations 

( ) ( )[ ]
( )

,,10;
,

11,We1
2

Rty
y

tyu
yty

t

p
p ∈<<

∂

∂
−α+=τ








∂

∂
+   

(27) 

( ) ( )
( )

.,10;
,

,We2,We1 Rty
y

tyu
tyty

t

p
pp ∈<<

∂

∂
τ=σ








∂

∂
+   (28) 

Due to the form of the boundary conditions (26) and of the linearity of 

the governing equations (25), (27), and (28), we are looking for solutions 

of the form [23] 

( ) ( ) ( ) ( ) ( ) ( ) ,e,,e,,e, 2 ti
p

ti
p

ti
p yWtyyTtyyUtyu ωωω =σ=τ=  (29) 

where ( ) ( )yTyU ,  and ( )yW  are complex functions. 

3.1. Calculation of the steady-state velocities ( )tyucp ,  and ( )tyusp ,  

Making a change of the spatial variable in Equation (25), specifically 

( )[ ]yr −α+= 11ln  or equivalently ( ) ,e1 α−+α= ry  (30) 

and denoting by ( )rV  the function defined by the equality 

( ) ,,
e1












α

−+α
= tUrV

r

  (31) 

we attain to the next boundary value problem 

( ) ( )
( ) ( )

( )
( )

,
1

1
,00;02

2

2

+αα
−===β−+

=ardr

rdV
VrV

dr

rdV

dr

rVd
  

(32) 
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where ( ) αω+ω=β We1Re ii  and ( ).1ln +α=a  The solution of this 

boundary value problem is given by the relation 

( )
( )

,,0;
ee

ee

1

1

12

12

12

Rtay
rr

rV
arar

rrrr

∈<<
−

−

+αα
−=   (33) 

where ( ) .2411 2
2,1 β+±−=r  

On the basis of the previous notations and calculi, it results that 

( )
( )

( )[ ] ( )[ ]

( ) ( )
,,10;e

11

1111

1

1
,

12

12

12

Rty
rr

yy
tyu ti

rr

rr

p ∈<<
+α−+α

−α+−−α+

+αα
−= ω  

(34) 

while ( )tyucp ,  and ( )tyusp ,  have the expressions 

( )
( )

( )[ ] ( )[ ]

( ) ( )
;e

11

1111
e

1

1
,

12

12

12 











+α−+α

−α+−−α+

+αα
−= ωti

rr

rr

cp
rr

yy
tyu R  

,,10 Rty ∈<<   (35) 

( )
( )

( )[ ] ( )[ ]

( ) ( )
;e

11

1111
Im

1

1
,

12

12

12 











+α−+α

−α+−−α+

+αα
−= ωti

rr

rr

sp
rr

yy
tyu   

,,10 Rty ∈<<   (36) 

where eR  and Im denotes the real and the imaginary part of that which 

follows. 

3.2. Calculation of steady-state shear stresses ( )tycp ,τ  and ( )tysp ,τ  

Using the relations (27), (29), and (34), it is not difficult to find 

( )typ ,τ  in the form 

( )
( ) ( )[ ] ( )[ ]

( ) ( )
;

We1

e

11

1111

1

11
,

12

12

12

12

ω++α−+α

−α+−−α+

+α

−α+
=τ

ω

irr

yryry
ty

ti

rr

rr

p   

.,10 Rty ∈<<   (37) 
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Consequently, the dimensionless shear stresses ( )tycp ,τ  and ( )tysp ,τ  

have the forms 

( )
( )

1

11
,

+α

−α+
=τ

y
tycp  

( )[ ] ( )[ ]

( ) ( )
;

We1

e

11

1111
e

12

12

12

12













ω++α−+α

−α+−−α+
×

ω

irr

yryr ti

rr

rr

R   

,,10 Rty ∈<<   (38) 

( )
( )

1

11
,

+α

−α+
=τ

y
tysp   

( )[ ] ( )[ ]

( ) ( )
;

We1

e

11

1111
Im

12

12

12

12













ω++α−+α

−α+−−α+
×

ω

irr

yryr ti

rr

rr

  

.,10 Rty ∈<<   (39) 

The dimensionless frictional forces per unit area exerted by the fluid 

on the stationary plate, for instance, are given by the next relations 

( )
( ) ( )

,
We1

e

11

41
e

1

1
,1

12
12

2













ω++α−+α

β+

+α
−=τ

ω

irr
t

ti

rrcp R   (40) 

( )
( ) ( )

.
We1

e

11

41
Im

1

1
,1

12
12

2













ω++α−+α

β+

+α
−=τ

ω

irr
t

ti

rrsp   (41) 

3.3. Calculation of the normal stresses ( )tycp ,σ  and ( )ty,spσ  

Following the same way as before and using the equalities (28), (29), 

(34), and (37), we can find that the complex normal stress ( )typ ,σ  has 

the expression 

( )
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while the normal stresses ( )tycp ,σ  and ( )tysp ,σ  are given by the next 

relations 
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Finally, taking 0We =  into above relations, we recover the non-

dimensional steady-state solutions for the motion of Newtonian fluids 

with power-law dependence of viscosity on the pressure due to the lower 

plate that applies oscillatory shear stresses of the form (8) to the fluid. 

From Equations (35) and (36), for example, we recover the solutions 
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obtained by Fetecau et al. [19, Equations (43) and (44)]. In the above 

relations the roots 3r  and 4r  are given by the relations 

[ ] ( ).2Re42
4,3 αω+α±α−= ir  

4. Limiting Cases 

In this section, for completion with new steady solutions as well as to 

recover some known results from the existing literature, we consider two 

limit cases. 

4.1. Case 0→ω  (flow due to an exponential shear stress 

( )[ ]St λ−− exp1  on the boundary) 

Making 0→ω  in Equations (35), (38) and (43), the non-dimensional 

steady solutions 

( ) ( )
( )
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11
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We2
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−α+
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  (47) 

for the motion of IUCM fluids with power-law dependence of viscosity on 

the pressure produced by the lower plate that applies an exponential 

shear stress ( )[ ]St λ−− exp1  to the fluid are obtained. 

As expected ( )yuep  and epτ  given by Equations (47) are identical to 

the similar solutions obtained by Fetecau et al. [19] for the flow of 

Newtonian fluids with power-law dependence of the form (2) of viscosity 

on the pressure generated by the lower plate that applies a constant 

shear stress S to the fluid. Certainly, this it is possible because the 

governing equations corresponding to the steady flows of Newtonian and 

UCM fluids with/without pressure-dependent viscosity are identical. In 

the same time the boundary condition ( )[ ] SSt →λ−− exp1  for 

increasing values of the time t. 
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4.2. Case 0→α  (flows of the ordinary IUCM fluids) 

Now, writing the expressions of ( ) ( ) ( ),,,,,, tytytyu cpcpcp στ  

( ) ( ),,,, tytyu spsp τ  and ( )tysp ,σ  in suitable forms (see Equation (A1) 

from Appendix for ( )tyucp ,  only) and taking their limits for ,0→α  one 

obtains the following simple expressions (see also Equations (A2) and 

(A3)): 
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for dimensionless velocity, shear stress and normal stress fields 

corresponding to the same motions of the ordinary IUCM fluids. In the 

above relations, ( )We1Re ω+ω=δ ii  and the solutions (49) and (51) are 

in accordance with those obtained by Fetecau et al. [27, Equations (39) 

with ]0=K  where a different normalization has been used. Taking 

0We =  in Equations (48)-(53), the similar solutions corresponding to 
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motions of ordinary Newtonian fluids produced by the lower plate that 

applies shear stresses of the form (8) to the fluid are received (see [19, 

Equations (47) and (48)] for the velocity field only). 

5. Numerical Results, Discussions and Conclusions 

In this note two mixed initial-boundary value problems are 

analytically and numerically investigated. They correspond to isothermal 

unidirectional motions of IUCM fluids with power-law dependence of 

viscosity on the pressure between infinite horizontal parallel plates. The 

gravity effects are taken into consideration and closed form expressions 

are established for the dimensionless steady-state components ( ),, tyucp  

( ) ( )tyty cpcp ,,, στ  and ( ) ( ) ( )tytytyu spspsp ,,,,, στ  of the corresponding 

starting solutions. The steady solutions ( ) epep yu τ,  and ( )yepσ  

corresponding to the motion of the same fluids induced by a shear stress 

of the form ( )[ ]St λ−− exp1  on the boundary are acquired as limiting 

cases of ( ) ( ),,,, tytyu cpcp τ  respectively ( )tycp ,σ  when the oscillations’ 

frequency .0→ω  As expected, these solutions are identical to the similar 

solutions corresponding to the motion of Newtonian fluids with power-law 

dependence of viscosity on the pressure generated by the lower plate that 

induces a constant shear stress S to the fluid. 

As application of the results that have been obtained, as well as for 

the validation of their correctness, the convergence of start-up solutions 

( )tyuc ,  and ( )tyue ,  (numerical solutions) to their steady-state components 

( ),, tyucp  respectively ( )yuep  has been graphically proved in Figures 1 

and 2 for two different values of the pressure-viscosity coefficient α and 

increasing values of the time t. It is interesting to observe from these 

graphical representations that the need time to touch the permanent 

state is a decreasing function with regard to this parameter for the 

motion due to an exponential shear stress on the boundary but increases in 

the case of the oscillatory motion. From Figures 2(a)-(b) it also results that, 

as it was to be expected, the fluid velocity in absolute value increases in 

time and smoothly diminishes from the maximum value one on the lower 

wall to the zero value on the upper plate. 
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(a) 4.0=α  

 

 (b) 8.0=α  

Figure 1. Convergence of the start-up velocity ( )tyuc ,  to its steady-state 

component ( )tyucp ,  for increasing values of the time t. 
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(a) 4.0=α  

 

(b) 8.0=α  

Figure 2. Convergence of the start-up velocity ( )tyue ,  to its steady-state 

component ( )yuep  for increasing values of the time t. 
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In order to underline the oscillatory behaviour of the first two 

motions, Figures 3-6 were prepared for different values of the pressure-

viscosity coefficient .α  In Figure 3(a)-(b) are presented time variations of 

mid plane non-dimensional velocities ( )tucp ,5.0  and ( )tusp ,5.0  at 

decreasing values of this parameter. The last value 0=α  corresponds to 

the ordinary IUCM fluids. Frictional forces ( )tcp ,1τ  and ( )tsp ,1τ  per unit 

area exerted by the fluid on the fixed wall are depicted in Figure 4(a)-(b) 

while the normal stresses ( )tcp ,5.0σ  and ( )tsp ,5.0σ  in the median plane 

are presented in Figure 5(a)-(b) for the same values of physical 

parameters. From these graphs it clearly results that the amplitude of 

the oscillations diminishes for decreasing values of α  and the diagrams 

corresponding to fluids with pressure-dependent viscosity tend to 

superpose over those of the ordinary fluids if α  goes to zero. Finally, the 

spatial-temporal distribution of the non-dimensional start-up velocities 

( )tyuc ,  and ( )tyus ,  is presented in Figure 6(a)-(b) for comparison. Here, 

as well as in Figures 3-4, the phase difference between the two motions 

and their oscillatory features are clearly observed. 
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(a) ( )tucp ,5.0  

 

(b) ( )tusp ,5.0  

Figure 3. Time variation of the mid plane velocities ( ),,5.0 tucp ( )tusp ,5.0  

(at three decreasing values of )α  and ( ),,5.0 tuOcp  ( ).,5.0 tuOsp  



CONSTANTIN FETECAU et al.  22 

 

(a) ( )tcp ,1τ  

 

(b) ( )tsp ,1τ  

Figure 4. Time variation of the frictional forces ( ) ( )tt spcp ,1,,1 ττ            

(at three decreasing values of )α  and ( ) ( ).,1,,1 tt OspOcp ττ  
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(a) ( )tcp ,5.0σ  

 
 (b) ( )tsp ,5.0σ  

Figure 5. Time variation of the normal stresses ( ) ( )tt spcp ,5.0,,5.0 σσ     

(at three decreasing values of )α  and ( ) ( ).,5.0,,5.0 tt OspOcp σσ  
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Figure 6. Spatial-temporal distribution of the dimensionless start-up 

velocities ( )tyuc ,  and ( )tyus ,  (numerical solutions). 
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The main outcomes that have been obtained by this study are: 

− Steady-state solutions were established for two mixed initial-

boundary value problems describing motions of IUCM fluids with power-

law dependence of viscosity on the pressure. 

− These solutions have been used to determine the necessary time to 

touch the steady-state. 

− They were also used to provide steady solutions for the motion of 

same fluids induced by a time-exponential shear stress. The shear stress 

,epτ  unlike ( )yuep  and ( ),yepσ  is constant. 

− Steady-state is later obtained for motions of the ordinary IUCM 

fluids as compared to IUCM fluids with power-law dependence of 

viscosity on the pressure 

− Steady-state solutions for motions of ordinary IUCM fluids due to 

oscillatory shear stresses were acquired as limiting cases of the general 

expressions that were previously determined. 
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