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Abstract 

Spinocerebellar ataxias or SCAs, are a group of more than 37 genetically and clinically 

heterogeneous known neurodegenerative diseases. This work analyzes the level of genetic 

similarity between several ataxias, we identified proteins that are associated with more 

than one ataxia. A decision tree was trained to identify ataxias by identifying whether a 

new entry disease not yet identified and not classified can be grouped as an ataxia. 

Altogether 12 proteins from different ataxias were verified, all 12 proteins were analyzed in 

500 different trees to better evaluate the method used. Of the 12 proteins tested, the 

method was correct for 10 different proteins or 83% of correct results. This identifier and 

the results obtained in the experiments allow a greater characterization of the diseases 

addressed, it also allows applications such as the reuse of treatments for similar diseases. 
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1. Introduction 

Spinocerebellar ataxias or SCAs are a group of more than 37 known 

neurodegenerative diseases that are genetically and clinically 

heterogeneous. The most common type among SCAs has an occurrence of 

1 to 5 cases per 100,000 people. They commonly affect the nervous 

system, causing loss of coordination [1]. 

This work analyzes the level of genetic similarity between several 

ataxias by identifying proteins that are associated with more than one of 

them. Once, it has been shown that ataxias have many proteins in 

common [2]. In the study of [3], it was shown that ataxias also have more 

genes related to each other compared to other diseases. This study 

intends to evolve the studies carried out in [2, 3], using machine learning 

tools to characterize the ataxias presented. 

Studies have shown that genes can be related to other genes, that is, 

the increase in the action of one gene can lead to an increase or decrease 

in the phenotypic effects of another gene [4]. From this feature a network 

of gene or protein interactions can be generated. Thus, a decision tree was 

trained to identify ataxias in order to establish whether or not an as-yet 

unidentified and unclassified new entry disease can be grouped as an 

Ataxia [5]. 

Some studies such as [16] already use machine learning methods to 

better analyze diseases, the study presented here can also be used for this 

purpose, but its main objective, not addressed in [16], as well as not in 

related works, is the comparison between already known diseases. 

Studies such as [17, 18, 19] uses machine learning methods to compare 

diseases and can and were used as a basis for the composition of this 

study, but they do not present comparative studies on the studied 

diseases (Ataxias), as well as, do not use genetic characteristics in 

comparisons. This study therefore generates a new method that can be 

applied to other diseases because it is precise and uses a quick and simple 

data structure, but specifically, in this study, it was applied to a set of 

diseases not yet studied by machine learning methods. 
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This classification allows for greater understanding of the group of 

diseases studied and also allows applications such as the reuse of 

drugs/treatments for similar diseases that were or will be analyzed by the 

generated tree, as well as an understanding of why this indication is 

functional based on genetic factors of the disease [6]. 

2. Methodology 

2.1. Protein networks 

Protein relationships can occur in different ways in our organism, a 

common way, which can be mentioned, is the gene co-expression [7]. Gene 

expression can be interpreted as the process by which DNA nucleotide 

sequences are transcribed into RNA used by the cell or RNAs that are 

translated into proteins [8]. A change in the expression of one gene can 

increase or decrease the expression of other genes [9]. This correlation 

between genes can be represented by an interaction graph. A graph is a 

mathematical structure G = (V, E) where V is a non-empty set of vertices 

that can represent genes or proteins for example and E are edges that 

connect two vertices and indicate a relationship between them, just as 

they can represent a co-expression relationship between two genes [1]. An 

edge, in a genetic or protein network, may have associated with it a 

weight that corresponds to the confidence of the co-expression of the gene 

[7]. 

In this work we use the String-DB database to generate the biological 

networks. String-DB is a database containing thousands of protein-

protein interactions. It also includes a score that associates a degree of 

confidence in its occurrence to each interaction. String-DB calculates this 

score, a value between 0 and 1, using different prediction approaches and 

different databases such as NCBI Gene Expression Omnibus, 

ProteomeHD, PubMed, Ensembl, SwissProt [7]. We consider this 

confidence value as the weight of the edges of our graph G. Only 

connections with a confidence above the threshold defined by 0.5 were 

considered to increase reliability. 
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In Figure 1, a biological network obtained by the string platform for 

the connections of the protein that causes squamous cell ataxia type 1 

(ATXN1) is represented. 

 

Figure 1. Main connections of protein caused of the Spinocerebellar 

ataxia type 1 (ATXN1). Edge scores are not shown in the figure, but for 

example, score between ATXN7 protein and HTT explained by PubMed 

([11]): “score 0.810. Putative homologs are mentioned together in other 

organisms (score 0.092)”. 

2.2. Representation: Graph as a vector 

The machine learning methods used require the input data to be 

vectors with characteristics. Unfortunately a graph is not naturally 

synthesized by this format. There are programs that use the graph 
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structure to create feature vectors that can be used as input to machine 

learning methods [11]. In this study, the program presented in [11] called 

NBNE (Neighborhood Based Node Embeddings) was used. The NBNE in 

its own study is compared to other current methods and surpasses them. 

NBNE creates a vector with 128 features for each vertex of the graph. 

Unfortunately, NBNE does not allow an easy interpretation of the 

created vectors, that is, NBNE creates a vector for each edge of the graph 

with values that imply complex properties of the network topology, these 

properties, however, do not allow an easy biological interpretation of the 

values found, its main focus is on the quality of the representation and 

not on the interpretation of the results generated. However, NBNE was 

chosen in this work because it is a current method and presents degrees 

of efficiency in similar applications that are more suitable than other 

existing methods [11]. 

2.3. Machine learning methods 

The method used in this work is classified as supervised. This is also 

possible thanks to the representation presented in Subsection 2.2, which 

allows the representation of a graph as a numerical vector of features. 

This class of methods features a training phase and a testing phase. In 

the training phase, in general, the obtained data are divided and, based 

on classical methods, a machine is taught to classify new data based on 

the teaching generated by the previous data [12]. In the case of this work, 

we want to develop a machine capable of telling whether a new input 

protein causes an ataxia or not. For this, the training set will contain 

genes from the input graph that are linked or not to an ataxia. Therefore, 

the objective is to know whether the data used to develop the network are 

sufficient to identify this class of diseases and, in parallel, identify the 

characteristics that differentiate this group of diseases from others. 
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Figure 2. Example decision tree. 

A recurrent problem that can occur in machine learning is that of 

overfitting. In our context, a method that produces overfitting would 

generate a machine that would memorize the input data, being unable to 

recognize other ataxias, besides those used as input, which have few 

significant differences. Therefore, overfitting should be avoided in this 

study, aiming to reduce this problem in this work, a method that 

classically generates little overfitting was chosen [12]. 

The machine learning method used is the decision tree. This method 

was chosen over the others because it presents an easy biological 

interpretation of the results obtained, that is, from the characteristics of 

the tree it can be more easily implicated in the characteristics of the 

studied diseases. Therefore, in addition to the main objective of this study 

of classifying diseases, deep interpretations and the generation of the tree 

will allow for a better understanding of this class of diseases that is still 

poorly studied and known (i.e., ataxias) [13]. 

In addition, the tree used has already obtained several improvements. 

Comparing it to other methods by the accuracy metric that will be 

described in the future, the tree managed to obtain significant quality 

results in relation to the other tested methods. 
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2.4. Decision tree 

The decision tree is a tree of choices about stacked decisions. At each 

node the tree asks a question according to the input data parameters, if 

the answer is positive the user goes to the left of the tree and if the 

answer is negative the user goes to the right of the tree. The process is 

repeated until the user arrives at a node that no longer has children 

called a leaf [13]. 

A visual example of a tree can be seen in Image 2. For example, if the 

input data has a value of parameter 2 greater than 0.5 it will go to the 

node to the right of the current node, if the value of this parameter is 

smaller that 0.5 it will go left. As an application example, for this tree, if a 

data has a parameter 2 value less than 0.5 and a parameter 3 value 

greater than 0.2 it will be classified as class 1. 

The continuous growth of the tree with many decision nodes can 

generate overfitting because the tree would decorate the input data, 

preventing its generalizability [13]. An adequate height of the tree must 

be chosen by the user from the knowledge of his data [13]. It will be seen 

that in fact the tree generated by this study does not have a great height. 

For the creation of the decision tree (i.e., correct positioning of the 

nodes) a classic method used in this work can be used. Basically, the 

method calculates the entropy of each question and gives preference to 

questions with higher entropy to assume higher positions in the tree. 

Entropy, among other things, considers the number of data that will be 

directed to the right or left child in a tree [13]. 

The accuracy metric will be used in this work, it serves to identify the 

efficiency of the method used. After the method is trained, some test data 

are delivered to the method, if it manages to classify these data correctly 

its accuracy increases, if its classification is wrong its accuracy decreases 

linearly, that is, for example, 100% accuracy means that the algorithm 

got all the possibilities right, 50% accuracy means that the algorithm got 

half of all the possibilities right. 
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2.5. Cross validation 

In order to improve probabilistic results about the efficiency of a 

method on a dataset, cross-validations can be used. Owned input data can 

be divided into 2 groups: training data and testing data, but how does this 

division occur? From iterative methods, training and testing groups are 

created based on the input data and different at each iteration, thus 

allowing the evaluation of the method in a more independent way from 

the data used. 

In this study, we want to know which data will be present in each set, 

in order to be able to characterize the Ataxias exclusively. Therefore, no 

classical cross-validation method will be used, but your idea, for bringing 

benefits to the experiments, will be used to assemble the test and training 

sets used. How the sets were assembled will be better described in the 

next section of Experiments (Section 4). 

3. Algorithm 

The algorithm that implements the project was entirely made in 

Python. Python has libraries that allow easy use of machine learning 

methods, including the decision tree. From sklearn, the code presented by 

Algorithm 1 was produced and it manages to synthesize all the 

methodology proposed by this work. 

The algorithm (exposed by Algorithm 1) basically reads and stores the 

input data in lines 1 to 3 using the NBNE. Lines 4 to 6 create and use the 

tree based on functions provided by the sklearn library. Finally, line 7 

calculates the final result. Naturally, Algorithm 1 has been simplified by 

hiding unnecessary secondary functions for understanding the method. 
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Algorithm 1: Decision tree 

1. X train = <reading the data> % input data read 

2. Y train = <reading the data> 

3. Y pred = <reading the data> 

4. model = Decision TreeClassifier() %tree creation 

5. model = model.fit (Xtrain, Ytrain) 

6. Y pred = model.predict(Xtest) %creation of the prediction variable 

7. result = result + (accurancy_score(Ytest, Ypred))% accuracy calculation  

Algorithm 1: Proposed method. 

4. Experiments and Results 

In this study, we used a set of 12 proteins directly linked to some 

ataxia. The types of ataxia used are considered monogenetic diseases that 

are caused by the mutation of a single gene, for each ataxia used, at least 

one protein is known to cause or influence it. The proteins used are 

described in Table 1 [15]. Another set of 24 proteins not directly bound to 

ataxias and chosen at random from all the existing set of proteins in the 

human body was used. Initially, a training group was created containing 

9 proteins from the first group and 18 proteins from the second, chosen at 

random from the whole set, the random subdivision was done 30 times 

with the aim of bringing more confidence to the results found. 

The decision tree was applied to this iterated set of 27 proteins as 

described above. The remaining pool of 9 proteins was used as a test to 

evaluate the method used. To assess tree size, 500 trees with sizes 

ranging from 1 to 500 were generated, one tree for each specified size. For 
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the 500 trees with 30 iterations each, the highest average accuracy 

obtained for the specified data was 0.89.1 

Each tree height level obtains a distinct accuracy value. The variance 

of the calculated accuracy of all 500 trees generated in the algorithm was 

only 0.0016 showing that: the tree quality varied little with the change of 

its height, the tree quickly obtained good quality even with few nodes 

and, finally, the tree did not significantly present the overfitting problem. 

To facilitate viewing the result, it is shown in Figure 3. 

 

Figure 3. Accuracy value variation in a decision tree with height 

variation from 1 to 500. 

 

 

                                                      

1The average was used because each tree generated 30 results, one for each iteration. 

Measures such as variance or confidence interval will not be presented throughout the 

work as they obtained low and irrelevant values for the results found.  
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The characteristic of getting a good result even with low tree height 

can be a property of ataxias. If the ataxias have more similarities as 

described in studies [2, 3] the decision tree, even with few vertices, would 

achieve a good result. Furthermore, based on this result, one can assume 

the existence of a strong characteristic that approximates the Ataxias 

that was found by the decision tree and that was used by it, thus, even 

with the addition of new vertices, new choices did not generate other 

significant separations. However, all results can also be explained by 

technical factors such as the low dimensionality and diversity of training 

and test data. 

A second set of tests was performed. In order to determine which of 

the tested ataxias differs the most from the others in the test set, 12 sets 

with all 24 chosen proteins plus 12 � 1 = 11 ataxias proteins were created. 

Twelve experiments were carried out removing in each experiment a 

protein related to an ataxia. The tree was trained with the height that 

obtained the best accuracy performance in the previous test. The result 

for the 12 proteins can be seen in Table 1. 

Table 1. As predicted by the previous experiment, this experiment 

achieved a high hit rate of 83%. Among the 12 ataxias tested, only 2 had 

misclassification, Ataxias of type 10 and 11 represented by proteins 

ATXN10 and TTBK2 

Table 1. Search results 

       

Disease SCA2 SCA2 SCA3 SCA17 SCA3 SCA7 

Protein ATXN2 ATXN2L ATXN3L TBP ATXN3 ATXN7L2 

Result Right Right Right Right Right Right 

       

Disease SCA36 SCA7 SCA10 SCA11 SCA1 SCA7 

Protein NOP56 ATXN7 ATXN10 TTBK2 ZNF674 ATXN7L3 

Result Right Right Missed Missed Right Right 
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5. Conclusion 

This work presented a way to classify, from a machine learning 

method, a set of neurodegenerative and genetic diseases from a set of a 

biological interaction network, specifically, the set of diseases called 

ataxias was studied. 

The machine learning method used was the decision tree. This method 

was chosen mainly for its easy interpretability and explainability, but 

also for obtaining adequate results in relation to other existing methods. 

This work performed two sets of experiments on a set of 12 proteins 

acting on several ataxias. From the first experiment, it was possible to 

conclude that the ataxias are well separated even by decision trees with 

few vertices, showing the existence of a possible strong similarity between 

the Ataxias. As a result of the second set of experiments, a possible lesser 

similarity was seen between ataxias of types 10 and 11 in relation to the 

other ataxias tested considering the proteins used. 

In the future, the data and methodology presented may support 

comparative studies of other diseases. The classifier generated, despite 

having good experimental quality, can be retrained using more proteins 

not bound to ataxias or, if new studies are carried out that analyze this 

class of diseases, other proteins also bound to ataxias can be used, as well, 

to other proteins from diseases close to the ataxias. 
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