
Journal of Mathematical Sciences: Advances and Applications 

Volume 67, 2021, Pages 1-59 

Available at http://scientificadvances.co.in 

DOI: http://dx.doi.org/10.18642/jmsaa_7100122214  

2020 Mathematics Subject Classification: 60E05, 62E15, 62F10. 

Keywords and phrases: power distribution, transmuted power distribution, moments, order 

statistics, data analysis. 

Received July 13, 2021; Revised August 3, 2021 

 2021 Scientific Advances Publishers 

This work is licensed under the Creative Commons Attribution International License            

(CC BY 3.0). 

http://creativecommons.org/licenses/by/3.0/deed.en_US 

Open Access 
 

 

ON A LOGARITHMIC WEIGHTED POWER 

DISTRIBUTION: THEORY, MODELLING AND 

APPLICATIONS  

CHRISTOPHE CHESNEAU  

Université de Caen 

LMNO 

Campus II, Sciences 3 

14032, Caen 

France  

e-mail: christophe.chesneau@unicaen.fr  

Abstract 

Engineers, economists, hydrologists, social scientists, and behavioural 

scientists often deal with data belonging to the unit interval. One of the most 

common approaches for modeling purposes is the use of unit distributions, 

beginning with the classical power distribution. A simple way to improve its 

applicability is proposed by the transmuted scheme. We propose an alternative 

in this article by slightly modifying this scheme with a logarithmic weighted 

function, thus creating the log-weighted power distribution. It can also be 

thought of as a variant of the log-Lindley distribution, and some other derived 
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unit distributions. We investigate its statistical and functional capabilities, and 

discuss how it distinguishes between power and transmuted power 

distributions. Among the functions derived from the log-weighted distribution 

are the cumulative distribution, probability density, hazard rate, and quantile 

functions. When  appropriate, a shape analysis of them is performed to increase 

the exibility of the proposed modelling. Various properties are investigated, 

including stochastic ordering (first order), generalized logarithmic moments, 

incomplete moments, Rényi entropy, order statistics, reliability measures, and 

a list of new distributions derived from the main one are offered. Subsequently, 

the estimation of the model parameters is discussed through the maximum 

likelihood procedure. Then, the proposed distribution is tested on a few data 

sets to show in what concrete statistical scenarios it may outperform the 

transmuted power distribution. 

1. Introduction 

A vast number of continuous distributions with support equal to 

( ),1,0  called unit distributions, exist in the statistical literature. Within 

these unit distributions, some, in particular, have proven useful in a 

broad range of situations. This is the case for the power ( )P  distribution 

described by the following cumulative distribution function (cdf): 

( ) ( )













≤

∈

≥

=α α

,0,0

,1,0,

,1,1

;

x

xx

x

xFP   (1) 

where .0>α  Basically, it is the exponentiated version of the uniform 

distribution over ( ).1,0  More elements, properties and applications of the 

P distribution can be found in Johnson et al. [19], Kleiber and Kotz [20], 

Balakrishnan and Nevzorov [4] and Zaka et al. [36]. Simple extensions of 

it include the beta distribution studied extensively in Ferrari and Cribari-

Neto [13], Topp-Leone distribution introduced in Topp and Leone [34], 

Kumaraswami distribution established in Kumaraswamy [23], standard 

two-sided power distribution proposed in van Dorp and Kotz [35] and 

transmuted power (TP) distribution developed in Shahzad and Asghar 

[31]. More sophisticated extensions can be found in the mini review of 

(Chesneau [7], Table 1), and the references therein. Recent advances in unit 

distributions may be found in Chesneau [7, 8] and Chesneau et al. [9]. 
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The TP distribution, in particular, distinguishes itself from the 

competition by striking a good balance between simplicity and efficiency. 

It aims to combine the polynomial functionalities of the transmuted 

scheme with those of the P distribution. As a result, the associated cdf is 
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where ( ) ( ),11,; α−λ+=λα xxw  with [ ]1,1−∈λ  and .0>α  In some 

sense, the cdf of the P distribution is thus multiplied by the weight 

function ( )λα,;xw  for ( ).1,0∈x  The parameter λ  is a central 

modulation parameter; the P distribution is obtained by setting ,0=λ  

the distribution of the maximum of two independent random variables 

with the P distribution is obtained by setting ,1−=λ  and the 

distribution of the minimum of two independent random variables with 

the P distribution is obtained by setting .1=λ  All the intermediate 

decimal values of [ ] { }1,0,11,1 −−∈λ  give intermediary distributions of 

interest. According to Shahzad and Asghar [31], the TP distribution has 

more flexible functions with interesting non-monotonic curves than the P 

distribution. In particular, the probability density function (pdf) has 

increasing-decreasing shapes and the hazard rate function (hrf) has 

diverse levels of bathtub shapes, properties that are not observed for the 

P distribution. Thanks to its flexible features, the TP distribution can be 

used quite efficiently to analyze datasets in many fields, such as 

engineering, economics, hydrology, finance, and behavioural sciences. 

Further properties of the TP distribution can be found in Shahzad and 

Asghar [31] and Tanis [33]. 
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In this paper, we focus on a simple alternative to the TP distribution. 

It is based on a cdf similar to the one in Equation (2), but with the 

following logarithmic weighted function: ( ) ( )xxw log1,; λα−=λα  with 

[ ],1,0∈λ  for the case ( ).1,0∈x  Again, λ  is a key modulation 

parameter; setting 0=λ  yields the P distribution. All other values of λ  

produce alternative logarithmic distributions. The idea of modulating a 

logarithmic term in a unit distribution is not new in stricto sensu; we may 

refer the reader to the log-Lindley distribution established by Gómez-

Déniz et al. [16], as well as the three-parameter power logarithmic 

distribution by Ahmed et al. [2], and the log-weighted power function 

distribution by Mandouh and Mohamed [25]. The proposed distribution 

can be viewed as a simple variant of these modern unit logarithmic 

distributions, which has not received special attention in the literature, to 

our knowledge. Its simplicity is a quality; its in-depth study is thus 

possible on several aspects, which is one aim of the paper. 

The following facts motivate the interest in the considered 

distribution: (i) from a stochastic standpoint, it is strongly linked to the 

TP proposed and P distributions, with a clear hierarchy of the 

corresponding cdfs, (ii) the associated functions, such as the pdf, hrf, and 

quantile function (qf), are simple and analytically comprehensive, (iii) the 

asymmetry and tail properties of the pdf and hrf are modulable; in 

particular, unlike the TP distribution, the pdf has a large panel of 

decreasing and sharp (mesokurtic) left skewed increasing-decreasing 

shapes, and the hrf presents flexible bathtub shapes, (iv) the associated 

moment measures of various kinds, such as generalized logarithmic 

moments and incomplete moments, are manageable, (v) its randomness 

can be studied via standard entropy measures, (vi) the associated order 

statistics and their properties are studyable, with expressible moment-

type measures, (vii) its main measure of reliability has a simple structure, 

(viii) it can be used to define new distributions with diverse numbers of 

parameters and supports, (ix) from a statistical standpoint, its 
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parameters are estimable quite efficiently by the maximum likelihood 

procedure, and (x) it can outperform the data fitting performance of the 

TP distribution for some data sets. In the paper, all of these facts are 

thoroughly explored. 

The outline of the paper is as follows: Section 2 details the proposed 

log-weighted power distribution with an emphasis on the key functions. 

We discuss its quantile properties in Section 3. Section 4 performs a 

moment analysis, and Section 5 an entropy analysis. The order statistics 

of the proposed distribution are developed in Section 6. A measure of 

reliability is given in Section 7. Some distributional results are presented 

in Section 8. Applications in statistics are given in Section 9. Concluding 

remarks are formulated in Section 10. 

2. The Log-Weighted Power Distribution 

This section presents the proposed alternative to the transmuted 

power distribution, along with some of its functional facets. 

2.1. Description 

The following result shows a mathematically valid cdf, which will be 

central to the investigation. 

Proposition 2.1. Let 0>α  and [ ].1,0∈λ  Then, the following 

function has the properties of a valid cdf: 
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Proof. It is clear that ( ) 0lim 0 =→ xFx  and ( ) .1lim 1 =→ xFx  

Moreover, ( )xF  is continuous for .R∈x  For ( ),1,0∈x  its derivative is 

obtained as ( ) ( )[ ].log11 xxxF λα−λ−α=′ −α  Since 01 >λ−  and 

( ) ,0log >λα− x  we have ( ) ,0>′ xF  implying that ( )xF  is strictly 

increasing for ( ).1,0∈x  All these facts combined validate ( )xF  as a cdf. 

� 

To our knowledge, the two-parameter cdf presented in Proposition 2.1 

has not received special attention in the literature, but we can not claim 

that it is completely new; it has some connections with existing functions. 

First, it coincides with the cdf of the log-Lindley distribution under the 

following specific configuration: ( ),11 αλ+=λ ∗  where ∗λ  denotes the 

”“ λ  in the former definition of the log-Lindley distribution (see Gómez-

Déniz et al. [16]). Note that this particular λ  is connected with α  and can 

not be equal to 0. In addition, such a reparameterization could affect the 

numerical estimation of the parameters. On these points, the proposed 

cdf differs. Also, the proposed distribution is a special case of the three-

parameter power logarithmic distribution by Ahmed et al. [2]; it appears 

by taking ”,1“”,“ λ−=βα=α ∗∗  and ”,“ λα=δ∗  where ∗∗ βα ,  and ∗δ  

refer to the parameters of the three-parameter power logarithmic 

distribution. However, the simplicity in the definition of the proposed 

distribution is a quality, which allows an in-depth study for both the 

mathematical and practical aspects. For this reason, we will take a close 

look at it in this article. On the other hand, in the case of ,1=λ  it 

corresponds to the so-called lookback distortion, which is sometimes used 

to define distortion risk measures in finance and insurance applications 

(see Denuit et al. [12]). 
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Hence, we present the log-weighted power (LP) distribution, specified 

by the following cdf: 

( ) ( )[ ] ( )
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with [ ]1,0∈λ  and .0>α  It is also denoted as ( )λα,LP  distribution to 

specify the parameters. As a first remark, it generalizes the P 

distribution; the cdf of the P distribution is obtained by taking 0=λ  in 

Equation (3), and it provides a real alternative to the TP distribution. 

This last claim is illustrated in the next result. 

Proposition 2.2. The following inequalities hold: For any [ ]1,0∈λ  

and ,R∈x  we have 

( ) ( ) ( ).,;,;; LPTPP λα≤λα≤α xFxFxF  

Proof. For 0≤x  or ,1≥x  the cdfs are equal to the same constants, 

0  or .1  For 0=λ  and ( ),1,0∈x  they are equal to .αx  For 0>λ  and 

( ),1,0∈x  since 01 >− αx  and ,0>λ  we have ( ) αα <=α xxxF ;P  

[ ( )] ( ).,;11 TP λα=−λ+ α xFx  The first inequality is established. For 

( ),1,0∈y  the following inequality is valid: ( ) .1log −< yy  By taking 

( ),1,0∈= αxy  we obtain ( ) [ ( )] [ λ+>λ−=λα ααα 1log1,;LP xxxxF  

( )] ( ).,;1 TP λα=− α xFx  The second inequality is obtained, ending the 

proof of the proposition.  � 

The result above means that, for [ ],1,0∈λ  the TP distribution first 

order stochastically dominates the LP distribution, implying different 

objectives in terms of data fitting, among other things. More differences 

between the TP and LP distributions will be discussed later. 

 



CHRISTOPHE CHESNEAU 8 

Figure 1 presents a panel of shapes of the cdf of the LP distribution. 
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Figure 1. Curves for the cdf ( )λα,;LP xF  for various values of α  and .λ  
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Various concave and convex shapes, including diagonal and angular 

shapes, attest to the flexibility of the cdf. 

2.2. Distributional functions 

We are interested in the expressions of the main functions of the LP 

distribution. First, the pdf is derived from Equation (3) upon 

differentiation, and is given implicitly in the proof of Proposition 2.1. It is 

expressed as 

( )
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For ( ),1,0∈x  it is also related to ( )λα,;LP xF  as 

( ) ( ) ( )λα⇔αλ−λα
α

=λα −α ,;,;,; LP
1

LPLP xFxxF
x

xf  

( ) .,;LP
αλ+λα

α
= xxf

x
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This relationship will have its utility in some mathematical 

developments. 

Let us examine this pdf analytically using standard tools. For 

( ),1,0∈x  the following limits hold: 
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The shape behaviour of the pdf is studied below. 

Proposition 2.3. For ( ]1,0∈α  and [ ] ( )λα∈λ ,;,1.0 LP xf  is strictly 

decreasing for ( ).1,0∈x  
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• For 1>α  and ( ) ( )( ] ( )λα−α−α∈λ ,;,1,121 LP xf  is increasing-

decreasing for ( ),1,0∈x  and the maximal point is given as 

( )[ ] ( )[ ].1112 αλ−αλ−+−λα−
∗ = ex  

• For 1>α  and ( ) ( )[ ] ( )λα−α−α∈λ ,;,121,0 LP xf  is strictly 

increasing for ( ).1,0∈x  

Proof. As a special case, for 1=α  and ( ) ( ) λ−=λα∈ 1,;,1,0 xfx LP  

( )xlogλ−  which is clearly decreasing. It is assumed in the following that 

.1=/α  The derivative of ( )λα,;LP xf  is given as 

( ) ( ) ( ) ( )[ ].112log1,; 2
LP λ−+−λα+αλ−αα−=λα′ −α xxxf  (5) 

Therefore ( )λα,;LP xf  is strictly decreasing if and only if ( ) .0,;LP <λα′ xf  

This inequality is equivalent to ( ) ( ) ( ) .0112log1 >λ−+−λα+αλ−α x  

Since ( ) −∞=→ xx loglim 0  and ( ) ,01log =  this inequality is possible for 

all ( )1,0∈x  if and only if ( )1,0∈α  and ( ) ,0112 >λ−+−λα  so 

( ) .0112 >α−+−αλ  

• If [ ),1,21∈α  the inequality is obviously satisfied for all [ ].1,0∈λ  

• If ( ),21,0∈α  this inequality becomes ( ) ( ),121 −α−α<λ  and 

this upper bound is strictly superior to 1, so we can keep the initial 

assumption on λ  without restriction, so [ ].1,0∈λ  

As a result, for ( ]1,0∈α  and [ ] ( )λα∈λ ,,,1,0 LP xf  is strictly 

decreasing for ( ).1,0∈x  

• Based on Equation (5), we have ( ) 0,;LP =λα′ ∗xf  if and only if 

( )[ ] ( )[ ].1112 αλ−αλ−+−λα−
∗ = ex  Consequently, ( )λα′ ,;LP xf  is non-monotonic 

if ( ).1,0∈∗x  This condition is equivalent to ( )[ ] ( )[ ] 01112 >αλ−αλ−+−λα  

and .0>λ  
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• If ,1>α  this inequality is equivalent to ( ) ,0112 >λ−+−λα  

hence ( ) ,0112 >α−+−αλ  so ( ) ( ),121 −α−α>λ  and this lower bound 

belongs to ( ).1,0  

• If ,1<α  this inequality becomes ( ) ,0112 <λ−+−λα  so ( ) +−αλ 12  

.01 <α−  Therefore, if [ ),1,21∈α  this inequality can not be satisfied 

because the left term is positive. If ( ),21,0∈α  we have ( )1−α>λ  

( ),12 −α  and this lower bound is strictly superior to 1. This contradicts 

the initial assumption that .1≤λ  

As a result, for 1>α  and ( ) ( )( ] ( )λα−α−α∈λ ,;,1,121 LP xf  is 

non-monotonic for ( )1,0∈x  with an extremum at the point == ∗xx  

( )[ ] ( )[ ].1112 αλ−αλ−+−λα−e  Since ( ) 0,;lim LP0 =λα→ xfx  with ( )λα,;LP xf  

0>  for all ( ),1,0∈x  this point is a maximum point and the function is 

increasing-decreasing. 

• The last claim is a consequence of the two items above. Indeed, we 

have shown that, if ( )λα,;LP xf  is non-monotonic, it has only one mode. 

So it is monotonic in other cases. And since the decreasing case is well-

identified, we deduce the increasing case as the last possible case, 

reached with 1>α  and ( ) ( )[ ].121,0 −α−α∈λ  As an alternative proof 

of this claim, we can proceed analytically as the first item to obtain the 

same result. 

This ends the proof of the proposition.  � 

As a consequence of Proposition 2.3, the LP distribution is unimodal 

for the case 1>α  and ( ) ( )( ],1,121 −α−α∈λ  and the mode is given by .∗x  

At this value, we have the maximum of the pdf given as 

( ) ( )[ ] ( ).
1

,; 112
2

LPmax
αλλ−+−λα−

∗ −α

λα
=λα= exff  

We thus see the impact of λ  and α  in this maximum. Figure 2 illustrates 

the shape behaviour of the pdf of the LP distribution. 
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Figure 2. Curves for the pdf ( )λα,;LP xf  for various values of α  and .λ  
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From Figure 2, it can be noted that, unlike the pdf of the TP 

distribution, the pdf of the LP distribution has a large panel of decreasing 

and sharp (mesokurtic) left skewed increasing-decreasing shapes. 

The hrf is calculated as 
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Let us investigate this hrf by using standard analytical tools. For 

( ),1,0∈x  the following limits hold: 
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Therefore, for all the values of the parameters, the hrf “explodes” at the 

neighbourhood of ,1=x  and this with a harmonic decrease. 

The following result shows that the hrf can be an increasing function, 

depending on the values of α  and .λ  

Proposition 2.4. If 45>α  and ,0>λ  then ( )λα,;LP xh  is 

increasing. 

Proof. The proof is based on a result established by Glaser [15]. In 

the context of the LP distribution, it may be formulated as follows. Let us set 

( )
( )
( )

.
,;

,;
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LP

LP

λα

λα′
−=λα/

xf

xf
x;υ  
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Then, according to Glaser [15], if  ( )λα′/ ,;xυ  is strictly positive for 

( ),1,0∈x  then ( )λα,;LP xh  is increasing. Here, after some developments 

and simplifications, we have 

( )
( ) ( ) ( )

( )[ ]
,

log1

112log1
,;

xx

x
x

λα−λ−

λ−+−λα+αλ−α
=λα/υ  

and 

( )

( ) ( )[ ] ( )( ) ( )

( ) ( )

( )[ ]
.

log1

1132

log2223log1

,;
22

2222

222

xx

xx

x
λα−λ−

λ−−+λ−λα+λα+

+λ−−λααλ+λα−α

=λα′/υ  

Hence, for determining the sign of  ( ),,; λα′/ xυ  it is enough to find the 

sign of the numerator term. This term is of the form ( )( ),log xPα  where 

( ) ,2
αααα ++= cybyayP  where ( ) ( ( ) 223,1 22 −−λααλ=λα−α= αα ba  

)2+λ  and ( ) ( ) .1132
2222 λ−−+λ−λα+λα=αc  After a fastidious 

development, the discriminant of ( )yPα  is given as =−=∆ ααα cab 42  

( ) .45 44λαα−  Therefore, we have 0<∆  for 45>α  and ,0>λ  

implying that ( )yPα  has a constant sign for all .R∈y  Hence, let us 

study the sign of the simple case described by ( ) ( )121 2 −α+α== αα cP  

( ) .1322 −α+λα−+λ  This quantity can be thought of as a polynomial in 

terms of ,λ  which we denote as ( ).λαQ  It has the discriminant 

,45 32 α−α=∆∗  which is strictly negative if .45>α  Therefore, the sign 

of ( )λαQ  is constant, and it is in particular the one of ( ) .01 2 >α=αQ  

Therefore, ( )( ) ,0log >α xP  implying that  ( ) 0,; >λα′/ xυ  and, by Glaser 

[15], ( )λα,;LP xh  is increasing. The proposition is demonstrated.  � 

For the case of ( ],1,0∈α  in view of the limit properties of 

( ),,;LP λαxh  it is clear that ( )λα,;LP xh  has at least a minimum point. 

Due to a high level of complexity in terms of analytical developments, we 

propose a graphical analysis to complete these results. We plot several 

curves of this hrf in Figure 3. 
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Figure 3. Curves for the hrf ( )λα,;LP xh  for various values of α  and .λ  
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From Figure 3, we see that ( )λα,;LP xh  has increasing and bathtub 

shapes, which is consistent with Proposition 2.4 and the formulated 

remarks. The wide range of bathtub shapes of the hrf of the LP 

distribution is not observed for the hrf of the TP distribution. 

3. Quantile Analysis 

Quantiles are cut points in a probability distribution that split its 

range into continuous intervals with equal probability. They are specific 

values of the qf. The qf of the LP distribution is determined in the next 

result. 

Theorem 3.1. The qf of the LP distribution is expressed as 

( ) ( ),1,0
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,; 1
1

1
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α

y
e

y
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y
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where ( )xW 1−  is the secondary real branch of the Lambert function. 

Proof. We have ( ) ( ).,;,; 1
LPLP λα=λα − yFyQ  Thus, it satisfies the 

following functional equation: ( ) yxF =λα,;LP  according to .x  The case 

0=λ  is immediate; we have α= xy  implying the desired result. For the 

case ,0>λ  with step-by-step progression, we get 

( ) ( )[ ]xxyxFy LP log1,; λα−=⇔λα= α  

( ) λ−λα−α−α− α−
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=⇔ 11
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The proof ends.  � 
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Figure 4 illustrates the shape behaviour of the qf of the LP 

distribution. 
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Figure 4. Curves for the qf ( )λα,;LP yQ  for various values of α  and .λ  
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The flexibility of the qf is demonstrated by a variety of concave and 

convex shapes, including diagonal and angular shapes. 

Based on the qf, we can determine the median of the LP distribution 

defined by ( ),,;21LPLP λα= QM  corresponding to 






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>λ
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−
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.0,
2

1
2

,0,2

1
1

1
1

1

LP
eW

M  

The two other quartiles can be expressed in a similar manner, by taking 

the values 41=u  and 43=u  in the definition of ( ).,;LP λαuQ  

Also, the following result in distribution holds. Let U  be a random 

variable with the uniform distribution on ( )1,0  and ( ),,;LP λα= UQV  

corresponding to 









>λ











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λ
−λ−

=λ

= α−
λ−

−
α

α

.0,

,0,

1
1

1
1

1

e
U

WU

U

V  

Then V  follows the ( )λα,LP  distribution. This result allows the 

generation of values from the LP distribution based on generated values 

from the uniform distribution on ( ).1,0  This can serve as the basis of a 

simulation study to evaluate the efficiency of different estimates of the 

parameters of the LP distribution. 

More generally, the analytical expression of the qf allows for a more 

detailed quantile study of the LP distribution, including expressions for 

the quantile density and hazard qfs, and diverse asymmetry and 

plateness quantile measures. The role of these quantities in survival 

experiments is shown in Gilchrist [14] and Nair and Sankaran [26], 

among others. Also, the construction of the quantile LP regression model 

has become possible. 
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4. Moments Analysis 

4.1. Classical approach 

Various types of moments of a real random variable provide 

indicators of important characteristics of this variable. These indicators 

can be categorized as central, dispersed, or shape. Here, we first begin by 

expressing the generalized logarithmic moments of the LP distribution. 

Theorem 4.1. Let r  be an integer such that sr ,α−>  be a positive 

integer, and X  be a random variable with the LP distribution. Then, the 

( ) thsr -,  generalized logarithmic moment of X  is given as 

( ( )[ ] )
( )

( )
( ) ( )[ ].11

!1
log

2

log
, sr

r

s
XXm

s

s
sr

sr λ+α+λ−
α+

−α
==

+
E  

Proof. We have 

 ( )[ ] ( )dxxfxxm
sr

sr λα= ∫
∞+

∞−
,;log LP

log
,  

( )[ ] ( )[ ]dxxxx
sr log1log1

1

0
λα−λ−α= −α+∫  

( ) ( )[ ] ( )[ ] .loglog1
11

1

0

1
1

0








λα−λ−α= +−α+−α+ ∫∫ dxxxdxxx

srsr  

According to (Gradshteyn and Ryzhik [17], Equation (4.2726)), the 

following formula is valid for any real number :1−>µ  

( )[ ] ( )
( )

.
1

!
1log

1

1

0 +
µ

+µ
−=∫ s

ss s
dxxx   (6) 
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Therefore 
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The desired result is obtained.  � 

From Theorem 4.1, we immediately derive the following moments-

type measures: 

• For any positive integer ,r  the r-th ordinary moment of X is 

( )
( )

( )[ ].1
2

log
0, α+λ−

α+

α
=== r

r
mXm r

r
r E  

Since ( ) ( )[ ] ( ) rr mrrrm ,011
3 >+αλ−++λα=α∂∂  is increasing with 

respect to ,α  and since ( ) rr mrm ,0
2 <+ααλ−=λ∂∂  is decreasing 

with respect to .λ  

We can determine the mean and variance of X  by 

( )
( ) ( )212

2

21 ,1
1

mmm −=σα+λ−
α+

α
=  

( )
( )[ ]

( )
( ) .1

1
12

2

2

4

2

2
α+λ−

α+

α
−α+λ−

α+

α
=  

The coefficient of variation can be calculated as .1mCV σ=  
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Remark. Based on the alternative formula: ( LP
1

0
1 Fxrm r

r −= −∞+

∫  

( ))dxx λα,;  and the relation in Equation (4), we have 

( ) dxxxf
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r
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r
r +α

λ
−

α
−=  

By solving this equation with respect to ,rm  we find the expression of 

.rm  

• By the exponential series expansion, the moment generating 

function of X  defined by ( ) ( ),tXetM E=  can be expanded as 
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• By the binomial formula, the r-th central moment of X  follows as 
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With this quantity, we define the general coefficient of X  by 

.rc
rr m σ=E  Using 3=r  and ,4=r  we describe the moment skewness 

and kurtosis of ,X  respectively. 
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Figure 5 presents some curves of 3E  with respect to α  for several 

values of .λ  
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Figure 5. Curves for the moment skewness 3E  with respect to α  for 

several values of .λ  

From Figure 5, we see that 3E  is a purely decreasing function with 

respect to α  and can be either negative or positive, implying that the LP 

distribution can be left or right skewed. 
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Figure 6 shows some curves of 4E  with respect to α  for several 

values of .λ  
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Figure 6. Curves for the moment kurtosis 4E  with respect to α  for 

several values of .λ  

From Figure 6, we note that 4E  is a non-monotonic V-shaped 

function. Furthermore, it can be less than 3, equal to 3, or greater than 3, 

indicating that the LP distribution is platykurtic, mesokurtic, or 

leptokurtic, respectively. 

• For any integer v  such that ,α<v  the v-th negative moment of X  

is 

( )
( )

( )[ ].1
2

log
0, λ−−α

−α

α
=== −

−− v
v

mXm v
v

v E  

In particular, for ,1>α  the harmonic mean of X  can be expressed as 

( )
( )

( ).1
1

2

1
1 λ+−α

−α

α
== −− Xm E  

The variance and other moment measures of 1−= XY  can be calculated 

in a similar manner. 
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• The s-th logarithmic moment of X  is 

( ( )[ ] )
( )

( ).1
!1

log log
,0

log s
s

mXm
s

s

s
s

s λ+
α

−
=== E  

In particular, the geometric mean of X  is given by 

( ( )) .
1

loglog
1 α

λ+
−== Xm E  

In a similar way, the variance and other moment measures of ( )XY log=  

can be calculated. 

As a result, the most important measures of the LP distribution can 

be expressed in a straight-forward manner, which will be of interest in 

future research. 

We end this part by investigating the incomplete moments of the LP 

distribution, which appear in several functions and measures of 

importance. 

Proposition 4.2. Let r  be an integer such that sr ,α−>  be a 

positive integer, [ ]1,0∈t  and be X  be a random variable with the LP 

distribution. We define the truncated random variable tX  by XXt =  if 

the event { }tX ≤  is realized, and 0=tX  elsewhere. Then, the r-th 

incomplete moment of X  is given as the r-th ordinary moment of ,tX  and 

we have 
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Proof. We have 
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By applying an integration by part, we get 
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Therefore 

( ) ( ) ( ) 















α+
−

α+

λα
−

α+
λ−α=

α+α+

r
t

r

t

r

t
tm

rr

r
1

log1  

 
( )

( ) .log
1





 λα−

α+

α+λ−

α+

α
= α+ t

r

r
t

r
r  

The desired result is obtained.  � 

We obviously re-obtain the r-th ordinary moments of X  by taking 

1=t  in Proposition 4.2. Also, the first incomplete moment of X  is given 

by 

( ) ( ) .log
1

11
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
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= α+ tt
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From this, the following moment-type measures can be expressed. 

• The mean deviation of X  around the mean is given as 
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• The mean deviation of X  around the median LPM  is obtained as 
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• The mean inactivity time of X  is indicated as 
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• The Bonferroni curve of the LP distribution is given as 
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Similarly, other income inequality measures can be expressed, such as 

the Lorenz or Zenga curves. 

Applications of superior order incomplete moments are common in 

reversed residual lifetime analysis, as well as a variety of related 

measures involving various conditional moments. In this regard, see Ruiz 

and Navarro [29] and Cordeiro et al. [10].  

4.2. Approximate approach 

An approximate strategy can be used when the expectation of a 

transformed random variable is difficult to evaluate and needs to be 

controlled in an analytical or computational way. The following result 

looks into such a strategy in the context of the LP distribution. 

Proposition 4.3. Let ( )xq  be a function defined on ( ),1,0  and X  be 

a random variable with the LP distribution. We suppose that 

[ ] ( )( )Xqqm E=  exists, and the same for [ ] ( ) ,11

0
dxxqxqe −α+

∫= ℓ

ℓ  for all 

positive integer .ℓ  Subject to convergence of the involved series, for any 

large integer ,t  the following approximation is acceptable: 
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Proof. Basically, we have 
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Therefore, provided the mathematical validity of the interchange of the 

sum and integral signs, which depends on the definition of ( )xq  mainly, 

we have 
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The proof of Proposition 4.3 is now complete.  � 

In Proposition 4.3, it is implicitely supposed that the expression of 

[ ]qeℓ  is relatively simple. Hence, because the sums involved are finite, 

the evaluation of [ ]qm  is manageable and can be used for a variety of 

mathematical and practical purposes. 
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5. Entropy Analysis 

An entropy measure of a random variable can be thought of as a 

measure of uncertainty; the higher the entropy, the more chaos there is in the 

randomness of the associated distribution. Among the most useful entropy 

measures is the Rényi entropy proposed by Rényi [28]. The Rényi entropy 

of a random variable X  with the LP distribution may be defined as 

( ) ( ( )[ ] ){ }.,;log
1

1
LP

τ−1

τ
τ λα

−
= XfEE  

It is commonly assumed that 0>τ  and .1=/τ  In the next result, we 

express this entropy measure for special values of .τ  

Proposition 5.1. Let τ  be a positive integer such that 2≥τ  and X  

be a random variable with the LP distribution. Then the Rényi entropy of 

X  is given by 
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Proof. It follows from the binomial formula and Equation (6) that 
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We end the proof by composition with the appropriate weighted 

logarithmic function.  � 
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In the precise setting of the proof, the binomial formula can not be 

extended in the case of any real number ;τ  expressing the Rényi entropy 

in this case remains a mathematical challenge. Note that the sum in 

Proposition 5.1 is finite; the Rényi entropy of the LP distribution may be 

calculated relatively easily. 

6. Order Statistics 

This section establishes some properties of the order statistics of the 

LP distribution. The minimum and maximum of random variables are 

special cases. The general theory can be found in Shahbaz et al. [30]. 

6.1. Main functions 

Let ( )nXX ,,1 …  be a n-sample from the LP distribution, so the 

components of this vector are n independent and identically distributed 

random variables with the LP distribution as common distribution. Now 

we organize these random variables in increasing order of magnitude to 

obtain ordered random variables denoted by .,, ::1 nnn XX …  Thus 

defined, the event { }nnnn XXX ::2:1 ≤≤≤ …  is certain. After that, for 

any ,,,2,1 nj …=  the cdf of njX :  can be expressed through a general 

known formula; it is obtained as 
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Moreover, the pdf of njX :  is specified by 
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(7) 
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That is, in an expanded form, we have 
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and 
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The hrf of njX :  is defined as ( ) ( ) ( ) ,],;1[,;,; ::: λα−λα=λα xFxfxh njnjnj  

.R∈x These functions serve as the foundation for a more in-depth 

examination of order statistics. To demonstrate this, a moment analysis is 

shown below. 

6.2. Moment analysis 

The following theorem proposes a sum expression of the r-th moment 

of .: njX  

Theorem 6.1. Let r  be an integer such that nr ,α−>  and j  be two 

positive integers such that ,nj ≤  and njX :  be the j-th order statistics of 

an n-sample from the LP distribution. Then the r-th ordinary moment of 

njX :  is given as 
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Proof. First, we have 
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Let us now decompose ( )λα,;: xf nj  in a suitable way. It follows from the 

binomial formula that 
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It follows from this decomposition and Equation (6) that 

( ) 1
1

00

order
,:

1

1

1

1
++

−+

=

−

=

αλ−











 −+













 −















−

−
= ∑∑ ℓℓℓ

ℓ ℓ

k

k

k

k

k

jjn

j

n

nm

jjn

rnj
 

   ( ) ( ) ( )[ ] ( ) ( )[ ]








λα−λ−× +−+α+−+α+ ∫∫ dxxxdxxx jrjr 11
1

0

1
1

0
loglog1

ℓℓ kk  



CHRISTOPHE CHESNEAU 38 

( ) 1
1

00

1

1

1

1
++

−+

=

−

=

αλ−











 −+













 −















−

−
= ∑∑ ℓℓℓ

ℓ ℓ

k

k

k

k

k

jjn

j

n

n

jjn

 

( ) ( )
( )( )

( )
( )

( )( ) 











+α+

+
−λα−

+α+
−λ−×

+

+

+ 2

1

1

!1
1

!
11

ℓ

ℓ

ℓ

ℓ ℓℓ

jrjr kk

 

( )( )

( )
( )

.
1

1
1

1,,:

1

00






+α+

+λα
+λ−

+α+
φ=

+

−+

=

−

=
∑∑ jrjr

nj

jjn

kk
k

k

k

ℓ

ℓℓ

ℓ

 

We get the desired result.  � 

By taking ,1== nj  we can verify that .order
,: rrnj

mm =  One can 

remark that the sums involved in Proposition 6.1 are finite; the ordinary 

moments of order statistics are computable at no cost. 

Also, we can calculate the mean and variance of ;: njX  they can be 

obtained as 
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The result below proposes a recurrence relation between the ordinary 

moments of order statistics. 
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Theorem 6.2. Let r  be an integer such that nr ,α−>  and j  be two 

positive integers such that ,3 nj ≤≤  and njX :  be the j-th order statistics 

of an n-sample from the LP distribution. Then the following recurrence 

relation holds: 
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order
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Note that r+α  is not necessary an integer, but the formal expectation 

definitions of order
rnj

order
rnj

mm
+α−−+α−−

−
,1:2,1:1

 are still valid in the 

mathematical sense. 

Proof. Thanks to (Shahbaz et al. [30], Theorem 2.10, Equation (2.57)) 

applied to the context of the LP distribution, we have 
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By using the relation in Equation (4), it comes 
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Now, from Equation (7), we have 

( )[ ] ( )[ ] ( )dxxfxFxFx
jnjr λαλα−λα +−−

∞+

∞−∫ ,;,;1,; LP
1

LP
2

LP  

( )
.

1 order
,:11

2

rnjn
j

m
n

−−
−

=  

Moreover, by adapting Equation (9), we get 
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By putting the above equalities together, after simplifications of the 

constant terms, we obtain 
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The stated result is established.  � 

The L-moments of a random variable are defined by a linear 

combination of ordinary moments of the associated order statistics. In our 

setting, for any integer α−>r  and a random variable X  with the LP 

distribution, the r-th L-moment of X  is specified by 

( ) .1

1
1 order

1,:

1

0

rr

r

r m

r

r k

k

k k

−

−

=

−











 −
= ∑U  



ON A LOGARITHMIC WEIGHTED POWER … 41 

The L-moments can be used to summarize the shape of a distribution in a 

similar way to conventional moments. Based on the L-moments, we can 

define various L-moment measures, such as the L-coefficient of variation, 

L-skewness and L-kurtosis. For more information on these measures, we 

can refer to Hosking [18]. 

7. Measure of Reliability 

Many physics and engineering applications, such as strength loss and 

system breakdown, need a valuable measure of reliability. In particular, 

when a component of a system is exposed to random stress and is 

subjected to random strength, the probability that the stress exceeds the 

strength is of importance. In general, stress is modelled by a random 

variable ,2X  strength is modelled by a random variable ,1X  and the 

considered probability measure can be formulated as ( ).12 XX ≤= PR  

It is a key ingredient of the stress-strength model. We may refer to Kotz 

et al. [22] for all the possible uses of this measure. In the following result, 

we determine its expression in the context of the LP distribution. 

Theorem 7.1. Let 1X  and 2X  be two independent random variables 

with the ( )11 , λαLP  and ( )22 , λαLP  distributions, respectively. Then, we 

have 
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Proof. The proof is mainly based on calculation. By using the 

independence and distributions of 1X  and ,2X  we obtain 
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By applying Equation (6), we get 
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The intended result is achieved.  � 
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Based on Theorem 7.1, the analysis of stress-strength LP model is 

conceivable. In particular, the estimation of 211 ,, αλα  and 2λ  yields the 

estimation of R  by the substitution approach. Without surprise, when 

1X  and 2X  are identically distributed, we get .21=R  

8. Some Distributional Results 

The LP distribution can be modified to create new distributions with 

a diverse number of parameters and support. This section presents some 

of them. 

Let us consider a random variable X  with the ( )λα,LP  distribution. 

• Basically, the random variable α= XY  follows the ( )λ,1LP  

distribution. 

• Let XY β=  with .0>β  Then the cdf of Y  is determined by 
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It is a three-parameter tuned upper bound variant of the LP distribution. 

We can use it for the analysis of bounded data beyond the unit interval. 

• Let XY β=  with .0>β  Then Y  has the following cdf: 
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It corresponds to a tuning lower bound on a special variant of the LP 

distribution. 
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• Let .1 XY −=  Then the cdf of Y  is given as 
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The related distribution, which proposes a new alternative unit 

distribution, is called the LP distribution of the second kind. 

• Let ( ).log XY −=  Then Y  has the following cdf: 
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If we take ,0=λ  we obtain the cdf of the exponential (E) distribution 

and, if we take ,1=λ  it corresponds to the cdf of the length-biased 

exponential (LBE) distribution introduced by Dara and Ahmad [11]. In 

this sense, the associated distribution can be seen as a modern tradeoff 

between the E and LBE distributions. 

• Let ( ) β−−= αXY 1log  with .0>β  Then the cdf of Y  is 

specified by 
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It represents a two-parameter lifetime distribution that has never been 

described before in the literature. It is like a modern-day variant of the 

exponential distribution. 
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• Let ( ) ( )111 −β= XY  with .0>β  Then the cdf of Y  is given as 
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If we take ,0=λ  it corresponds to the cdf of the Lomax distribution 

introduced by Lomax [24]. The associated distribution thus constitutes a 

new three-parameter generalization. 

• Let ( )( )XXY −= 1log  corresponding to the logistic transformation of 

.X  Then the cdf of Y  is given as 

( ) ( ) [ ( )] .,1log11,; R∈+λα++=λα −α−− xeexF xx�
 

The cdf of the skew-logistic distribution corresponds to .0=λ  As a result, 

the proposed cdf defines a generalized skew-logistic distribution that can 

be used to model characteristics with values spanning the entire real line. 

To improve its modelling capability, we can add position and scale 

parameters, and consider the cdf: ( ) ( )( ),,;,,,; λασµ−=σµλα xFxF
��

 

with R∈µ  and .0>σ  

• Let ( ),,,sup 1 nXXY …=  where ( )nXX ,,1 …  is a n-sample from 

the LP distribution. In terms of order statistics, we have .: nnXY =  Then, 

as a special case of Equation (8), Y  has the following cdf: 
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The associated distribution is useful in the setting of the order statistics 

theory. The cdf remains correct from a mathematical standpoint for every 

real number .0>n  
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• Let ( ),,,inf 1 nXXY …=  where ( )nXX ,,1 …  is an n-sample from 

the LP distribution. In terms of order statistics, we have .:1 nXY =  Then, 

as a special case of Equation (8), Y  has the following cdf: 
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











≤

∈λα−−−

≥

=λα α

.0,0

,1,0,log111

,1,1

,,;inf

x

xxx

x

nxF
n

 

This cdf holds true for every real number .0>n  

• With an analytical approach, original three-parameter extensions of 

the LP distribution are possible. As an example, an interesting 

perspective is offered by the following function: 
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with 0,0 ≥β>α  and [ ].1,0∈λ  Then, one can prove that it is a valid 

cdf. The LP distribution is obtained by taking .0=β  We call this new 

unit distribution the three-parameter LP distribution. 

• The LP distribution can be used to extend any continuous 

distribution to reach new modelling perspectives. A simple strategy is 

described below. Let ( )ζ;xG  be a cdf of a continuous distribution with ζ  

as parameter(s), and ( ).;1 ζ= − XGY  Then Y  has the following cdf: 

( ) ( ) ( )( )[ ] .,;log1;,,; R∈ζλα−ζ=ζλα α
xxGxGxFG  

This cdf defines a new family of distributions extending the baseline 

distribution characterized by ( ).; ζxG  Such a family can be called the LP 

generated (LP-G) family. Further information about such general families 

can be found in Cordeiro et al. [10]. 
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• On the other hand, the LP distribution can be extended by using 

existing general families of distributions, such as the exponentiated, 

Marshall-Olkin, half-logistic, Kumaraswamy, beta, Topp-Leone, Weibull, 

Burr-type and sine generated families. The details and references are 

available in Brito et al. [5]. 

The majority of the above-mentioned distributions may be the subject 

of independent investigation, with an emphasis on particular 

implementations. They can also be extended in a variety of ways using 

the power scheme. 

9. Estimation and Data Applications 

In this section, we focus on the LP model by assuming that the 

parameters α  and λ  are unknown. 

9.1. Estimation 

We propose to estimate unknown parameters by the maximum 

likelihood procedure described as follows. Let nxx ,,1 …  be observations 

selected from the LP distribution. Then, the likelihood function of the LP 

model for α  and λ  can be written as 
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Based on this function, the log-likelihood function for α  and λ  is 

( ) ( )[ ] ( ) ( ) ( )i

n

i

xn log1log,log,

1
∑

=

−α+α=λα=λα Lℓ  

( )[ ].log1log

1

i

n

i

xλα−λ−+ ∑
=

 



CHRISTOPHE CHESNEAU 48 

Then the maximum likelihood estimates (MLEs) of α  and ,λ  say α̂  and 

,λ̂  are defined by ( ) ( ) ( ) [ ] ( ).,maxargˆ,ˆ 1,0,0, λα=λα ×∞+∈λα ℓ  We can 

describe them via an analytical approach based on nonlinear equations, 

as described as follows. When the log likelihood function is differentiated 

with respect to α  and ,λ  the result is 
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Equating these partial derivatives to zero yields α̂  and .λ̂  These 

equations, however, can not be solved analytically and must be solved 

numerically using statistical software. The estimates can be obtained 

using iterative techniques such as the Newton-Raphson algorithm. In this 

work, such estimates are obtained by the use of the function nlminb of the 

R software (see R Core Team [27]). 

Then, an estimation of the unknown pdf ( )λα,;LP xf  is given by 

( ) ( ).ˆ,ˆ;ˆ
LPLP λα= xfxf  We can proceed similarly to estimate other 

parametric functions related to the LP distribution. 

In addition, we can derive the following well-established criteria from 

( ):ˆ,ˆ λαℓ  The Akaike information criterion (AIC) and Bayesian 

information criterion (BIC) are defined as 

( ) ( ) ( ),logˆ,ˆ2BIC,2ˆ,ˆ2AIC nkk +λα−=+λα−= ℓℓ  

respectively, where k denotes the number of parameters. The AIC and 

BIC of several models can be calculated; the best model being the one 

with the smallest AIC and BIC. We may refer to Casella and Berger [6] 

for the details about the maximum likelihood procedure. 
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9.2. Data applications 

One artificial data set and two real-life data sets are now being 

examined. We want to show how useful and adaptable the LP model is 

when it comes to data fitting. We compare the LP and TP models in this 

regard. We recall that the pdf of the LP distribution is given by Equation 

(3), and the pdf of the TP distribution is derived from Equation (1) as 
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Our applications are presented below. 

• The first data set, called Data set 1, is artificial; it contains 100=n  

values generated from the LP distribution with parameters 50=α  and 

.1=λ  The data set is {0.9407981, 0.9447613, 0.9882597, 0.9570619, 

0.9289420, 0.9862649, 0.9377094, 0.9785259, 0.9689801, 0.9701998, 

0.9885426, 0.9630237, 0.9663357, 0.9648558, 0.9980493, 0.9343859, 

0.9586432, 0.9960804, 0.9718961, 0.9491994, 0.9388389, 0.9439703, 

0.9853174, 0.9746523, 0.9149421, 0.9758234, 0.9432352, 0.9693834, 

0.9491918, 0.9851612, 0.9656517, 0.9267656, 0.9680509, 0.9723581, 

0.9069665, 0.9133886, 0.9533500, 0.9342400, 0.9798710, 0.9492754, 

0.9716584, 0.8734544, 0.9831862, 0.9643272, 0.9918818, 0.9334234, 

0.9881646, 0.9949953, 0.9214476, 0.9689857, 0.9516179, 0.9333489, 

0.9730641, 0.9400146, 0.9668169, 0.9654974, 0.9428985, 0.9812006, 

0.9523705, 0.9837782, 0.9729954, 0.9902377, 0.9814711, 0.9662710, 

0.8789145, 0.9562315, 0.9647483, 0.9767500, 0.9124355, 0.9561419, 

0.9813736, 0.9502237, 0.9877244, 0.9746159, 0.9678454, 0.9388364, 

0.9794370, 0.9186319, 0.9919013, 0.9622962, 0.9589765, 0.8991588, 

0.9511993, 0.9129763, 0.9724723, 0.9736149, 0.9677164, 0.9432212, 

0.9534555, 0.9289118, 0.9427475, 0.9737435, 0.9754736, 0.9983466, 

0.9634858,  0.9646391,   0.9869528,   0.9941471,   0.9265261,    0.9872700}. 
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Table 1 provides the mean, median, standard deviation (St. 

deviation), variance, skewness, kurtosis, minimum and maximum of this 

data set. 

Table 1. Statistical description of Data set 1   

Mean    0.959092 

Median    0.9651766 

St. deviation    0.02600243 

Variance    0.0006761264 

Skewness − 0.9004576 

Kurtosis    3.692149 

Minimum    0.8734544 

Maximum    0.9983466 

We remark that the data are left skewed, mesokurtic, and with a very 

small variance. The mean and median are almost the same. 

For these data, we determine the MLEs α̂  and λ̂  of α  and ,λ  

respectively, and standard information criteria. The results are given in 

Table 2. 

Table 2. Values of the MLEs, AIC and BIC for Data set 1 

Distribution MLE α̂  MLE λ̂  AIC BIC 

LP 46.98128 0.9797222 − 462.8919 − 457.6816 

TP 11.86562 − 1 − 437.7862 − 432.5759 

As expected, the estimates α̂  and λ̂  are close to the considered 

parameter values of the LP distribution used to generate the data, which 

are 50 and 1, respectively. 
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In terms of AIC and BIC, the LP distribution is clearly the best. So a 

best fit is expected for the related estimated functions in comparison to 

the estimated functions of the TP distribution. This is visually confirmed 

in Figure 7 which considers the estimated pdfs: ( ) ( )λα= ˆ,ˆ;ˆ
LPLP xfxf  and 

( ) ( ).ˆ,ˆ;ˆ
TPTP λα= xfxf  

 

Figure 7. Curves of the estimated pdfs of the LP and TP distributions for 

Data set 1. 

In Figure 7, we see that the LP distribution has well captured the top 

of the histogram, contrary to the TP distribution. However, since the data 

have been generated from the LP distribution, such a result was 

expected. 
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• The second data set, called Data set 2, is extracted from Klein and 

Moeschberger [21]. It specifies the time it takes for kidney dialysis 

patients to become infected in months. The data set is: {2.5, 2.5, 3.5, 3.5, 

3.5, 4.5, 5.5, 6.5, 6.5, 7.5, 7.5, 7.5, 7.5, 8.5, 9.5, 10.5, 11.5, 12.5, 12.5, 13.5, 

14.5, 14.5, 21.5, 21.5, 22.5, 22.5, 25.5, 27.5}. We perform a “unit range” 

operation on these data by dividing them by 28. 

As a basic analysis, Table 3 provides a statistical summary of the unit 

data set. 

Table 3. Statistical description of Data set 2 

Mean 0.4043367 

Median 0.3214286 

St. deviation 0.2647846 

Variance 0.07011088 

Skewness 0.7650467 

Kurtosis 2.421883 

Minimum 0.08928571 

Maximum 0.9821429 

We remark that the data are right skewed, platykurtic and with a wide 

range of values between ( ).1,0  

For these data, we determine the MLEs α̂  and λ̂  of α  and ,λ  

respectively, and standard information criteria. The results are given in 

Table 4. 

Table 4. Values of the MLEs, AIC and BIC for Data set 2 

Distribution MLE α̂  MLE λ̂  AIC BIC 

LP 1.58727 0.7910807 − 0.8855648 1.778844 

TP 1.190114 0.7221261 − 0.1178869 2.546522 
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Since it has the lowest AIC and BIC, the LP distribution is preferable to 

the TP distribution. Figure 8 displays the estimated pdfs of these two 

distributions. 

 

Figure 8. Curves of the estimated pdfs of the LP and TP distributions for 

Data set 2. 

Figure 8 shows that the difference between the two estimated pdfs is 

primarily for the values into (0.2, 0.4); the LP distribution is slightly 

better than the TP distribution on this interval. 

• The third data set, called Data set 3, exhibits the vinyl chloride data 

collected from clean upgrading, monitoring wells in mg/L. It is derived 

from Bhaumik et al. [3]. The data set is: {5.1, 1.2, 1.3, 0.6, 0.5, 2.4, 0.5, 

1.1, 8.0, 0.8, 0.4, 0.6, 0.9, 0.4, 2.0, 0.5, 5.3,3.2, 2.7, 2.9, 2.5, 2.3, 1.0, 0.2, 

0.1, 0.1, 1.8, 0.9, 2.0, 4.0, 6.8, 1.2, 0.4, 0.2}. Again, we perform a “unit 

range” operation by dividing these data by 8.1 to obtain data ranging 

between ( ).1,0  
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Table 5 offers a simple statistical summary of the unit data set. 

Table 5. Statistical description of Data set 3 

Mean 0.2320261 

Median 0.1419753 

St. deviation 0.24106 

Variance 0.05810995 

Skewness 1.603688 

Kurtosis 5.005408 

Minimum 0.01234568 

Maximum 0.9876543 

We remark that the data are right skewed, mesokurtic and with a wide 

range of values between ( ).1,0  In view of the shape properties of its pdf, 

the LP distribution is able to fit such data. The MLEs α̂  and λ̂  of α  and 

,λ  respectively, and standard information criteria are presented in Table 6. 

Table 6. Values of the MLEs, AIC and BIC for Data set 3 

Distribution MLE α̂  MLE λ̂  AIC BIC 

LP 0.9404668 0.8811955 − 25.52001 − 22.46729 

TP 0.6982504 0.8388123 − 24.38845 − 21.33572 

Since it has the lowest AIC and BIC, the LP distribution can be 

considered as the best from the fitting point of view. Figure 9 presents the 

estimated pdfs of these two distributions. 
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Figure 9. Curves of the estimated pdfs of the LP and TP distributions for 

Data set 3. 

The fits in Figure 9 are almost similar, showing that the LP 

distribution is also competitive for data well fitted by the TP distribution. 

10. Summary and Discussion 

In the last decade, researchers have been very interested in the idea 

of extending the power distribution. An interesting extension combining 

simplicity and applicability was given by the transmuted power (TP) 

distribution. In this article, we have proposed an alternative unit 

distribution, called the log-weighted power (LP) distribution. It is defined 

by modifying the cumulative distribution function of the TP distribution 

through the use of an original logarithmic weighted function. It can be 

seen as a simple variant of the log-Lindley distribution established by 
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Gómez-Déniz et al. [16]. With its definition, a clear stochastic ordering 

implying power, transmuted power and log-weighted power distributions 

is established. Furthermore, some shape properties of the central 

functions of the LP distribution are not observed for the TP distribution, 

including a large panel of decreasing and sharp (mesokurtic) left skewed 

increasing-decreasing shapes for the probability density function, and 

flexible bathtub shapes for the hazard rate function. As a result, the LP 

distribution provides a statistical alternative to the TP distribution. With 

this motivation in mind, we have studied the LP distribution in-depth, 

exploring its generalized logarithmic moments, incomplete moments, 

Rényi entropy, order statistics, and reliability measures. We have also 

presented a panel of new distributions that naturally emerge from the LP 

distribution. The two parameters of the LP distribution are estimated 

using the maximum likelihood procedure for a data fitting objective. 

Then, using one artificial data set and two real data sets, we showed that 

the LP distribution can provide a better fit than the TP distribution. 

Future directions of research include the investigation of univariate 

distributions derived from the LP distribution, the construction of 

bivariate distributions on the unit square with the LP distribution as the 

marginal distribution(s), the consideration of other estimation 

procedures, including those used in a more complex statistical setting 

with censored samples or others, and the development of regression-type 

models. 

Acknowledgement 

We would want to express our gratitude to the reviewers for their 

time and work in helping us improve our manuscript. 

 

 

 



ON A LOGARITHMIC WEIGHTED POWER … 57 

References 

 [1] M. V. Aarset, How to identify bathtub hazard rate, IEEE Transactions Reliability 

36(1) (1987), 106-108. 

DOI: https://doi.org/10.1109/TR.1987.5222310  

 [2] Ahmed M. T. Abd El-Bar, M. do. C. S. Lima and M. Ahsanullah, Some inferences 

based on a mixture of power function and continuous logarithmic distribution, 

 Journal of Taibah University for Science 14(1) (2020), 1116-1126. 

DOI: https://doi.org/10.1080/16583655.2020.1804140  

 [3] D. K. Bhaumik, K. Kapur and R. D. Gibbons, Testing parameters of a gamma 

distribution for small samples, Technometrics 51(3) (2009), 326-334.  

DOI: https://doi.org/10.1198/tech.2009.07038  

 [4] N. Balakrishnan and V. B. Nevzorov, A Primer on Statistical Distributions, John 

Wiley & Sons, 2004. 

 [5] C. R. Brito, L. C. Régo, W. R. Oliveira and F. Gomes-Silva, Method for generating 

distributions and classes of probability distributions: The univariate case, Hacettepe 

Journal of Mathematics and Statistics 48(3) (2019), 897-930. 

DOI: https://doi.org/10.15672/HJMS.2018.619  

 [6] G. Casella and R. L. Berger, Statistical Inference, Brooks/Cole Publishing Company: 

Bel Air, CA, USA, 1990. 

 [7] C. Chesneau, Study of a unit power-logarithmic distribution, Open Journal of 

Mathematical Sciences 5(1) (2021), 218-235. 

DOI: https://doi.org/10.30538/oms2021.0159  

 [8] C. Chesneau, A note on an extreme left skewed unit distribution: Theory, modelling 

and data fitting, Open Statistics 2(1) (2021), 1-23. 

DOI: https://doi.org/10.1515/stat-2020-0103  

 [9] C. Chesneau, L. Tomy and J. Gillariose, On a new distribution based on the 

arccosine function, Arabian Journal of Mathematics (2021), (to appear). 

DOI: https://doi.org/10.1007/s40065-021-00337-x  

 [10] G. M. Cordeiro, R. B. Silva and A. D. C. Nascimento, Recent Advances in Lifetime 

and Reliability Models, Bentham Books, 2020. 

DOI: https://doi.org/10.2174/97816810834521200101 

 [11] S. T. Dara and M. Ahmad, Recent Advances in Moment Distribution and their 

Hazard Rates, LAP Lambert Academic Publishing, GmbH, KG, 2012. 

 [12] M. Denuit, J. Dhaene, M. Goovaerts and R. Kaas, Actuarial Theory for Dependent 

Risks: Measures, Orders and Models, Jhon Wiley & Sons, Ltd., 2006. 

 

 



CHRISTOPHE CHESNEAU 58 

 [13] S. Ferrari and F. Cribari-Neto, Beta regression for modelling rates and proportions, 

Journal of Applied Statistics 31(7) (2004), 799-815. 

DOI: https://doi.org/10.1080/0266476042000214501  

 [14] W. Gilchrist, Statistical Modelling with Quantile Functions, CRC Press, Abingdon, 

2000. 

DOI: https://doi.org/10.1201/9781420035919  

 [15] R. E. Glaser, Bathtub and related failure rate characterizations, Journal of the 

American Statistical Association 75(371) (1980), 667-672. 

DOI: https://doi.org/10.2307/2287666  

 [16] E. Gómez-Déniz, M. A. Sordo and E. Calderín-Ojeda, The log�Lindley distribution 

as an alternative to the beta regression model with applications in insurance, 

Insurance: Mathematics and Economics 54 (2014), 49-57. 

DOI: https://doi.org/10.1016/j.insmatheco.2013.10.017  

 [17] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, Seventh 

Edition, Editors A. Jeffrey & D. Zwillinger, Academic Press, Burlington, MA, 2007. 

DOI: https://doi.org/10.1016/C2013-0-10754-4  

 [18] J. R. M. Hosking, L-moments: Analysis and estimation of distributions using linear 

combinations of order statistics, Journal of the Royal Statistical Society, Series B: 

Methodological 52(1) (1990), 105-124. 

DOI: https://doi.org/10.1111/j.2517-6161.1990.tb01775.x  

 [19] N. L. Johnson, S. Kotz and N. Balakrishnan, Continuous Univariate Distributions, 

Volume 1, 2 Edition, John Wiley & Sons, New York, 1994. 

 [20] C. Kleiber and S. Kotz, Statistical Size Distributions in Economics and Actuarial 

Sciences, Volume 470, John Wiley & Sons, 2003. 

 [21] J. P. Klein and M. L. Moeschberger, Survival Analysis: Techniques for Censored 

and Truncated Data; Springer: Berlin/Heidelberg, Germany, 2006. 

 [22] S. Kotz, Y. Lumelskii and M. Pensky, The Stress-Strength Model and its 

Generalizations: Theory and Applications, World Scientific: Singapore, 2003. 

 [23] P. Kumaraswamy, A generalized probability density function for double-bounded 

random processes, Journal of Hydrology 46(1-2) (1980), 79-88. 

DOI: https://doi.org/10.1016/0022-1694(80)90036-0  

 [24] K. S. Lomax, Business failures: Another example of the analysis of failure data, 

Journal of the American Statistical Association 49(268) (1954), 847-852. 

DOI: https://doi.org/10.2307/2281544  

 [25] R. M. Mandouh and M. A.-G. Mohamed, A log-weighted power function distribution 

and its statistical properties, Journal of Data Sciences 18(2) (2020), 257-278. 

DOI: https://doi.org/10.6339/JDS.202004_18(2).0003  



ON A LOGARITHMIC WEIGHTED POWER … 59 

 [26] N. U. Nair and P. G. Sankaran, Quantile-based reliability analysis, 

Communications in Statistics: Theory and Methods 38(2) (2009), 222-232. 

DOI; https://doi.org/10.1080/03610920802187430  

 [27] R Core Team, R: A Language and Environment for Statistical Computing, R 

Foundation for Statistical Computing, Vienna, Austria, 2014.  

URL http://www.R-project.org/ 

 [28] A. Rényi, On measures of entropy and information, In: Proceedings of the 4th 

Berkeley Symposium on Mathematical Statistics and Probability, University of 

California Press, Berkeley 1 (1961), 547- 561. 

 [29] J. M. Ruiz and J. Navarro, Characterizations based on conditional expectations of 

the doubled truncated distribution, Annals of the Institute of Statistical 

Mathematics 48(3) (1996), 563-572. 

DOI: https://doi.org/10.1007/BF00050855  

 [30] M. Q. Shahbaz, M. Ahsanullah, S. Hanif Shahbaz and B. M. Al-Zahrani, Ordered 

Random Variables: Theory and Applications, Atlantis Press and Springer, France, 

2016. 

DOI: https://doi.org/10.2991/978-94-6239-225-0  

 [31] M. N. Shahzad and Z. Asghar, Transmuted power function distribution: A more 

flexible distribution, Journal of Statistics and Management Systems 19(4) (2016), 

519-539. 

DOI: https://doi.org/10.1080/09720510.2015.1048096  

 [32] W. T. Shaw and I. R. Buckley, The alchemy of probability distributions: beyond 

Gram-Charlier expansions, and a skew-kurtotic-normal distribution from a rank 

transmutation map, arXiv preprint arXiv:0901.0434, (2009). 

 [33] C. Tanis, On transmuted power function distribution: Characterization, risk 

measures, and estimation, Journal of New Theory 34 (2021), 72-81. 

 [34] C. W. Topp and F. C. Leone, A family of J-shaped frequency functions, Journal of 

the American Statistical Association 50(269) (1955), 209-219. 

DOI: https://doi.org/10.2307/2281107  

 [35] J. R. van Dorp and S. Kotz, The standard two-sided power distribution and its 

properties: With applications in financial engineering, The American Statistician 

56(2) (2002), 90-99. 

 [36] A. Zaka, A. S. Akhter and R. Jabeen, A view on characterizations of the J shaped 

statistical distribution, Indian Journal of Science and Technology 13(32) (2020), 

3327-3338. 

DOI: https://doi.org/10.17485/IJST/v13i32.353  

g 


