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Abstract 

Fractional-order PID (FOPID) controller is a generalization of standard PID controller 

using fractional calculus. Compared to PID controller, the tuning of FOPID is more 

complex and remains a challenge problem. This paper focuses on the design of FOPID 

controller using wound healing algorithm (WHA) based on clonal selection principle. The 

tuning of FOPID controller is formulated as a nonlinear optimization problem, in which the 

objective function is composed of overshoot, steady-state error, raising time and settling 

time. WHA algorithm, a newly developed evolutionary algorithm inspired by human 

immune system, is used as the optimizer to search the best parameters of FOPID 

controller. The designed WHA-FOPID controller is applied to various systems. Numerous 

numerical simulations and comparisons with other FOPID/PID controllers show that the 

WHA-FOPID controller can not only ensure good control performance with respect to 

reference input but also improve the system robustness with respect to model 

uncertainties. 
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___________________________________________________________________ 

1. Introduction 

The most important expectation from control systems; As a result of 

the change of input conditions, the output responds to this input in the 

shortest time and in a stable manner. The selection of a controller that 

meets the design criteria of the system is very important. For this reason, 

while selecting the controller, the most economical controller should be 

selected according to the system grade and control criteria. To achieve the 

performance characteristics expected from the control system, the process 

called tuning of the controller parameters is the acquisition of controller 

parameters. One of the most important problems in controller design is 

finding the best values for the controller parameters. Therefore, much 

attention has been paid to this issue. The best known methods for finding 

controller parameters for classical PID controllers are given by Ziegler-

Nichols [1] and Åström-Hägglund [2]. Particularly if the mathematical 

model of the system to be controlled is unknown, the controller 

parameters can be obtained by using the Ziegler-Nichols method. With 

the Åström-Hägglund method, appropriate parameters that will provide 

the desired phase and gain margin are obtained. Applications of 

fractional order computation in control engineering started with Tustin’s 

position control for large objects in 1958 [3-5]. Later in the 1960s, Manabe 

worked on noninteger integrals and their applications to control systems 

[A6], and system design using noninteger integrals [7]. 

A generalized and accepted method such as Routh Hurwitz, Root 

Locus, which is used in the stability analysis of integer order control 

systems, is not yet seen in the literature for the stability analysis of 

fractional order control system (FOCS). However, there are new studies 

examining the stability of FOCS in the literature. New studies on this 
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subject can be in the form of adapting methods such as Routh-Hurwitz, 

which are used for integer order systems, to FOCS, as well as newly 

developed stability analysis methods. Therefore, serious studies are still 

needed in order to obtain techniques that can be used in this regard. 

Especially in recent years, new studies on finding the parameters of 

fractional-order PID controllers have been accelerating. The fractional 

order µλDPI  controller was first presented in the work of Podlubny [8]. 

In this controller, λ  represents the degree of the integral and µ  the 

degree of the derivative. Since these controller parameters are real 

numbers, they also contain the integer values of the PID controller. 

Therefore, the fractional order µλDPI  controller can be applied to both 

fractional order systems and integer order systems and provides better 

results. 

The presence of five ),,,,( µλDIp KKK  parameters of the fractional 

order µλDPI  controller makes the fractional order µλDPI  controller 

more flexible and wider control area compared to the classical PID 

controller [9]. Since the integral and derivative degrees of the fractional 

order µλDPI  controller can be real numbers, it also includes integers. 

This situation also paves the way for the fractional µλDPI  controller to 

be a conventional PID controller if desired. Figure 1 is important in terms 

of comparing the fractional order µλDPI  controller and the classical PID 

and components it contains, PI controller and PD controller control 

regions, and their flexibility against each other [10]. 
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Figure 1. µλDPI  controller control region. 

As seen in Figure 1, the fractional µλDPI  controller contains the 

classical PID controller and its components, the PI controller and the PD 

controller. In addition, the fractional µλDPI  controller provides control in 

a wider and more flexible region than these controllers. When the 

necessary conditions are met, the fractional µλDPI  controller can be 

converted to the classical PID controller, PI controller and PD controller 

by selecting the appropriate λ  and µ  values. 

The transfer function of the fractional order µλDPI  controller is given 

in Equation (1). 

( ) .µ

λ
++= sK

s

K
KsC D

I
p   (1) 

If 1=λ  and 1=µ  in Equation (1), classical PID controller is obtained. 
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The block diagram of a feedback control system is shown in Figure 2. 

 

Figure 2. Block diagram of a feedback system [11]. 

2. Fractional Order Systems 

Fractional order systems are a generalization of integer order 

systems. The non-integer derivative and integral operator α
ta D  are 

defined as in Equation (2). Here a and t represent the upper and lower 

limits of the integral operation, α  is the fractional degree. 
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There are many definitions for fractional derivatives and integrals, 

the most popular being Grünwald-Letnikov and Riemann-Liouville. 

Grünwald-Letnikov and the integral definition are given by Equation (3) 

and Equation (4). Here h denotes the step interval. 
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The Grünwald-Letnikov definition can be explained by taking a function 

( ) ( )ttf sin=  as an example. It is known that the integer derivative of the 

sine function is obtained with a phase shift of 900 of the sine function. 

The transfer function of a fractional dynamical system is expressed as: 
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Various methods have been developed to express fractional order systems 

with integer order approximation models. Among these, Matsuda and 

Fujii [12], Oustaloup et al. [13], Carlson and Halijak [14], Chareff et al. 

[15], and CFE (continuous fraction expansion) [16] can be counted as the 

most well-known methods. 

3. Wound Healing Algorithm 

The basic structure of the wound healing algorithm is based on clonal 

selection [17]. The number of clones generated in the clonal selection 

algorithm appears in Equation (6) [18]. 
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where  

:Nc  Number of clones produced from each Ag; 

:N  Total Ab number; 

:n  Number of antibodies selected; 

:Ab  Solution population; 

:Ag Antigen population. 

In the developed wound healing algorithm, the parameters α  

(cloning factor) and f  (acceleration factor of the cloning process) have 

been added to Equation (6). This can be seen from Equation (9). These 

additional parameters gave better results. The flow chart of the developed 

algorithm is given in Figure 3. The starting population P is produced 

first. The selection process then selects n antibodies with the best affinity 

to create a new population of .nP  Affinity means the attraction that binds 

the antibody to the antigen, namely the immune response. The basic 

principle within the selection process is the affinity value of the 

antibodies. Individuals in this population are cloned using a cloning 

process in order to create a new population. The number of clones is 

related to the affinity value of the antibodies. After that, with the help of 

the hypermutation process, the clones are transferred to create a new 

population. The fundamental rule of the mutation process: high-affinity 

antibodies have a lower mutation rate or vice versa. Clones with low-

affinity values have a higher mutation rate. This is because antibodies 

closer to the local optimum value are closer to the solution value; but 

antibodies that are far from optimal solution. They undergo excessive 

mutations to move towards the optimum or the best solution. The re-

selection process checks whether the best clones are better than their 

family. Finally, low-affinity antibodies are replaced by new antibodies. 

The process of selection, cloning, and mutation move the population 

towards the best solution. 
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Figure 3. The flowchart of wound healing algorithm. 
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3.1. Wound healing algorithm solution stages 

1. Generate the initial population ( )P  with N  antibodies. 

2. Determine affinity for each antibody in the P  population. Select n  

antibodies with the best affinity ( )sN  and generate the nP  population. 

The affinity value between antibody and antigen is calculated by 

Equation (7): 

( ) .2

1
ii

N

i

AbAgd −= ∑
=

  (7) 

The calculated threshold value d  is compared with λ  and the E  

marking error is calculated as follows: 

.λ−= dE   (8) 

If ,0>E  the antibody does not recognize the antigen and there is no 

affinity between them. If the E value is between 0 and 1, there is an 

affinity between them. 

3. Clone the n  antibodies selected in Step 2 and create temporary 

clone population .cN  Equation (9) is used to form .cN  
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where 

:α  Cloning coefficient (value ranges from 0 to 1); 

:f  Cloning acceleration factor (value range from 0.9 to 0.99); 

:sN  Best number of antibodies selected in Step 2; 

4. Hypermutate the cN  clone population. Build the subpopulation 

.∗
cN  Hypermutation is proportional to the affinity value of antibodies 

[19]. 
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5. Calculate the affinity value of each antibody of the ∗
cN  

subpopulation and select the antibodies with the best value from which to 

generate ( )
∗

ncN  and add to the initial population. 

6. Replace antibodies with low affinity values by new antibodies. 

7. If the value of the P  population is less than ,N  produce antibodies 

to complete the population. Converge your test. If the test is successful, 

stop the program. Otherwise, continue the process. 

4. Implementation of the Optimization Algorithm 

The performance of control systems is often evaluates from the point 

of transient behaviour. It is expected from control systems that the rise 

time, settling time and percent overshootvalue should not be high. These 

values should be as small as possible. In a control system, the controller 

design is of great importance to obtain the transient behaviour 

parameters of the system. One of the methods used to design the system 

behaviour with the controller is optimization. Optimization is to use the 

available data in the most efficient way, to minimize or maximize a 

function mathematically. While optimization methods are used in control 

systems, objective functions are used to minimize the error in the system. 

These objective functions used are called integral performance criteria. 

The error occurring in the control system is generally the difference 

between the input and the output and is shown in Equation (10). 

( ) ( ) ( ).tytrte −=  (10) 
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Table 1. Provides integral performance criteria that are frequently used 

in control systems 

Performance indices 

1 ( )dtteJ 2

0

ISE ∫
∞

=  Integral squared error (ISE) 

2 ( ) dtteJ ∫
∞

=

0

IAE  Integral absolute error (IAE) 

3 ( )dttetJ 2

0

ITSE ∫
∞

=  
Integral time multiplied squared error  

(ITSE) 

4 ( ) dttetJ ∫
∞

=

0

ITAE  
Integral time multiplied absolute error  

(ITAE) 

Let’s consider the following fractional order system to perform PID 

controller design according to the proposed method: 

4.1. Example transfer function 

( ) .
2.02.12.2

1
2.02.12.2 sss

sG
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=   (11) 

The fractional order system is modelled by using Oustaloup’s 5th order 

integer approach given in the Appendix. In this example, the error in the 

control system is minimized by using the ITAE (Integral time multiplied 

absolute error) criterion. Taking ( ) ,1=sC  the controllerless closed-loop 

transfer function is obtained as follows: 
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Figure 4 shows the step response of the closed loop transfer function 

(Equation (12)) calculated with the help of Matlab program by taking 

( ) .1=sC  

 

Figure 4. Step response of the closed loop transfer function of the system 

in Equation (11) ( )( ).1=sC  

As seen in Figure 4, when the system controller is not used, the 

overshoot is 20.6%, the settling time is 13.2 seconds, the rise time is 2.3 

seconds, and the steady state value is 0.926. The system does not provide 

the steady state error value and is unstable. The system needs to be 

controlled by the controller. PID controller is used for this. The 

simulation model created to determine the PID controller parameters is 

given in Figure 5. 
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Figure 5. Closed loop control system’s Simulink model with ITAE. 

The proposed wound healing algorithm was used to determine the 

PID controller parameters ( Ip KK ,  and ).DK  The parameters and their 

values used in the algorithm are given in Table 2. 

Table 2. Wound healing algorithm parameters and initial values 

Parameter Value Parameter Value 

Population number 150 Affinity coefficient 1.3 

Iteration number 150 Clone coefficient ( )α  0.4 

Run number 30 Clone acceleration ( )f  0.95 

Healing coefficient 1.3   
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Wound healing algorithm is a stochastic algorithm and the program was 

run 30 times to obtain optimum ,, Ip KK  and DK  values. The screenshot 

of the program developed to calculate the optimum PID parameters of the 

Equation (11) with the aid of the wound healing algorithm is Figure 6. 

 

Figure 6. Developed program. 

Optimization is initiated by entering the initial values into the 

controller parameters in the wound healing algorithm. When the stopping 

criterion is met, the controller parameters are determined. For the 

system given in Equation (11), with the ITAE performance criterion, 

,, Ip KK  and DK  are obtained as 1.4058, 0.062, and 1.8853, respectively. 
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Substituting these parameters in the PID controller equation, the 

following equation is obtained: 

( ) .8853.1062.04058.1 s
s

sK
s

K
KsC D

I
p ++=++=  (13) 

If the system in Equation (11) is controlled with PID controller 

parameters as in Equation (13), the following closed-loop transfer 

function is obtained with the help of Matlab program. 

( ) .
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2.96116289.9136.10888.1
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45678

2
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sss

sssss

ss

sssss
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Figure 7 shows the closed-loop unit step response curve of the system in 

Equation (14) calculated with the PID controller parameters obtained as 

a result of the wound healing algorithm. As seen in Figure 4, while the 

percent exceedance value was 20.6% in the system before the controller 

was applied, it decreased to 0% after the controller was applied. While the 

settling time was 13.2 seconds before the controller and 3.48 seconds after 

the controller, while the steady state error was 0.926 before the controller 

was applied, the system became stable by taking the value of 1 after the 

controller. Thus, with the PID controller parameters calculated as a 

result of the wound healing algorithm, the percent overshoot value and 

steady state error were eliminated in the system and the settling time 

was considerably shortened. 
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Figure 7. Step response for ( )sG with PID. 

5. Conclusion 

Optimization algorithms are one of the most common methods used to 

solve functions that are difficult to solve by analytical means and have a 

high process complexity. Although there are many analytical methods for 

controller design of control systems, these methods have many processing 

steps and sometimes require advanced mathematical operations. In this 

case, using an optimization algorithm for controller design is very useful 

in terms of shortening the process at the design stage and avoiding 

possible operational errors. However, parameters can be determined with 

the desired precision.  
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In this study, a program was developed in Matlab GUI environment 

for PID controller design with the aid of a wound healing algorithm. For 

this, an easy-to-use interface has been designed in a GUI environment by 

using the high mathematical computing capability of the Matlab 

program. Thus, a fast and easy design process has been passed, an 

application has been developed in which the PID controller coefficients 

can be optimized with the wound healing algorithm and the results can 

be presented graphically. 
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Appendix 

Table 1. Oustaloup’s fifth-order approximation table 

1.0s  
585.137.683.4039.36787.51

187.519.3673.40337.68585.1
2345

2345

+++++

+++++

sssss

sssss  

2.0s  
512.283.987.5313.44287.56

187.563.4427.53183.98512.2
2345

2345

+++++

+++++

sssss

sssss  

3.0s  
981.39.1429.7007.53136.62

136.627.5319.7009.142981.3
2345

2345

+++++

+++++

sssss

sssss  

4.0s  
31.65.2069243.63937.68

137.683.6399245.20631.6
2345

2345

+++++
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sssss

sssss  

5.0s  
105.29812185.76897.74

197.745.76812185.29810
2345

2345

+++++

+++++

sssss

sssss  

6.0s  
85.154.43116069242.82

12.8292416064.43185.15
2345

2345

+++++

+++++

sssss

sssss  

7.0s  
12.256.6232117111114.90

114.90111121176.62312.25
2345

2345

−++++

+++++

sssss

sssss  

8.0s  
81.394.9012790133683.98

183.98133627904.90181.39
2345

2345

+++++

+++++

sssss

sssss  

9.0s  
1.631303367916064.108

14.1081606367913031.63
2345

2345
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Table 2. Matsuda’s fourth-order integer approximation table 

1.0s  
828.17.1028.32991.78

191.788.3297.102828.1
234

234

++++

++++

ssss

ssss  

2.0s  
357.31619.45395
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227.64.2566351.116

11.1166354.256227.6
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74.111.4179.9076.144

16.1449.9071.41774.11
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ssss

ssss  

5.0s  
72.228.6981337185

118513378.69872.22
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ssss  

6.0s  
73.45122220563.246

13.2462056122273.45
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++++
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ssss

ssss  

7.0s  
22.98228733814.349

14.3493381228722.98
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++++
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8.23748336277557

1557627748338.237
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77013690156101182
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