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Abstract 

Under the right censorship model and under the linear regression model 

,WXY +β=  where ( )WE  may not exist, the modified semi-parametric MLE 

(MSMLE) was proposed by Yu and Wong [17]. The MSMLE β̂  of β  satisfying 

( β=/β̂P  infinitely often) 0=  if W  is discontinuous, and the simulation study 

suggests that it is also consistent and efficient under certain regularity 
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conditions. In this paper, we establish the consistency of the MSMLE under the 

necessary and sufficient condition that β  is identifiable. Notice that under the 

latter assumption, the Buckley-James estimator and the median regression 

estimator can be inconsistent (see Yu and Dong [20]). 

1. Introduction 

We shall establish the consistency of the modified semi-parametric 

maximum likelihood estimator (MSMLE) proposed in Yu and Wong [17] 

under the linear regression model with right-censored data. We shall 

make the following assumptions. 

A1. Let ( ) ,,,1,,, niM iii …=δ X  be i.i.d. observations from the 

random vector ( ),,, XδM  where CCYM ,�=  is a random censoring 

variable, pWY R∈+β′= XX ,  (the p-dimensional Eucleadian space), 

W  is the baseline random variable ( ) CWY ,,0== X  and X  are 

independent, ( ) ( )ACY 11 ,≤=δ  is the indicator function of the event A  

and ( ) ( ).1,01 ∈=δP  Both β  and oS  are unknown, where 

( ) ( ) ( ).yWPySyS Wo >==  

This is a semi-parametric set-up, as ( )oF,β  is unknown 

( ).1 oo SF −=  ( )WE  may not exist. 

Regression analysis is one of the most widely used statistical 

techniques. Its applications occur in almost every field, including 

engineering, economics, the physical sciences, management, life and 

biological sciences, and the social sciences.  

To review available estimators for the regression problem, we first 

consider the case of complete data under the simple linear regression 

model. Suppose ( ) ,,,1,, niYX ii …=  are i.i.d. observations from ( )., YX  

There are several possible estimators for ,β  such as 

(1) the least squares estimator (LSE), 

(2) the Theil-Sen estimator (Theil [16] and Sen [15]), 
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(3) L-estimators and R-estimators (see, e.g., Montgomery and Peck 

[11]), 

(4) adaptive estimators (Bickel [2]), 

(5) various M-estimators (Huber [7]), 

(6) the quantile (or median) regression estimator (see, e.g., He and 

Zhu [6]), 

(7) the empirical likelihood estimator (Owen [12]), 

(8) the semi-parametric maximum likelihood estimators (SMLE) (Yu 

and Wong [19]), and the modified SMLE (MSMLE) (Yu and Wong [17]). 

Several of these semi-parametric estimators of β  are a value of b  

that maximizes the generalized likelihood function 

( ) ( ),,
1

ii

n

i
bXYfbf −== ∏ =

��   (1.1) 

where f  belongs to a class of density functions.  

If ( ) ( ) ( ),tStStf −−=  where ( )⋅S  is a survival function, it leads to 

the SMLE. If f  in Equation (1.1) is a kernel estimator, it leads to            

M-estimators or the MSMLE. Various M-estimators have been proposed 

for finding a zero point (or zero-crossing point) of 
( )

,
,ˆln

b

bf

∂
∂ �

 where f̂  is a 

kernel estimate of .f  Zhang and Li [22] consider such an approach. Let φ  

be the score function, that is, ( ) ,ln
f

f
f

′
=′=φ  where f ′  is the derivative 

of .f  Let φ̂  be an estimate of .φ  A point x  is said to be a zero-crossing 

point of a function g  if ( ) ( ) .0≤+− xgxg  Zhang and Li’s M-estimate of β  

is a zero-crossing point of a function ( ),,ˆ ⋅φΦ  where 

( ) ( ( )) ( ).ˆ,ˆ

1

XXXXbYYb iii

n

i

−−−−φ=φΦ ∑
=

 (1.2) 
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An M-estimate can be obtained by iterative algorithms. Zhang and Li 

point out that the M-estimator with ( ) xx =φ̂  is the LSE, and thus is not 

efficient. They also show that the M-estimator with a suitable choice of φ̂  

is efficient under certain regularity conditions. 

Under right censoring with ,pR∈X  there are several extensions of 

the above estimators. The Buckley-James [3] estimator (BJE) is a 

modification of normal equations of the sum of least squares. Chatterjee 

and Mcleish [4] and Leurgans [10] propose several parametric and semi-

parametric extensions of the LSE. Hillis [8], Ritov [13] and Zhang and Li [22] 

consider M-estimators and their modifications. Ireson and Rao [9] and 

Akritas et al. [1] consider extension of the Theil-Sen estimator. Since all 

these estimators are extensions, they inherit the properties of the 

estimators in the case of complete-data. Yu and Wong [17] propose the 

MSMLE of ,β  denoted by β̂  or ,ˆ
nβ  which maximizes the likelihood 

( ) [( ( )( )) ( ( )( )) ],,
1

1

ii
ii

n

i

TSTfS
δ−δ

=
∏= bbb bbL  where bS  is the product-

limit-estimator (ple), ( ) ,iii YT bXb −=  and f  is the kernel estimator 

with the rectangular kernel. 

Remark 1. Yu and Wong show that nβ̂  cannot be obtained by the 

algorithms for M-estimate, or by Newton-Raphson algorithm, or Monte 

Carlo method, as 
( )

0
,ln

=
db

bfd �
 a.e..  

Yu and Wong [17] propose a feasible non-iterative algorithm for 

obtaining .ˆ
nβ  They establish the consistency of the MSMLE under the 

following assumptions in addition to A1: 

A2. ( ) ,0>AP  where {( )













=

+

+

11

11

11

rank:,,

p

pA

xx

xx

⋯

⋯

…  

,1+= p  s
,

ix  are i.i.d. copies of }.111 =δ==δ +p⋯X   
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A3. ( ) ( ) ( ),xdxftF o
tx

o µ= ∫ ≤
 where µ  is the sum of the Lebesgue 

measure on the real line and a counting measure on a countable set ,M  

and ( )
( )

( ) ( )







∈−−

∈/
=

.if,

,if,

M

M

xxFxF

x
dx

xdF

xf

oo

o

o   

A4. ( )( ) ( ) ( ) ( ) ( )( )xOtfxtFxtFfE oooo +=−−+∞< 1,ln �  uniformly 

for all 
( ) ( )

( ) ( )( )xOtf
x

xtFxtF
t o

oo +=
−−+

∈ 1
2

,M  uniformly for all 

.M∈/t  

They also prove that 

{ β=βnP ˆ  for all large } 1=n  if oF  has a discontinuity point and A2 holds. 

(1.3) 

It is conjectured according to simulation results (see Yu and Wong [17]) 

that under certain regularity conditions, nβ̂  is efficient. 

An MSMLE solution is a maximizer of ( ),, bf�  while an M-estimator 

solution is an approximation of a stationary point of  ( )., bf�  Even 

though Zhang and Li [22] show that their M-estimator is consistent and 

efficient under certain regularity conditions, there are two drawbacks in 

their approach, in comparison to the MSMLE approach. One is in the 

assumption for consistency and the other is in computation. 

(a) Zhang and Li’s M-estimator can be inconsistent if ( ) 0, =φΦ bo  

a.s. in ,b  where .ooo ff ′=φ  The reason is as follows. (1) An M-estimate is 

a zero-crossing point of ( ),,ˆ bφΦ  and (2) one expects that the derivative of 

“the normalized log likelihood” ( ) ( ( ))b
n

Eb
n o ,

1
,ˆ

1
φΦ→φΦ  a.s. for each .b  

Note that for uniform distributions or piece-wise uniform distributions 

(among other distributions), 0=φo  a.s., and thus ( ) 0, =φΦ bo  a.s. in .b  
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Consequently, if the data are from the latter distributions and the score 

function ff ′  is estimated by a kernel estimator, one cannot find a 

consistent M-estimate of .β  On the contrary, we shall show in this paper 

that the MSMLE is consistent even if ( ) 0, =φΦ bo  a.s.. 

(b) Given a data set, even if the efficient and consistent M-estimate 

exists, the current algorithms (see Buckley and James [3] and Zhang and 

Li [22]) may not be able to find it, as there are often multiple solutions to 

the M-estimator and the algorithm can only find one of them. Yu and 

Wong ([18], Example 4.2 and Figure 1) present such an example for the 

BJE, which is also an M-estimator. Because Yu and Wong [18] propose an 

algorithm that can present all possible solutions of the BJE, we can 

examine which solution of the BJE can be obtained by the existing 

algorithms for the M-estimation. The algorithm for the BJE cannot be 

generalized to other M-estimators. Moreover, Zhang and Li did not show 

that every solution to their M-estimator is consistent, even under the set 

of regularity conditions imposed on the underlying distributions. 

(c) An estimator of the parameter β  is consistent only if β  is 

identifiable. Yu and Dong establish the necessary and sufficient (NS) 

conditions for ( ( )( )tSo,β  being identifiable. The consistency of all the 

existing estimators under the linear regression model (see A1) are all 

established under assumption A2, among other regularity conditions. In 

fact, both the BJE and the median regression estimator can be 

inconsistent under the NS condition for β  being identifiable (see Yu and 

Dong [20]). 

In this paper, we shall prove consistency of the MSMLE nβ̂  without 

additional assumptions rather than A1 and the necessary and sufficient 

(NS) conditions for ( ( )( )tSo,β  being identifiable (see Theorems 1 and 2). 

These assumptions allow oF  to be continuous or discontinuous. It is 

worth mentioning that the standard approach in proving consistency of 
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the MLE takes advantage of the normal equation .0ˆ
ln =β= nd

d
bb

�  

However, it does not work here, as 0ln =
bd

d �  a.s. (see Remark 1). The 

asymptotic efficiency of the MSMLE under the assumption that oF  is 

continuous is still an open question. The paper is organized as follows. In 

Section 2, we present notations and introduce the MSMLE .ˆ
nβ  In Section 3, 

we prove the consistency of the MSMLE. 

2. Preliminary Results 

In this section, we introduce some preliminary results. For ,pR∈b   

denote ( ) .iiii MTT Xbb ′−==  It follows from assumption (A1) that 

( )( ) s
,

, iiT δβ  are i.i.d. copies of ( ),, δcZW �  where .Xβ′−= CZ c  The 

generalized likelihood function is 

( ) [( ( )( )) ( ( )( )) ],,,
1

1

ii
ii

n

i

TSTffS
δ−δ

=
∏= bbb�  

where  

( ) ( ) ( ) ,, F∈−−= StStStf   (2.1) 

{ HH :=F  is a non-increasing function on [ ] ( ) 1,, =∞−∞∞− H  and 

( ) }.0=∞H  Yu and Wong [17] suggest to replace f  by a kernel estimate, 

( ) ( ) ( ) ( ),1
tdS

tx
Kxfxf

nn
S η

−
η

−== ∫  where ( ) ( )12
1

≤= xxK 1  and 0→ηn  

(2.2) 
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(e.g., ),51−=η nn  and replace S  by the product-limit-estimate (PLE), 

denoted by ,ˆ
bS  based on observations ( )( ) s.

,
, iiT δb  Let SF −= 1  for 

F∈S  and let ,ˆ1ˆ
bb SF −=  Since ( )

( ) ( )
,

2 n

nn
S

xSxS
xf

η
η+−η−

=  (2.1) 

becomes 

( ) ( ) [( ( )( )) ( ( )( )) ]ii
iiS

n

i

S TSTffSl
δ−δ

=
∏== 1

ˆ

1

ˆˆ,,ˆ bbb
bb

bbb �  

 [ [ ( ( )( ) ) ( )( )] ( ( ))( ) ].ˆˆˆ
2

1 1

1

ii
inini

n

n

i

TSTSTS
δ−δ

=

η+−−η−
η

= ∏ bbbbbb  

(2.3) 

Yu and Wong call a value of b  that maximizes ( )⋅l  over all pR∈b  an 

MSMLE of .β  The MSMLE of ( )tSo  based on β′−β′− ˆ,,ˆ11 nnYY XX …  is 

denoted by ( ).ˆ tS  

It is obvious that the MSMLE of β  is consistent only when the 

parameter is identifiable. Yu and Dong [20] establish the NS conditions 

for the parameter being identifiable under the semi-parametric                     

linear regression model. Let TD  be the support set of ,Tf  that is, 

( ) 00 >∀><− cctTP  if ,Tt D∈  where ⋅  denotes a norm. Here 

T  can be CYW ,,  or .X  Let β′−= XCCo  and .oCo ττ =  Define 

( ) ( ) ( )

( ] ( ) ( )

( ) ( ) ( )

( ) ( )














=>−×

==−∞∞−

>=∞−

−<==∞−

=

.0

or0if,,

,0if,,

,0if,,

oWoW

CoW

oWCo

oWCo

SS

CPS

SCP

SCP

ττ

ττ

τττ

τττ

A   (2.4) 
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Definition. Assume A1 holds. ( )β,oS  is said to be identifiable if 

( ( ) ( ) A∈β′−∀β′−=β′− ∗∗ xxx ttStS o  implies that ( ( ) ) ( ( ),, tStS o=β∗∗  

) .A∈∀β t  

Theorem 1 ([20]). Suppose that A1 holds and .∞<oτ  Then  

(a) The survival function ( )tSW  is identifiable iff .A∈t  

(b) The parameter β  is identifiable iff ,
0

�=/xB  where xx D∈0  such that 

,
0 oC ττ =β′− x  and {( ) 00111 ,,:,,,,

0
xxxxxxx −−= pppww ……B  

are linearly independent, Wii w DD ∈∈ ,xx  and 

( )
.

0













<

>=≤
β′+

otherwise

CPif

w

C

CC

i i
τ

ττ

x  

Theorem 2 ([20]). Suppose that A1 holds and .∞=oτ  

(a) The survival function ( )tSW  is identifiable for each .t  

(b) The parameter β  is identifiable iff xx D∈∃ 0  such that ,
0

�=/xB  

where {( ) 0011 ,,:,,
0

xxxxxxx −−= pp ……B  are linearly independent, 

and }.xx D∈i  Here 0x =0  if ,x0 D∈  otherwise pxx ,,0 …  are vectors 

belonging to .xD  

Notice that if A1 holds, then A2 corresponds to ( ) .0
0

>µ xB  

We shall make use of the modified Kullback-Leibler (KL) inequality 

as follows. 

Proposition 1 ([21]). If ( ) ( ) 1,0 11 =µ≥ ∫ tdtffi  and ( ) ( ) ,112 ≤µ∫ tdtf  

where 1µ  is a measure, then ( )
( )
( )

( ) ,0ln 1
2

1
1 ≥µ∫ td

tf

tf
tf  with equality iff 

21 ff =  a.e. w.r.t. .1µ  
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Denote ( ) ( ) ( ) ( ) ( ) ( )β′−=β′−=β′−= βββ xtStSxtStStStS o
ˆˆ,ˆˆˆ, ˆ xxxx  

and ( ) ( ),∗∗∗ β′−= xx tStS  where F∈∗S  and .pR∈β∗  In view of 

Equation (2.3), one may write the measure w.r.t. the cdf ’s ( )x,, smF  

( ( ))xx ,,,,

def
smFM δ=  and ( )x,, smF∗  as 

  ( ) ( ) ( ) ( ) ( ),,1,1,0,0,, x1x1x mdFsmdFssmdF =+==  

 ( ) ( ) ( ) ( ),,0, xdFmdFmSmdF C xxx =  

 ( ) ( ) ( ) ( ),,1, xxx xdFmdFmSmdF C=   

 ( ) ( ) ( ) ( ) ( )xx1x xdFmdFmSssmdF C∗∗ == 0,,  

( ) ( ) ( ) ( ).1 xx1 xdFmdFmSs C ∗=+   (2.5) 

In view of Equation (2.5), the Proposition 1 under the LR model is 

modified as follows. 

Proposition 2. Let ( )xtS  be the true conditional survival function 

and ( ) .1=xtg  Let 

( )

( ) ( )
( ) ( )

( ) ( )

( )
( )

( ) ( )

( ) ( )
( ) ( )

( )















=
+−−
+−−

′>′
′
′

>−−
−−

+−−

∈/β′−

=

∗∗
↓

∗
∗

∗∗

∗

.0suplim

,0

,0

,0

def

0
0

0 otherwise
stSstS

stSstS

existtSandtSif
tS

tS

tStSif
tStS

tStS

Dtif

tg

s

W

xx

xx

xx
x

x

xx
xx

xx

x

x  

(2.6) 

Then (1) 
( )
( )

( )
( )
( )

( ) ( );,0,1,ln,0,ln xx
x

x
x

x

x
tStdF

tg

tg
tdF

tS

tS
∗

∗∗
∀≥+ ∫∫  and 

(2) the equality holds iff ( ) ( ) ., A∈∀=∗ ttStS xx  
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Proof. Let ( ) ( )
( )
( )

( )
( )
( )

.10,
x

x
1

x

x
1x

tg

tg
s

tS

tS
ssth ∗∗

∗ =+==  One can 

treat ∗h  the density of ( )xstF ,∗  w.r.t. the measure ( ),, xstdF  where 

( ) ( ) ( ).,, xxx xFstFstF =  Then the density of ( )xtS  w.r.t. the measure 

( )xstdF ,  is ( ) ( )
( )
( )

( )
( )
( )

.110, ==+==
x

x
1

x

x
1x

tg

tg
s

tS

tS
ssth  Given ( ),xtS∗  

by Proposition 1, ( )
( )
( )

( ),,
,

,
ln,0 x

x

x
x stdF

sth

sth
sth

∗
∫≤  and the equality 

holds iff ( ) ( ) ., A∈∀=∗ ttStS xx  Thus ( )
( )
( )

dF
sth

sth
sth

x

x
x

,

,
ln,0

∗
∫∫≤  

( ) ( )xx xdFst,  and the equality holds iff ( ) ( ) ., A∈∀=∗ ttStS xx    � 

3. The Main Results 

We establish the consistency of the MSMLE in this section. When we 

say that ( )tŜ  is consistent, we mean that .A∈t  

Theorem 3. The MSMLE ( )β̂,Ŝ  is consistent if the identifiability 

conditions stated in Theorems 1 and 2 hold. 

Proof. Let oΩ  be the subset of the sample space Ω  such that the 

empirical distribution function (edf) ( )x,,ˆ stFn  based on ( ) s
,

,, iiiM Xδ  

converges to ( ),,, xstF  the cdf of ( ).,, XδM  It is well-known that 

( ) .1=ΩoP  Notice that the MSMLE ( )β̂,Ŝ  is a function of ( ),, nω  say 

( ( )( ) ( )),ˆ,,ˆ ωβω⋅ nnS  where ω  belongs to the sample space and n  is the 

sample size. Hereafter, fix an ,oΩ∈ω  since ( ( ))ωβ=β n
ˆˆ  is a sequence of 

vectors in ,pR  there is a convergent subsequence with the limit ,∗β  

where the components of ∗β  can be .∞±  For simplicity, we shall suppress 

( )n,ω  hereafter. Moreover, Ŝ  is a sequence of bounded non-increasing 

functions, Helly’s selection theorem ensures that given any subsequence 



QIQING YU 94 

of ,Ŝ  there exists a further subsequence which is convergent. By     

taking convergent subsequence, without loss of generality (WLOG),       

we can assume that ∗β→β̂  and .ˆ F∈→ ∗SS  It is well-known that 

( ) ( ) 0ˆsup →−β∈ tStS ot A  a.s.. 

Since ( )β̂,Ŝ  is the MSMLE, ( ) ( )β≥β ll
nn

lnˆln 11  (see Equation (2.3)), 

thus 

( ) ( ) ( ( ) ( )) ( )xxxxx ,1,ˆˆˆln,0,ˆˆln tFdtStStFdtS nnnn η+−η−+ ∫∫  

( ) ( ) ( ( )xxx nn tStFdtS η−+≥ ββ ∫∫ ˆln,0,ˆˆln  

( )) ( ).,1,ˆˆ xx tFdtS nnη+− β   (see (2.3)) 

The last inequality yields 

( )

( )
( )

( ) ( )

( ) ( )
( ).,1,ˆ

ˆˆ

ˆˆ
ln,0,ˆ

ˆ

ˆ
ln0 x

xx

xx
x

x

x
tFd

tStS

tStS
tFd

tS

tS
n

nn

nn
n

η+−η−

η+−η−
+≥

βββ

∫∫  

(3.1) 

By assumption, ( )( ) ( )⋅⋅⋅→ω⋅⋅⋅ ,,,,ˆ FFn  on .oΩ  We shall prove in Lemmas 2 

and 3 that 

( )

( )
( )

( )
( )

( )x
x

x
x

x

x
,0,ln,0,ˆ

ˆ

ˆ
lnlim tdF

tS

tS
tFd

tS

tS
n

n ∗

β

∞→ ∫∫ ≥  (in Lemma 2),  (3.2) 

( ) ( )

( ) ( )
( )

( )
( )

( ).,1,ln,1,ˆ
ˆˆ

ˆˆ
lnlim x

x

x
x

xx

xx
tdF

tg

tg
tFd

tStS

tStS
n

nn

nn

n ∗

ββ

∞→ ∫∫ ≥
η+−η−

η+−η−
 

(3.3) 
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Then 
( )
( )

( )
( )
( )

( )x
x

x
x

x

x
,1,ln,0,ln0 tdF

tg

tg
tdF

tS

tS

∗∗ ∫∫ +≥   

(by Equations (3.1), (3.2) and (3.3)) 

 

.0≥   (by Proposition 2) 

The last two inequalities imply that 
( )
( )

( )
( )
( )x

x
x

x

x

tg

tg
tdF

tS

tS

∗∗
∫∫ + ln,0,ln  

( ) .0,1, =xtdF  Thus ( ) ( )xx tStS =∗  (i.e., ( ) ( ))xx β′−=β′− ∗∗ tStS o  

( ) Xx ,, MDt ∈∀  by statement (2) of Proposition 2. Since the NS 

assumptions of the identifiability of ( )( )β,tSo  in Theorems 1 and 2 hold, 

( )( ) ( )( ) A∈∀β=β∗∗ ttStS o ,,,  by Theorems 1 and 2. Recall ( ) ,1=ΩoP  

thus the MSMLE ( ( ) )β̂,ˆ tSo  is consistent for .A∈t   � 

We shall make use of Fatou’s Lemma with varying measures (see 

Lemma 1 below) in the proofs of Lemmas 2 and 3. 

Lemma 1 (Proposition 17 in Royden [14], page 231). Suppose that nµ  

is a sequence of measures on the measurable space ( )BS,  such              

that ( ) ( ) nn gBBB ,, B∈∀µ→µ  and nf  are non-negative measurable 

functions, and ( )( ) ( )( ).,,lim xx gfgf nn
n

=
∞→

 Then 

(1) ;lim nn
n

dfdf µ≤µ ∫∫
∞→

 

(2) if ( )0≥≥ nn fg  and ,lim µ=µ ∫∫∞→
gddg nn

n
 then .lim nn

n
dffd µ=µ ∫∫ ∞→

 

Corollary 1. Suppose that nµ  is a sequence of measures on the 

measurable space ( )BS,  such that ( ) ( ) fBBBn
n

,,lim B∈∀µ→µ
∞→

 and 

nf  are integrable functions, .1≥n  
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(1) If nf  are bounded below and ( ) ( ),lim xfxf n
n ∞→

=  then 
∞→

≤µ∫
n

df lim  

.nn df µ∫  

(2) If nf  are bounded below then .limlim nn
n

n
n

dfdf µ≤µ ∫∫
∞→∞→

 

Lemma 2. Under the assumptions in the proof of Theorem 3, 

( )

( )
( )

( )
( )

( )x
x

x
x

x

x
,0,ln,0,ˆ

ˆ

ˆ
lnlim tdF

tS

tS
tFd

tS

tS
n

n ∗

β

∞→
≥∫   

(i.e., inequality (3.2) holds). 

Proof. For the given oΩ∈ω  and ( )∗∗ β,S  in Equation (3.2), as 

assumed, ( ) ( ) ( ) ,ˆ,ˆ
∗∗ β→ωβ→ tStS  and ( )tS∗  is continuous a.e.. ( ) =∗ xtS  

( ),ˆˆlim β′−
∞→

xtS
n

 which equals ( )∗∗ β′− xtS  a.e. in ∗β′− xt  w.r.t. the 

measure induced by ,,, XδMF  except perhaps at the discontinuous point 

of ,∗S  say w  and ( ) ( ),−= ∗∗ wStS x  where .∗β′−= xtw  Let A∈=α tsup  

( ),tSo  where A  is as in Equation (2.4). Then either (1) 0>α  or (2) .0=α  

Suppose that .0>α  Then on∃  such that ( ) A∈∀α≥β ttS 2ˆ  and 

,onn ≥  as ( ) ( ) 0ˆsup →−β∈ tStS Wt A  a.s.. Denote ( )
( )

( )
,

ˆ

ˆ
,,

x

x
x

tS

tS
ntG

β

=  

we have 

( )
( )
( )x

x
x

tS

tS
ntG

n

∗

∞→
=,,lim  if ( ) .0>xtS  (3.4) 

Let {( ) ( ) }onnntGtA ≥∀≤= ,,,:, kk xx  and .1,1 ≥= − kkkk AAB �  

Since ( )ntG ,, x  is finite for each ,onn ≥  provided that ( ) ,0>xtS  we 

have 

( ) ( ){ }α≥==≥ xx tStB :,
def

1 Ukk∪  (and ( )( ) ( ) ).1,,, 1 =∈ ≥∫ xx1 stdFBt kk∪  

(3.5) 
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For each ,1≥k  let 
( )

( )
( )( ).,

ˆ

ˆ
ln

def

kk Bt
tS

tS
a ∈=

β
x1

x

x
 

( )

( )
( )x,0,ˆ

ˆ

ˆ
lnlim tFd

xtS

xtS
n

Bn

β

∞→ ∫
k

 

(
( )

( )
) ( )x

x

x
,0,

ˆ
lnlim tdF

tS

tS

nB ∞→∫≥
k

          (by (2) of Corollary 1 

as [ ) [ ( ) ( )( )] )2,11ln,1ln,,01 ≥−∈∞∈ kkkkaa  

(
( ( )

( ( )
) ( )x

x

x
,0,

ˆ

ˆ
limln tdF

tS

tS

nB

β

∞→∫=
k

  (as ( )xln  is continuous) 

( )
( )

( )x
x

x
,0,ln tdF

tS

tS

B ∗∫=
k

  (see (3.4)) 

(
( )
( )

)
( )
( )

) ( )x
x

x

x

x
,0,tdF

tS

tS

tS

tS
H

B

∗

∗∫=
k

 (where ( ) )etttH 1ln
def

−≥=  

(
( )
( )

) ( )x
x

x
,0,tdF

tS

tS
H

B
∗

∗∫=
k

  (see (2.5)) 

( ) ( ) ( ) ( )xx ,0,11,0,1 tdFetdFe
BB

∗∗ ∫∫ −=−≥
kk

 

( ) ( ) .1,,11 estdFe −≥−≥ ∗∫ x  

That is, for 
( )

( )
( )

( )
( )

( )x
x

x
x

x

x
,0,ln,0,ˆ

ˆ

ˆ
lnlim,1 tdF

tS

tS
tFd

tS

tS

B
n

Bn ∗

β

∞→ ∫∫ ≥≥
kk

k  

(3.6) 

 .1 e−≥   (3.7) 
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Then 
( )

( )
( )x

x

x
,0,ˆ

ˆ

ˆ
lnlim tFd

tS

tS
n

n

β

∞→ ∫  

( )

( )
( )x

x

x
,0,ˆ

ˆ

ˆ
lnlim

1

tFd
tS

tS
n

Bn

β

≥∞→ ∫∑=
kk

  (by (3.5)) 

( )

( )
( ) ( )k

kk

νdtFd
tS

tS
n

Bn
x

x

x
,0,ˆ

ˆ

ˆ
lnlim

1

β

≥∞→ ∫∫=   

( νd  is a counting measure) 

( )

( )
( ) ( )k

kk

νdtFd
tS

tS
n

Bn
x

x

x
,0,ˆ

ˆ

ˆ
lnlim

1

β

∞→≥ ∫∫≥   

(by (1) of Corollary 1 and (3.7)) 

( )
( )

( ) ( )k
kk

νdtdF
tS

tS

B
x

x

x
,0,ln

1 ∗≥ ∫∫≥   (by (3.6)) 

( )
( )

( )
( )
( )

( ).,0,ln,0,ln

1

x
x

x
x

x

x
tdF

tS

tS
tdF

tS

tS

B ∗∗≥
∫∫∑ ==

kk

  (3.8) 

Thus (3.2) holds if ( ) .0sup >=α ∈ tSot A  

Now suppose that case (2) holds, that is, ( ) .0sup ==α ∈ tSot A  Let K  

be the set of all positive integers, and {( ) ( ) ( ( ),11:, +∈β′−= mtStm xxU  

]},1 m  where .K∈m  

For each mnm ∃∈ ,K  such that ( ) ( )) ( ) ∈β′−∀>β xx tSmtS o,21ˆ  

( ( ) ].1,11 mm +  Denote ( )
( )

( )x

x
x

tS

tS
ntG

β

=
ˆ

ˆ
,,  as before, but re-define 

( ) ( ) ( )( ] ( ){ },,,,.1,11:, mo nnntGmmtStA ≥∀≤+∈β′−= kk xxx  

(3.9) 
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and ,,1 K\ ∈= − kkkk AAB  we have .1 mB U=≥ kk∪  Then by a similar 

arguments as in proving (3.6), (3.7), and (3.8) (i.e., replacing U  by ),mU  

we can show that for ,K∈m  

( )

( )

( )
( )

( )

( )
( )

( ),,0,ln,0,ˆ
ˆ

ˆ
lnlim

,,
x

x

x
x

x

x

xx
tdF

tS

tS
tFd

tS

tS

mm t
n

tn ∗∈

β

∈∞→ ∫∫ ≥
UU

 

(3.10) 

.1 e−≥   (3.11) 

Their proofs are relegated to Appendix. Moreover, replacing kB  by mU  

in the proof of Inequality (3.8), we have 

( )

( )
( )x

x

x
,0,ˆ

ˆ

ˆ
lnlim tFd

tS

tS
n

n

β

∞→ ∫  

( )

( )

( )
( )x

x

x

x
,0,ˆ

ˆ

ˆ
lnlim

,
1

tFd
tS

tS
n

t
mn m

β

∈=∞→ ∫∑=
U

 

( )

( )

( )
( ) ( )mdtFd

tS

tS
n

tmn m

νx
x

x

x
,0,ˆ

ˆ

ˆ
lnlim

,1

β

∈

∞

≥∞→ ∫∫=
U

  

( νd  is a counting measure) 

( )

( )

( )
( ) ( )mdtFd

tS

tS
n

tnm m

νx
x

x

x
,0,ˆ

ˆ

ˆ
lnlim

,1

β

∈∞→≥ ∫∫≥
U

  

(by (1) Corollary 1 and (3.11)) 

( )

( )
( )

( )x
x

x

x
,0,ln

,
1

tdF
tS

tS

mt
m ∗∈

∞

=
∫∑≥

U
  (by (3.10) 

( )
( )

( ),,0,ln x
x

x
tdF

tS

tS

∗
∫=  

which is (3.2) in the case that ( ) .0sup =∈ tSot A   � 
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Lemma 3. Under the assumptions set in the proof of Theorem 2, 

inequality (3.3) holds, i.e., 

( ) ( )

( ) ( )
( )x

xx

xx
,1,ˆ

ˆˆ

ˆˆ
lnlim tFd

tStS

tStS
n

nn

nn

n η+−η−

η+−η− ββ

∞→ ∫  

( )
( )

( ),,1,
,

ln x
x

x
tdF

tg

tg

∗

β
≥ ∫  

where ( ) 1, ≡βxtg  and ( )xtg∗  is as in (2.6). 

Proof. For the given ( )( )ωΩ∈ω xtSo
ˆ,  and ( )∗∗ β,S  in the proof of 

Theorem 2, denote ( )
( ) ( )

( ) ( )
.

ˆˆ

ˆˆ
,,

xx

xx
x

nn

nn

tStS

tStS
ntG

η+−η−

η+−η−
=

ββ

 By (2.6), 

( ) ( )
( )

( )β
== ∗

∗
∞→ ,

,,lim
x

x
xx

tg

tg
tgntG

n
if .Wt DA ∩∈β′− b  

Notice that the denominator ( ) ( )xx nn tStS η+−η− ββ
ˆˆ  of ( )ntG ,, x  

can be zero if n  is small. By the definition of ,WD  if ,AD ∩Ww ∈  then 

( ) ( ) 0ˆˆ >η+−η− ββ nn wSwS  for n  large enough. Thus ( )ntG ,, x  is finite 

for n  large enough, provided that .AD ∩Wt ∈β′− x  Hence we can 

partition AD ∩W  as follows. For each ,K∈m  let 

{( ) ( )ntGtm ,,:, xx=U  is finite for ,mn >  but not for }.mn =  

We shall first prove inequalities similar to (3.6) and (3.7), and then prove 

(3.3). 

Given ,K∈m  let {( ) ( ) }mnntGtA m ≥∀≤∈= ,,,:, kk xx U  and 

.1,1 ≥= − kkkk AAB \  Then .1 mB U=≥ kk∪  

For each ,1≥k  let 
( ) ( )

( ) ( )
( )( ).,

ˆˆ

ˆˆ
ln kk Bt

tStS

tStS
a

nn

nndef
∈

η+−η−

η+−η−
=

ββ
x1

xx

xx
 



CONSISTENCY OF THE MODIFIED SEMI-PARAMETRIC … 101 

( ) ( )

( ) ( )
( )x

xx

xx
,1,ˆ

ˆˆ

ˆˆ
lnlim tFd

tStS

tStS
n

nn

nn

Bn η+−η−

η+−η− ββ

∞→ ∫
k

 

(
( ( ) ( ))

( ( ) ( ))
) ( )x

xx

xx
,1,

ˆˆ
lnlim tdF

tStS

tStS

nn

nn

nB η+−η−

η+−η−
≥

ββ

∞→
∫
k

  

(by (2) of Corollary 1 

as [ ) ( ) ( )( )[ ] )2,11ln,1ln,,01 ≥−∈∞∈ kkkkaa  

(
( ( ) ( ))

( ( ) ( ))
) ( )x

xx

xx
,1,

ˆˆ

ˆˆ
limln tdF

tStS

tStS

nn

nn

nB η+−η−

η+−η−
=

ββ

∞→∫
k

  

(as ( )xln  is continuous ) 

( )
( )

( )x
x

x
,1,ln tdF

tg

tg

B ∗∫=
k

  (see (2.6)) 

(
( )
( )

)
( )
( )

) ( )x
x

x

x

x
,1,tdF

tg

tg

tg

tg
H

B

∗

∗∫=
k

  (where ( ) )etttH 1ln
def

−≥=  

(
( )
( )

) ( )x
x

x
,1,tdF

tg

tg
H

B
∗

∗∫=
k

  (see (2.5)) 

( ) ( ) .1,1,1 etdFe
B

−≥−≥ ∗∫ x
k

 

That is, for ,1≥k  

( ) ( )

( ) ( )
( )x

xx

xx
,1,ˆ

ˆˆ

ˆˆ
lnlim tFd

tStS

tStS
n

nn

nn

Bn η+−η−

η+−η− ββ

∞→ ∫
k

 

( )
( )

( )x
x

x
,1,ln tdF

tg

tg

B ∗∫≥
k

  (3.12) 

.1 e−≥   (3.13) 
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( ) ( )

( ) ( )
( )xtFd

tStS

tStS
n

nn

nn

n m

,1,ˆ
ˆˆ

ˆˆ
lnlim

xx

xx

η+−η−

η+−η−
>=

ββ

∞→ ∫U  

( ) ( )

( ) ( )
( )x

xx

xx
,1,ˆ

ˆˆ

ˆˆ
lnlim

1

tFd
tStS

tStS
n

nn

nn

Bn η+−η−

η+−η−
=

ββ

≥∞→ ∫∑
kk

  

(as )mB U=≥ kk 1∪  

( ) ( )

( ) ( )
( ) ( )k

kk

νdtFd
tStS

tStS
n

nn

nn

Bn
x

xx

xx
,1,ˆ

ˆˆ

ˆˆ
lnlim

1 η+−η−

η+−η−
=

ββ

≥∞→ ∫∫   

( νd  is a counting measure) 

( ) ( )

( ) ( )
( ) ( )k

kk

νdtFd
tStS

tStS
n

nn

nn

Bn
x

xx

xx
,1,ˆ

ˆˆ

ˆˆ
lnlim

1 η+−η−

η+−η−
≥

ββ

∞→≥ ∫∫   

(by (1) of Corollary 1 and (3.13)) 

( )
( )

( ) ( )k
kk

νdtdF
tg

tg

B
x

x

x
,1,ln

1 ∗≥ ∫∫≥   (by (3.12)) 

( )
( )

( )
( )
( )

( )x
x

x
x

x

x
,1,ln,1,ln

1

tdF
tg

tg
tdF

tg

tg

mB ∗∗≥
∫∫∑ ==
Ukk

  ( ).1 e−≥  

Finally,  

( ) ( )

( ) ( )
( )x

xx

xx
,1,ˆ

ˆˆ

ˆˆ
lnlim tFd

tStS

tStS
n

nn

nn

n η+−η−

η+−η− ββ

∞→ ∫  

( ) ( )

( ) ( )
( )x

xx

xx
,1,ˆ

ˆˆ

ˆˆ
lnlim

1

tFd
tStS

tStS
n

nn

nn

mn m η+−η−

η+−η−
=

ββ
∞

=∞→ ∫∑ U
 

( ) ( )

( ) ( )
( ) ( )mdtFd

tStS

tStS
n

nn

nn

mn m

νx
xx

xx
,1,ˆ

ˆˆ

ˆˆ
lnlim

1 η+−η−

η+−η−
=

ββ

≥∞→ ∫∫ U
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( ) ( )

( ) ( )
( ) ( )mdtFd

tStS

tStS
n

nn

nn

nm m

νx
xx

xx
,1,ˆ

ˆˆ

ˆˆ
lnlim

1 η+−η−

η+−η−
≥

ββ

∞→≥ ∫∫ U
 

( )
( )

( )x
x

x
,1,ln

1

tdF
tg

tg

mm ∗≥
∫∑≥
U

 

( )
( )

( ).,1,ln x
x

x
tdF

tg

tg

∗∫=   

Thus (3.3) holds.  � 

Remark. Even though the MSMLE is an extension of the SMLE, the 

SMLE is not always consistent under the identifiability condition. The 

reason is that ( ) ( ]( ),, ttWPtfW η−∈=  where { }.:min jiWW ji =/−=η  

Under the continuity assumption, there is no observation within 

[ ]., η+η− WW  But the MSMLE is different in this regard. 
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Appendix 

Proof of Corollary 1. Let ( ).infinf xfnxn=k  If 0≥k  then the 

corollary follows from Lemma 1. Otherwise, ( ) ( ) ( ) 0,0 == +− xfxfxf nnn �  

( ) ( ) ( )xfxfxfn �� 0, =−  and ( ) ( ).0 xfxf �=+  Then ++ → ffn  and 

−− → ffn  point-wisely, as ffn →  in Case (1). Then 

 ( ) [ ]nnnn
n

nnn
n

nn
n

dfdfdffdf µ+µ=µ+=µ −+

∞→

−+

∞→∞→ ∫∫∫∫ limlimlim  

nn
n

n
n

dfdf µ+µ≥ −

∞→

+

∞→ ∫∫ limlim  

nn
n

nn
n

dfdf µ+µ= −

∞→

+

∞→ ∫∫ limlim   

(by statement (2) of Lemma 1, as ( ) )k≤− xfn  

µ+µ≥ −+

∞→
∫∫ dfdfn

n

lim  (by statement (1) of Lemma 1, as ( )xfn
+  is 

nonnegative) ( ) ,µ=µ+=µ+µ= ∫∫∫∫
−+−+ dfdffdfdf  i.e., statement 

(1) holds. 

Let ( ) ( ){ },:inf nxfxgn ≥= kk  then ( ) ( ) ( ).lim xfxgxg n
n

n
∞→

=→  We 

have 

nn
n

n
n

n
n

dgdgdf µ≤µ=µ ∫∫∫ ∞→∞→∞→
limlimlim   

(by statement (1)), as ng  is bounded below) 

{ } n
n

dnf µ≥= ∫∞→
kk :inflim  

.lim nn
n

df µ≤ ∫∞→
  (which is statement (2)). 

� 
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Proof of Equation (3.10) and Equation (3.11). Given ,K∈m  

since ( )ntG ,, x  is finite ( ) mt U∈∀ x,  and for each ,onn ≥  we have 

.1 mB U=≥ kk∪  For each ,1≥k  let 
( )

( )
( )( ).,

ˆ

ˆ
ln

def

kk Bt
tS

tS
a ∈=

β
x1

x

x
 

( )

( )
( )x

x

x
,0,ˆ

ˆ

ˆ
lnlim tFd

tS

tS
n

Bn

β

∞→ ∫
k

 

(
( )

( )
) ( )x

x

x
,0,

ˆ
lnlim tdF

tS

tS

nB ∞→∫≥
k

  (by (2) of Corollary 1 

as [ ) ( ) ( )( )[ ] )2,11ln,1ln,,01 ≥−∈∞∈ kkkkaa  

(
( ( )

( ( )
) ( )x

x

x
,0,

ˆ

ˆ
limln tdF

tS

tS

nB

β

∞→∫=
k

  (as ( )xln  is continuous) 

( )
( )

( )x
x

x
,0,ln tdF

tS

tS

B ∗∫=
k

  (see (3.4)) 

(
( )
( )

)
( )
( )

) ( )x
x

x

x

x
,0,tdF

tS

tS

tS

tS
H

B

∗

∗∫=
k

  

(where ( ) )etttH 1ln
def

−≥=  

(
( )
( )

) ( )x
x

x
,0,tdF

tS

tS
H

B
∗

∗∫=
k

  (see (2.5)) 

( ) ( ).,0,1 xtdFe
B

∗−≥ ∫
k

 

That is, for ,1≥k  

( )

( )
( )

( )
( )

( )x
x

x
x

x

x
,0,ln,0,ˆ

ˆ

ˆ
lnlim tdF

tS

tS
tFd

tS

tS

B
n

Bn ∗

β

∞→ ∫∫ ≥
kk

 (4.1) 

( ).,0,11 xtdFe
Bk
∫−≥   (4.2) 
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Notice that the proof so far till Equation (4.1) and Equation (4.2) is 

identical to the proof of Equation (3.6) and Equation (3.7). 

Then  

( )

( )

( )
( )x

x

x

x
,0,ˆ

ˆ

ˆ
lnlim

,
tFd

tS

tS
n

tn m

β

∈∞→ ∫ U
 

( )

( )
( )x

x

x
,0,ˆ

ˆ

ˆ
lnlim

1

tFd
tS

tS
n

Bn

β

≥∞→ ∫∑=
kk

  (as )mB U=kk∪  

( )

( )
( ) ( )k

kk

νdtFd
tS

tS
n

Bn
x

x

x
,0,ˆ

ˆ

ˆ
lnlim

1

β

≥∞→ ∫∫=   

νd(  is a counting measure) 

( )

( )
( ) ( )k

kk

νdtFd
tS

tS
n

Bn
x

x

x
,0,ˆ

ˆ

ˆ
lnlim

1

β

∞→≥ ∫∫≥   

(by (1) of Corollary 1 and (4.2)) 

( )
( )

( ) ( )k
kk

νdtdF
tS

tS

B
x

x

x
,0,ln

1 ∗≥ ∫∫≥   (by (4.1)) 

( )
( )

( )
( )

( )
( )

( ).,0,ln,0,ln
,

1

x
x

x
x

x

x

x
tdF

tS

tS
tdF

tS

tS

mtB ∗∈∗≥
∫∫∑ ==

Ukk

(3.6) 

.1 e−≥   (3.7) 

� 

It is worth mentioning that the proof upto Equation (3.6) is almost the 

same as the proof in deriving Equation (3.8), except that ∫ in Equation 

(3.8) is replaced by 
mU

∫  in Equation (3.6). 


