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Abstract

Under the right censorship model and under the linear regression model

Y = BX + W, where E(W) may not exist, the modified semi-parametric MLE
(MSMLE) was proposed by Yu and Wong [17]. The MSMLE fﬁ of B satisfying

P(fi # B infinitely often) = 0 if W is discontinuous, and the simulation study

suggests that it is also consistent and efficient under certain regularity
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conditions. In this paper, we establish the consistency of the MSMLE under the

necessary and sufficient condition that B is identifiable. Notice that under the

latter assumption, the Buckley-James estimator and the median regression

estimator can be inconsistent (see Yu and Dong [20]).
1. Introduction

We shall establish the consistency of the modified semi-parametric
maximum likelihood estimator (MSMLE) proposed in Yu and Wong [17]
under the linear regression model with right-censored data. We shall
make the following assumptions.

Al. Let (M;,5;,X;),i=1,...,n, be iid. observations from the

random vector (M, 3, X), where M =Y AC, C is a random censoring

variable, Y = X + W, X € R? (the p-dimensional Eucleadian space),
W is the baseline random variable (=YX =0), W,C and X are
independent, § = 1(Y < C), 1(A) is the indicator function of the event A
and P@B=1)e (0,1). Both B and S, are unknown, where

So(y) = Sw(y) = PW > y).

This is a semi-parametric set-up, as (B, F,) 1is unknown

(F, =1-S8,). E(W) may not exist.

Regression analysis is one of the most widely used statistical
techniques. Its applications occur in almost every field, including
engineering, economics, the physical sciences, management, life and

biological sciences, and the social sciences.

To review available estimators for the regression problem, we first
consider the case of complete data under the simple linear regression

model. Suppose (X;, Y;),i =1, ..., n, are i.i.d. observations from (X, Y).

There are several possible estimators for B, such as

(1) the least squares estimator (LSE),

(2) the Theil-Sen estimator (Theil [16] and Sen [15]),
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(3) L-estimators and R-estimators (see, e.g., Montgomery and Peck
[11]),
(4) adaptive estimators (Bickel [2]),
(5) various M-estimators (Huber [7]),

(6) the quantile (or median) regression estimator (see, e.g., He and
Zhu [6]),

(7) the empirical likelihood estimator (Owen [12]),

(8) the semi-parametric maximum likelihood estimators (SMLE) (Yu
and Wong [19]), and the modified SMLE (MSMLE) (Yu and Wong [17]).
Several of these semi-parametric estimators of B are a value of b

that maximizes the generalized likelihood function
n
L=t(f,0) =[] r -ox). (LD

where f belongs to a class of density functions.

If f(¢) = SE-)-S(t), where S(-) is a survival function, it leads to
the SMLE. If f in Equation (1.1) is a kernel estimator, it leads to
M-estimators or the MSMLE. Various M-estimators have been proposed

alnL(f, b)

A , where [ isa

for finding a zero point (or zero-crossing point) of

kernel estimate of f. Zhang and Li [22] consider such an approach. Let ¢

be the score function, that is, ¢ = (In f ) = r where [’ is the derivative

f b
of f. Let q) be an estimate of ¢. A point x is said to be a zero-crossing

point of a function g if g(x —)g(x +) < 0. Zhang and Li’'s M-estimate of

A

is a zero-crossing point of a function ®(¢, -), where

®(4, b) = Y 8(Y; - Y - b(X; - X)) (X; - X). (1.2)
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An M-estimate can be obtained by iterative algorithms. Zhang and Li

point out that the M-estimator with ¢(x) = x is the LSE, and thus is not

efficient. They also show that the M-estimator with a suitable choice of (f)

is efficient under certain regularity conditions.

Under right censoring with X € R”, there are several extensions of

the above estimators. The Buckley-James [3] estimator (BJE) is a
modification of normal equations of the sum of least squares. Chatterjee
and Mcleish [4] and Leurgans [10] propose several parametric and semi-
parametric extensions of the LSE. Hillis [8], Ritov [13] and Zhang and Li [22]
consider M-estimators and their modifications. Ireson and Rao [9] and
Akritas et al. [1] consider extension of the Theil-Sen estimator. Since all
these estimators are extensions, they inherit the properties of the
estimators in the case of complete-data. Yu and Wong [17] propose the

MSMLE of B, denoted by B or f,, which maximizes the likelihood
n

£(8, b) = [T1(p (T (0))° (Sp(T;(B)) %], where Sj, is the product-
=1

limit-estimator (ple), 7:(b) =Y; —bX;, and f is the kernel estimator

with the rectangular kernel.

Remark 1. Yu and Wong show that Gn cannot be obtained by the

algorithms for M-estimate, or by Newton-Raphson algorithm, or Monte

dInL(f, b)
db

Carlo method, as =0 a.e..

Yu and Wong [17] propose a feasible non-iterative algorithm for
obtaining [ASn They establish the consistency of the MSMLE under the

following assumptions in addition to Al:

A2. P(A) > 0, where A ={(xy,...,Xp1): rank
X1 Xp+l

= p+1, x;’s areii.d. copies of X|; = -+ =38,,; =1}
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A3. F,(¢) =_[ <tfo(x)du(x), where U is the sum of the Lebesgue
xXs

measure on the real line and a counting measure on a countable set M,
dF, ()

and f,(x)={ dx
F,(x)- F,(x -), if xe M.

, if xe¢ M,

A4. |E(Inf,(e))| < oo, Fyt +x)— F,(t — x) = f,(¢)1 + O(x)) uniformly

F,(t+x)- F,(t—x)
2x

for all te M, = f,)(1 + O(x)) uniformly for all

te M.
They also prove that
P{[gn = B for all large n} = 1 if F, has a discontinuity point and A2 holds.

(1.3)

It is conjectured according to simulation results (see Yu and Wong [17])

that under certain regularity conditions, Bn is efficient.

An MSMLE solution is a maximizer of L(f, b), while an M-estimator
solution is an approximation of a stationary point of L(f, b). Even

though Zhang and Li [22] show that their M-estimator is consistent and
efficient under certain regularity conditions, there are two drawbacks in
their approach, in comparison to the MSMLE approach. One is in the

assumption for consistency and the other is in computation.

(a) Zhang and Li’'s M-estimator can be inconsistent if ®(¢,, b) = 0

a.s.in b, where ¢, = f;/f,. The reason is as follows. (1) An M-estimate is
a zero-crossing point of ®(¢, b), and (2) one expects that the derivative of
“the normalized log likelihood” %cp(&), b) - E(% ®(0,, b)) a.s. for each b.

Note that for uniform distributions or piece-wise uniform distributions

(among other distributions), ¢, = 0 a.s., and thus ®(¢,, b) = 0 a.s. in b.
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Consequently, if the data are from the latter distributions and the score

function f’/f is estimated by a kernel estimator, one cannot find a
consistent M-estimate of f. On the contrary, we shall show in this paper

that the MSMLE is consistent even if ®(¢,, b) = 0 a.s..

(b) Given a data set, even if the efficient and consistent M-estimate
exists, the current algorithms (see Buckley and James [3] and Zhang and
Li [22]) may not be able to find it, as there are often multiple solutions to
the M-estimator and the algorithm can only find one of them. Yu and
Wong ([18], Example 4.2 and Figure 1) present such an example for the
BJE, which is also an M-estimator. Because Yu and Wong [18] propose an
algorithm that can present all possible solutions of the BJE, we can
examine which solution of the BJE can be obtained by the existing
algorithms for the M-estimation. The algorithm for the BJE cannot be
generalized to other M-estimators. Moreover, Zhang and Li did not show
that every solution to their M-estimator is consistent, even under the set

of regularity conditions imposed on the underlying distributions.

(c) An estimator of the parameter [ is consistent only if B is

identifiable. Yu and Dong establish the necessary and sufficient (NS)
conditions for (B, (S,(t)) being identifiable. The consistency of all the

existing estimators under the linear regression model (see Al) are all
established under assumption A2, among other regularity conditions. In
fact, both the BJE and the median regression estimator can be

inconsistent under the NS condition for B being identifiable (see Yu and

Dong [20]).

In this paper, we shall prove consistency of the MSMLE ﬁn without

additional assumptions rather than Al and the necessary and sufficient
(NS) conditions for (B, (S,(t)) being identifiable (see Theorems 1 and 2).

These assumptions allow F, to be continuous or discontinuous. It is

worth mentioning that the standard approach in proving consistency of
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the MLE takes advantage of the normal equation %%:B = 0.

However, it does not work here, as % =0 a.s. (see Remark 1). The

asymptotic efficiency of the MSMLE under the assumption that F, is
continuous is still an open question. The paper is organized as follows. In
Section 2, we present notations and introduce the MSMLE ﬁn In Section 3,

we prove the consistency of the MSMLE.

2. Preliminary Results

In this section, we introduce some preliminary results. For b € R”,

denote T, =T;(b) = M; —-b’X;. It follows from assumption (Al) that

(T;(B), 8;)’s are i.i.d. copies of (WA Z¢, 3§), where Z¢ = C — B’X. The
1 13

generalized likelihood function is
L(S, b, f) = [ JUAT®)* (S(T:B)) %],
1=1

where

f(t)=S@E-)-S@), Se F, 2.1)
F ={H : H is a non-increasing function on [~oo, ], H(-) =1 and
H(x) = 0}. Yu and Wong [17] suggest to replace f by a kernel estimate,

LK(x—t

flx) = fg(x) = - . Ko

)dS(t), where K(x) = %I(MSI) andn, — 0

(2.2)
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(e.g., M, =n %), and replace S by the product-limit-estimate (PLE),
denoted by S’b, based on observations (7;(b), §;)’s. Let F =1-S for

S(x _nn)_ S(x +T|n)

, (2.1)
2n,

S e F and let Fb = 1—S’b, Since fg(x) =

becomes

Ib) = LSy, b. fiy ) = [ 105, @)™ (S @) ]
1=1

= [ [0 I8 (TiB) ~ i) ) = 8 T3 ) + o )1 (S (1 0)) 1
1=1 n

(2.3)

Yu and Wong call a value of b that maximizes I(-) over all be R? an
MSMLE of B. The MSMLE of S,(t) based on Y; — XiB, ..., Y, — X, is
denoted by S’(t)

It is obvious that the MSMLE of B is consistent only when the

parameter is identifiable. Yu and Dong [20] establish the NS conditions
for the parameter being identifiable under the semi-parametric
linear regression model. Let Dy be the support set of fp, that is,

P(T -t <¢)>0 Ve>0 if t € Dp, where |-| denotes a norm. Here
T canbe W, Y, C or X. Let C, = C -XB and 7, = 7¢,. Define

(—00, TO), if P(CZTc)=0<Sw(TO —),
(=o0, o1, if P(C = 1¢)Sw(t,) > 0,

A= 2.4
(—oo, o), if Sy(r,-)=0or P(C =r1¢)

X Sw(TO —) >0 = SW(TO)'
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Definition. Assume Al holds. (S,, B) is said to be identifiable if

(St —xB.)=S,(t—xB) Vt—xBe A impliesthat (S.(¢), Bs) = (S, (),
B) Vie A.

Theorem 1 ([20]). Suppose that Al holds and T, < . Then
(a) The survival function Sy (t) is identifiable iff t € A.

(b) The parameter B is identifiable iff By, # 0, where xq € Dy such that
e =By, = To» and By, ={(wy, X1, ..., wp, Xp) 1 X1 — X, ..., Xp — X
are linearly independent, x; € Dy, w; € Dy and
<7Tc ifP(CZTc)>0

w; + Bxi
< To otherwise

Theorem 2 ([20]). Suppose that Al holds and T, = .
(@) The survival function Sy (t) is identifiable for each t.

(b) The parameter B is identifiable iff 3 xo € Dy such that on + 0,
where By, = {(x1, ..., x,) s X1 = Xq, ..., X,, — X are linearly independent,

and x; € Dy}. Here xo =0 if 0 € Dy, otherwise X, ..., X, are vectors

X P

belonging to Dy.
Notice that if A1 holds, then A2 corresponds to H(on ) > 0.

We shall make use of the modified Kullback-Leibler (KL) inequality

as follows.

Proposition 1 (21). If f; 2 0, [ fi(t)du,(t) =1 and [ fo()dpy () < 1,

where W, is a measure, then Iﬁ(t)lnﬁ—(t)dul(t) > 0, with equality iff

fa(t)

fi = fo ae.w.rt. py.
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Denote S(t|x) = S,(t — xB), t|x (t —xB), SB (tx) = SB t—xB)

and S.(lx) = S.(t —x'B.), where S, e F and B, e RP. In view of
Equation (2.3), one may write the measure w.r.t. the cdf’s F(m, s, x)

def
(S Fy 5.x(m, s, x)) and F.(m, s, x) as

dF(m, s, x) = 1(s = 0)dF(m, 0, x) + 1(s = 1)dF(m, 1, x),
dF(m, 0, x) = S(m|x)dF¢(m)dFy(x),
dF(m, 1, x) = Sc(m)dF (m|x)dFy (x),
dF.(m, s, %) = 1(s = 0)S, (m[x)dF (m)dFy ()
+ 1(s = 1)S¢(m)dF, (m|x)dFy (x). (2.5)

In view of Equation (2.5), the Proposition 1 under the LR model is
modified as follows.

Proposition 2. Let S(t|x) be the true conditional survival function

and g(tx) = 1. Let

0 if t—x'Be Dy,
—|x)-S.(t+|x) .
if S(t—|x)—S(tx)>0,
| SRS St
X)) =<8, e , .
£x\x %ﬂx) if S'(¢x) >0 and Si(tx) exist,
. S, (t—sx)— St +5x) . gdef
limsup,|, S{—sx) =S + o) otherwise (= 0).

(2.6)

Then (1)]1 tlx jAF(, 0, jl F(t,1,%)>0, ¥V S,(tx); and

(2) the equality holds iff S.({|x) = S(f|x), V t € A.
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One can

S, (tx) & (tx)
Sm) 1=V

treat h, the density of F.(f, sjx) w.r.t. the measure dF(t, sjx), where

Proof. Let h.(t sx) =1(s = 0)

F(t, s|x) = F(t, s|x)Fy(x). Then the density of S(¢{}x) w.r.t. the measure
S(gx) g(t|x)
S(tx) g(t|x)

h(¢, s|x)
hi(¢, sx)

dF(t, sx) is h(t, s|x) = 1(s = 0) +1(s =1) =1. Given S,({[x),

by Proposition 1, 0 < J-h(t, sx) In dF(t, s|x), and the equality

h(t, sx)
h.(t, s|x)

(t, s|)x)dFy(x) and the equality holds iff S, (f}x) = S(f|x), V¢e A. O

holds iff S,(fx) = S(tx), Vie A. Thus 0 < j j A(t, s|x)In dF

3. The Main Results

We establish the consistency of the MSMLE in this section. When we

say that S(¢) is consistent, we mean that ¢ € A.

Theorem 3. The MSMLE (S, B) is consistent if the identifiability
conditions stated in Theorems 1 and 2 hold.

Proof. Let Q, be the subset of the sample space Q such that the
empirical distribution function (edf) F, (¢, s, x) based on (M;, §;, X;)’s
converges to F(¢, s, x), the cdf of (M, §, X). It is well-known that
P(Q,) = 1. Notice that the MSMLE (S, B) is a function of (o, n), say
(S() (o, n), B,(®)), where @ belongs to the sample space and n is the

sample size. Hereafter, fix an ® e Q,, since B(= Ign(u))) is a sequence of
vectors in R?, there is a convergent subsequence with the limit B,
where the components of B, can be . For simplicity, we shall suppress

(o, n) hereafter. Moreover, S is a sequence of bounded non-increasing

functions, Helly’s selection theorem ensures that given any subsequence
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of .é', there exists a further subsequence which is convergent. By
taking convergent subsequence, without loss of generality (WLOG),

we can assume that |3 — B, and S - S, e F. It is well-known that

supteA|S’B(t) -S,@) = 0 as..

Since (S, ) is the MSMLE, L1n1(B) > L1ni(B) (see Equation (2.3)),

thus
JlnSt|xdF (t, 0, x) Jln t —nplx) - t+1‘|n|x ))dE, (¢, 1, x)
> [ 1n Syl ¢ 0, x)+ [ n(S(t ~n,fx)

- Sﬁ(t + nn|x))dﬁ'n(t, 1, x). (see (2.3))

The last inequality yields

Spl(t ot - t+ .
0> J.ln Splx) J'ln (= afx) - Splt+ maf) dF, (¢, 1, x).
S(gx) St —n,lx) - t+nn|x

3.1)

By assumption, ﬁ’n(, 4 )©) = F(,--) on Q,. We shall prove in Lemmas 2

and 3 that

Syt
lim I In P(lx) Il tlx {0, x) (in Lemma 2), (8.2
n—>co S tlx)

S, (¢ - t+ i
lim |In [f Maf) - Tln|X 1, x)2 Jln LY dF(t, 1, x).
n—oo St —nplx) - S@t + Nnlx)

3.3)
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t 1, x)

Then0>J.1 X)dFtO J'l

(by Equations (3.1), (3.2) and (3.3))

> 0. (by Proposition 2)
S(tx) g(¢x)
The last two inequalities imply that I In S, () dF(¢, 0, x) + I In 2. ()

dF(t,1,x)=0. Thus S.(fx)=S{x) G.e., S.(t-pix)=3S,0-px))
V(t, x) € Dy x by statement (2) of Proposition 2. Since the NS
assumptions of the identifiability of (S,(¢), B) in Theorems 1 and 2 hold,
(S«(2), Bs) = (S,(), B), Vte A by Theorems 1 and 2. Recall P(Q,) =1,
thus the MSMLE (S (), B) is consistent for t e A. O

We shall make use of Fatou’s Lemma with varying measures (see

Lemma 1 below) in the proofs of Lemmas 2 and 3.

Lemma 1 (Proposition 17 in Royden [14], page 231). Suppose that u,
is a sequence of measures on the measurable space (S, B) such
that u,(B) - w(B),V Be B, g, and [, are non-negative measurable
functions, and ,}i_r&(fn’ g,)x) = (f, g)(x). Then

(W) [fdu < lim [fodyy;

n—oo
@) if g, >f,(=0) and lim j gndi, = j gdu, then j fdp = lim j f.du,.
n—oo n—oo

Corollary 1. Suppose that W, is a sequence of measures on the

measurable space (S, B) such that lim w,(B) - w(B), VBe B, f and
n—oo

f,, are integrable functions, n > 1.
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(1) If f,, are bounded below and f(x) = lim f,(x), then IdeS lim
n—oo

n—oo

[ £ din.

©2) If f, are bounded below then j lim f,dp < lim j f.du,.

n—»o0 n—sco

Lemma 2. Under the assumptions in the proof of Theorem 3,

Spltlx)
tim (10 2B 06 60,2 10 SR gpe o, x)
noed S(tx) S.(t]x)

(i.e., inequality (3.2) holds).

Proof. For the given we Q, and (S,, B.) in Equation (3.2), as

assumed, S(t) — S.(t), B(®w) — B., and S,(¢) is continuous a.e.. S, (t|x) =

r}i_>_rrio S’(t - x'ﬁ), which equals S,(t —xB,) ae. in t-xB. w.rt. the

measure induced by Fjs 5 x, except perhaps at the discontinuous point

of S,, say w and S, (t|x) = S.(w -), where w = ¢ — x'B,. Let o = sup;c 4
S, (¢), where A is as in Equation (2.4). Then either (1) o > 0 or (2) o = 0.

Suppose that a > 0. Then 3 n, such that SB(t) >wa/2Vite A and

n2zn,, as SuPteA|'§B(t) - Sy () - 0 a.s.. Denote G(¢, x, n) = _;S(t|x) ,
we have

- B S*(t|x) )

r}gr; Gt x, n) = S if S(t|x) > 0. (3.4)

Let A;, ={(t,x): G(¢, x,n) <k, Vn=>n,}and B, = A;\A,_1, k = 1.
Since G(t, x, n) is finite for each n > n,, provided that S(¢[x) > 0, we

have
Ups1 B = U S'4(t, x): S(t]x) 2 o} (and Il((t, x)€ Uy By)dF(t, 5,x) = 1).

(3.5)
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def . Splt
For each k > 1, let gy, = In P( [x) 1((¢, x) € By).
S(¢|x)
t|x A
__I m,ﬁl%&mo,)
n—eo o By, S(t|x)
zj lim () ar, 0, %) (by (2) of Corollary 1
B}, n—eo S(tlx)

as a; € [0, «), a;, € [In(1/k), In(1/(k -1))], k£ = 2)

[ in(lim S

lim )dF(t, 0, x) (as In(x) is continuous)
J By, n—oo (S(tlx)

= | 5 In S, dF(t, 0, x) (see (3.4))
o S(t|x) | S«(¢|x) def
= | BkH( S*(t|x)) S )dF (¢, 0, x) (where H(t) = tInt > - 1/e)
o S(tx)
= | BkH( S*(t|x))dF*(t’ 0, x) (see (2.5))
> [ (1/e)dF.¢, 0, x) = (-1/e)[ 1dF.¢, 0, x)

I, B,

\Y

(4ﬁﬂmmm&@z—ua

Sp(tlx)
That is, for k > 1, lim hlp(khﬂ%@,Qx)ZI 3% 15 0. %)
n—co v By, S(tlx) By, S*(tlx)

(3.6)

>~ 1fe. (3.7)
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. Spt[x)
Then lim Iln dF (¢, 0, x)

= p>1

lim JB n B dF, (¢, 0, x) (by (3.5))
k

Sg(t
h_rnI I In AB( |X)d
n—soo vk214J By, S(tlx)

(dv is a counting measure)

I lim [ 1 B )dF ¢, 0, x)du(k)
: S(tfx)

“Zl n—>oo Bk

\%

(by (1) of Corollary 1 and (3.7))

t|x
_ S(| )
_;I& In 5 g @0 f In F(t, 0, x). (3.8)

Thus (3.2) holds if a = sup;c 4 S,(t) > 0

Now suppose that case (2) holds, that is, o = sup;c 4 S,(¢) = 0. Let £
be the set of all positive integers, and U,, = {(¢, x) : S(t —xB) e (1/(m + 1),
1/m]}, where m e K.

For each m € K, 3 n,, such that S’B(t|x) >1/(2m)), V S,(t-xB)e

(1/(m +1), 1/m]. Denote G(¢, x, n) SB(t|x)

as before, but re-define

A, ={t, x): S,(t-xB)e 1/(m +1),1/m]. Gt, x, n) < k, Vn =n,},

(3.9)
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and B, = A;\A4;_1, k€ K, we have U5 B, = U,,. Then by a similar
arguments as in proving (3.6), (3.7), and (3.8) (i.e., replacing U by U,,),

we can show that for m e K,

Spltlx)
lim n S8l dF, (¢, 0, x) > I m S g 0, %),
e d (6, X)e Uy S(t]x) t x)ett,, S«(t[x)
(3.10)
> - 1/e. (3.11)

Their proofs are relegated to Appendix. Moreover, replacing B, by U,

in the proof of Inequality (3.8), we have

. S’B(t|x) A
lim | In— dF,(t, 0, x)
n—oo S(tlx)
Se(t|x) -
- lim I n S8 dF, (¢, 0, x)
n—o £=1 J(t, x)e Uy, S(tlx)

e Spltlx) -
h_mj j n 2B g (¢, 0, x)du(m)
n—oeo d Mm21J (¢, x)e Uy, S(tlx)

(dv is a counting measure)

Sq (¢ )
J lim 1 S8l dF, (¢, 0, x)du(m)
m>1 n—ow J (t, x)eU,, S(tlx)

\Y

(by (1) Corollary 1 and (3.11))

J‘ In S(tx)
t, x)eld S. (th)

m

\Y

dF(t, 0, x) (by (3.10)
m=1

B S(¢|x)
= j 1nmdF(t, 0, x),

which is (3.2) in the case that sup;c 4 S, (¢) = 0. O
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Lemma 3. Under the assumptions set in the proof of Theorem 2,

inequality (3.3) holds, i.e.,

S = t+
im [ 102 N, [x) - n,[x)

dF, (¢ 1, x)
n—>eo St —n,lx) - t+nn|x

Jl 28U B p 1 ),
t|x

where g(t|x, B) =1 and g.(t|x) is as in (2.6).

Proof. For the given we Q,, S(t|x)((n) and (S, B:) in the proof of

Theorem 2, denote G(¢, x, n) = AS t= M) - S( + M%) . By (2.6),

SB t—nn|x B(t+nn|X

Tim G, x, n) = g.(tfx) = 2%

oo s &y —mlft—bBEAﬂpw.

Notice that the denominator S’B(t - Nplx) - Sﬁ(t +Mylx) of G, x, n)
can be zero if n is small. By the definition of Dy, if w € Dy N A, then
S’B(w -N,) - SA’B(w +1,) > 0 for n large enough. Thus G(t, x, n) is finite
for n large enough, provided that ¢ - xBe Dy N.A. Hence we can
partition Dy (1A as follows. For each m € K, let

U,, =1, x): G(¢, x, n) is finite for n > m, but not for n = m}.

We shall first prove inequalities similar to (3.6) and (3.7), and then prove
(3.3).

Given me K, let A, ={(t, x)e U,, : G¢, x,n) <k, ¥V n>=m} and
Bk = Ak\Ak—l’ k > 1. Then UkZlBk = Z/[m

d Sp(t = Mpylx) = Sgt +mylx
For each k£ 21, let qy, if B M%) B N [x)

1, x) € By).
S(t —,x) = S +1,[x)
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In SB t—nn|x B(t+1”|n|X

lim dﬁ’n(t, 1, x)
n—e ¢ By, S t —M,lx) - t+1‘|n|X
S - t+
> [ lim (B Mal) = SpE+mal) )
ki n—eo (St —nplx) - t+nn|x
(by (2) of Corollary 1
as a; € [0, =), a; € [In(1/k), In(1/(k —1))], k = 2)
t - t+
_ J' In( lim (s [f Maf%) = B( M%) )dF(t, 1, x)
By noe (S -m,[x)-SE+mn,x))
(as In(x) is continuous)
( 8(tx)
= In dF(, 1, x see (2.6
Vo ™ et ( ) (see (2.6))
[ g(tx) | g.(t|x) def
= H dF(t, 1, x where H(t) = tInt > — 1/e
[, HE G SmDdre 1 x)  here H) Je)
— H( gltlx) )dF, (¢, 1, x) (see (2.5))
J B g*(tlx)
> [ (- 1/e)dF,(t, 1, x) > — 1/e.

JB,

That is, for & > 1,

In SB t - 1”|n|X B(t + 1”|n|X

lim dﬁ‘n(t, 1, x)
n—oo ¥ By, S (¢ - nnlx St + nnlx
> J' n 2% i1y (3.12)
By, g*(tlx)

>—1/e. (3.13)
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S (t—m,lx t+m,|x)
= > lim n 8¢ =) Sp(t + ) dF, (¢, 1, x)
now Uy St —M,[x) = SE +M,/x)
St 5t +
= lim I In ~Mnlx) - M%) dF,(t, 1, x)
n—yee 17 B, S t - T'lnlx t + nnlx
(as Up1 B, = Up,)
t— X t+ A
- lim j' j' M%) B M%) dF, (¢, 1, x)du(k)
n—oo ¥ k214 By, t—nnlx t+1‘|n|X

(dv is a counting measure)

zj lim [ 1o SBE M%) = Spt - mafx)
k>1 n—e J By, S(t —mp|x) = S +m,|x)

&
eSE

(¢, 1, x)du(k)

(by (1) of Corollary 1 and (3.13))

g(t|x)
> In dF(t, 1, x)dv(k by (3.12
Ikzl J.Bk g:(t)x) ( duvk) (by ( )
g(t|x) J g(t|x)
In dF(t, 1, x) = In dF(, 1, x > —1/e).
o e e 0= [, g g 0 @
Finally,
S = t+ .
im [ 1n S8 =Mk Ml Jp 1 )
n—oo St —nplx) - t+nn|x
< Splt - - St + .
= lim I In—P Mnlx) - i M%) dF,(t, 1, x)
noe et J ity S(t—M,)x) = S(t +Mp[x)
plt — t+ .
_ limI J' M%) - B( M) dF, (¢, 1, x)dv(m)
N—o0 ¥ M21 S(t - Nalx) = SE + M,|x)
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A A

Sp(t — - Sp(t + N
j' lim [ 1058 Maf%) = Sp( nnlx)an(t, 1, x)dv(m)

m21n—co d Uy, St —n,lx) =S +n,lx)

L, L) <
2 J,, gy 4 1

= J.ln gltlx) dF(t, 1, x).

g*(tlx)

Thus (3.3) holds. O

Remark. Even though the MSMLE is an extension of the SMLE, the

SMLE is not always consistent under the identifiability condition. The
reason is that fyy(t) = P(W € (t =, t]), where n = min{|W; - W;|:i # j}.

Under the continuity assumption, there is no observation within
[W =1, W + n]. But the MSMLE is different in this regard.
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Appendix

Proof of Corollary 1. Let k = inf, inf, f,(x). If £ >0 then the
corollary follows from Lemma 1. Otherwise, f,, (x) = O A f,(x), fi(x) =0
V f,(x), fT(x)=0A f(x) and f7(x)=0V f(x). Then f; — f* and

f. — f~ point-wisely, as f, — f in Case (1). Then

tim [ fudit, = lim [ (5 + f7)dwy = tim ([ frdu, + [ frdn,]

n—oo n—oo ¥ n—soo

\%

lim [ fdu+ lim [ frdu,

n—>oc0 ¥ n—yoo

= lim [ fiduw, + [ lim f;du,

n—o0 ¥ n—yoo

(by statement (2) of Lemma 1, as |f,, (x)| < k)

> J- lim f,:rdu+jf_du (by statement (1) of Lemma 1, as f,(x) is

nonnegative) = jf+du + jf_du = J‘(fJr +f7)du = _[fdu, l.e., statement
(1) holds.
Let g,(x) = inf{fy(x) : k > n}, then g,(x) > g(x) = lim f,(x). We

n—oo
have
lim f,dp = [ lim g,du < lim [ g,dp,
n—oo n—oo n—oo

(by statement (1)), as g,, is bounded below)

lim [inf{f; : k = n}du,

n—oo

lim | f,du,. (which is statement (2)).

n—oo

IN

O
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Proof of Equation (3.10) and Equation (3.11). Given m € K,

since G(t, x, n) is finite V (¢, x) € U,, and for each n > n,, we have

A

t
Ups1 B = U,,. Foreach k 21, let a, ' n P( ) 1((¢t, x) € B;).
S(¢x)

Sq ¢ )
lim I n S8R dF, (¢, 0, x)
n—es ¢ By, S(tlx)

> J' lim 1n(SA(t|X))dF(t, 0, x) (by (2) of Corollary 1
By, n—oo S(tlx)

as aq; € [0, =), a;, € [In(1/k), In(1/(k —1))], k = 2)

_ .'Bk In( lim ((SASP(ZS) )dF(t, 0, x) (as In(x) is continuous)
_ .'Bk In 5 ((ttll’;)) dF(t, 0, x) (see (3.4))
_ :BkH( i(gl’;))) %((ttlls)))dF(t, 0, x)

(where H(®)™ t1nt > — 1/e)
-1, H( 5 ((ttll’;)))dF*(t, 0, x) (see (2.5))

> J' (- 1/e)dF. (¢, 0, x).
By,

That is, for & > 1,

S (t )
@j 1 5B dF, (¢, 0, x) > J' m 3 ireon) @
n—oo v By S(th) By, S*(tlx)

> - 1/e 1dF (¢, 0, x). (4.2)
By,
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Notice that the proof so far till Equation (4.1) and Equation (4.2) is
identical to the proof of Equation (3.6) and Equation (3.7).

Then
S (¢
lim In AB( <) dF,(t, 0, x)
noeed (¢, XUy, S(tx)
. Sﬁ(t|x) A
- lim j n 2B g 2, 0, x) (as Uy By = Uy,)
n—eo 137 Y By S(tlx)
= hm.[ I dF (¢, 0, x)dv(k)
n—oo k214 By, X

(dv is a counting measure)

\%

Sq (¢ )
I lim I 1 S8R dF, (¢, 0, x)dv(k)
k21p—oo ¥ By, S(tlx)

(by (1) of Corollary 1 and (4.2))

S(¢|x)
2 Lm IBk In S, () dF(t, 0, x)dv(k) (by (4.1))
=ZI ln Stt]x) dF(t, 0, x) = I ln S(tfx) dF(t, 0, x).
By, th (¢, x)elU,y, th
(3.6)
> - 1/e. (3.7
O

It is worth mentioning that the proof upto Equation (3.6) is almost the

same as the proof in deriving Equation (3.8), except that J in Equation

(3.8) is replaced by j , in Equation (3.6).



