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Abstract 

We investigate an epidemic non-linear reaction-diffusion system with two 

free boundaries. A free boundary is introduced to describe the expanding 

front of the infectious environment. A priori estimates of the required 

functions are established, which are necessary for the correctness and global 

solvability of the problem. We get sufficient conditions for the spread or 

disappearance of the disease. It has been proven that with a base 

reproductive number ,10 ≥R  the disease disappears in the long term if the 

initial values and the initial area are sufficiently small. 

1. Introduction 

It is known that mathematical modelling is an effective approach to 

studying the spread of infectious diseases, since it can identify the main 

factors underlying the mechanisms of transmission and provide real 
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strategies for managing the situation. Since the appearance of the first 

works (see [1], [2]), mathematical epidemiology has undergone 

extraordinary development. All of this is based on the refinement of 

several basic models with a simple structure, where the population is 

divided into states or “compartments” representing status in relation to 

infection, such as, for example, susceptibility, infection and immunity. 

These models of the spread of infection are deterministic, continuous in 

time and expressed by a system of nonlinear ordinary differential 

equations (ODE). The main dynamic characteristics of these models are 

the presence of a disease-free equilibrium and, provided that the 

corresponding parameter reflecting the spread of infection exceeds a 

threshold, the endemic equilibrium at which the infection persists. The 

key question concerns the sustainability of these equilibria. The following 

SIRS model was proposed in [3]: 
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where ( ) ( )tItS ,  and ( )tR  denote the size of susceptible, infected and 

removed individuals, respectively and 0; >++= bRISN  and 0>µ  

are the birth and death rates, 0>β  is the transmission rate, 0>ν  is the 

rate of recovery from infection, 0>δ  is the disease-specific mortality 

rate, ( )1,0∈p  is the fraction of vertically infected new born, and 0>α  

is the rate of return to susceptibility by loss of immunity. The stability 

analysis of the endemic equilibrium was performed by Lyapunov direct 

method under the very special assumption of constant population size .N  

In [4], the global stability of equilibrium without diseases is 

demonstrated and the Lyapunov function is proposed, which allows one to 

demonstrate the stability of an endemic state in general conditions for 

(1.1). More complex models are often used today. In order to better 
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simulate the spread of the epidemic, the authors of [5] proposed a rich 

non-linear incidence of ( ).ISf  Since then, other nonlinear incidents have 

been proposed such as 
( )q

p
qp

I

SI
SI

α+

β
β

1
,  and 

( )S

SI p

α+

β

1
 (see [6]). 

Research has shown that models of epidemics with non-linear incidence 

have more complex dynamics than models with bilinear or standard 

incidence. For example, in [7], Chen built a SIRS model with standard 

morbidity, disease-related mortality, and transition from infectious to 

susceptible class. 

In [8], the following model of SIRS epidemic with non-linear incidence 

( )ISf  and transition from the infected class is proposed to the class of 

susceptible 
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with initial conditions ( ) ( ) ( ) .00,00,00 000 ≥=≥=≥= RRIISS  

Here, Λ  is the coefficient of replenishment of susceptible individuals, µ  

denotes natural mortality, 1γ  is the coefficient of the transition from the 

infected class to the susceptible class, 2γ  is the coefficient of the 

transition from the infected class to the recovered class, α  is the 

mortality caused by the disease, and δ  is the coefficient of loss of 

immunity. It is assumed that Λ  and µ  are positive, while ,,, 21 γγα  and 

δ  are nonnegative and f  satisfies the conditions: (i) ( ) 00 =f  and 

( ) 0>If  for ;0>I  (ii) 
( )
I

IF
 is continuous and does not increase 

monotonically for 0>I  and 
( )

.0lim
0

>β=+
→ I

If

I
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In determining potential strategies for combating an infectious 

disease, the reproduction number 0R  is the main quantity that 

determines the intensity of interventions [9]. 0R  has been effectively 

used in vaccination epidemiological practice to provide a vaccine coverage 

threshold for disease eradication. The basic reproduction number ,0R  is 

the expected number of secondary cases due to one typical infection 

joining a fully susceptible population during the infectious period [10]. 

When ,10 <R  the disease will disappear soon. If ,10 >R  the disease will 

spread among the population and may cause a pandemic. In 

epidemiology, a next generation matrix is a method used to determine the 

basic reproduction number 0R  for a compartment model of infectious 

disease spread [11, 12]. 

The basic reproduction number 0R  is usually defined [9] as: the 

average number of secondary cases caused by a “typical” infected person 

during his/her life (period of infection). This quantity cannot be calculated 

explicitly in most cases. Regardless of whether it is possible to calculate 

0R  explicitly, its role in the study of equilibrium stability can still be 

determined. The most reasonable epidemic models maintain at least two 

types of equilibrium: disease-free equilibrium and positive (endemic) 

equilibrium. Usually, it can be shown that a painless equilibrium is 

locally asymptotically stable if ,10 <R  and unstable if 10 >R  [13]. 

We believe that the models described by the ODE system and the 

dynamic properties of their solutions play an important role in the study 

of PDE models. The ODE system assumes that all individuals experience 

the same homogeneous environment. However, in reality, many physical 

aspects of the environment, such as climate, chemical composition or 

physical structure, can vary from place to place, and people are randomly 

distributed in space and tend to interact with the physical environment 

and other organisms in their spatial neighbourhood. 

 



ON THE SIRS EPIDEMIC MODEL WITH FREE BOUNDARIES 25 

In the event of the appearance and reappearance of infectious 

bacteria, spread begins at the place of their origin and spreads to the 

places where contact transmission occurs. It is very important and 

interesting to study how bacteria spread over a large area, causing 

environmental problems. Based on these considerations, reaction-

diffusion equations were then used to study the spread of infectious 

diseases (see [14, 15]). Huang et al. [16] discussed the dynamics of the 

reaction-diffusion SIS model as 

( ) ( ) ( ) ,0,, >Ω∈Λ+γ+
+

β−∆= txxIx
IS

SI
xSdS st  

( ) ( ) ,0,, >Ω∈γ−
+

β+∆= txIx
IS

SI
xIdI It  

with the Dirichlet boundary condition. 

Murray’s book [17] contains many examples of solutions for travelling 

waves and a chapter on the spatial distribution of epidemics. To 

understand new phenomena of transmission of diseases caused by spatial 

heterogeneity of the environment, in [18], a model of the epidemiological 

response SIRS is proposed, which is as follows:  
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with initial conditions ( ) ( ) ( ) ( )xIxIxSxS 00 0,,0, ==  and ( ) ( )xRxR 00, =  

for .Rx ∈  Just as in [19], denoting ,RISN ++=  it is found that 

system (1.3) is equivalent to  
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with initial conditions ( ) ( ) ( ) ( ),0,,0, 00 xIxIxNxN ==  and ( ) =0,xR  

( )xR0  for .Rx ∈  
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It was shown in [19] that for 
( )

1:0 >
γ+µµ

β
=

B
R  and 2:=> ∗cc  

( ) ( ) ,10 −γ+µ R  model (1.4) always admits the solution of a travelling 

wave with speed ,c  linking the disease - free equilibrium ( )0,0,
µ

B
 and 

endemic equilibrium ( ).,, ∗∗∗ RIN  Biologically, this means that the 

disease begins and becomes endemic, even if the infected class is limited 

to a small region at the beginning. This does not correspond to the reality 

that the disease always gradually rises from a local region and then 

spreads further into a wider area in terms of spatial distribution. 

Recently, problems with a free boundary are often used in the 

mathematical modelling of various natural processes. In particular, the 

well-known Stefan condition was used to describe the expansion front in a 

number of applied problems. For example, it has been used to describe 

wound healing [20], tumor growth [21], and so on. As a typical example in 

epidemiology, Kim et al. [22] consider a diffuse epidemic model of SIR in 

a radically symmetric area with a free boundary, sufficient conditions for 

the disappearance or spread of the disease are determined by a certain 

threshold value. In particular, Ge et al. [23] proposed a simplified model 

of the free boundaries of SIS, they investigated the influence of spatial 

heterogeneity and advection on the resistance and eradication of an 

infectious disease. In [24], a free-boundary epidemic model is considered, 

which describes the front of bacteria spread. 

In [25], the dynamics of the spread of the epidemic model is 

considered, which is modelled by a partially degenerate reaction-

diffusion-advection system with free boundaries and a sigmoidal function. 

The influence of small advection on the dynamics of the spread of the 

epidemic disease is observed. First, the global existence and uniqueness 

of the solution is clarified. 
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In [26] investigated the epidemic SIRS system with non-linear 

incidence and free-boundary condition, assuming that the environment is 

radically symmetric. Besides the main reproductive number, the size of 

the initial epidemic area and the rate of spread of the disease have also 

been shown to have important influences on disease transmission. 

By discussing the dynamics of the free boundary problem in the SIRS 

model, the spread of the disease is described. Sufficient conditions have 

been obtained that ensure the spread or disappearance of the disease. In 

addition, an estimate of the expansion rate is also given when the free 

boundaries extend over the whole R. 

In this work, taking into account the above results, we will try to 

generalize the constructed models in a certain direction and develop the 

results obtained. 

A model of any system is a copy that reflects the basic characteristics 

of the system and, thus, can be used to predict the behaviour of the 

‘original’ system under various conditions. Each model has its own 

assumptions, strengths and limitations, so it is suitable for answering a 

specific set of questions. 

We consider an SIRS epidemic reaction-diffusion nonlinear model 

with free boundary 

( )( ) IcNBNbNNdN xxxt 111 −µ−++=  in ,Q  (1.5) 

( )( ) ( ) ( )IcIRINcIbIIdI xxxt 121222 +γ+γ+µ−−−++=  in ,D  

(1.6) 

( )( ) ( )RIRbRRdR xxxt δ+µ−γ++= 233  in ,D  (1.7) 

( ) ( ) ( ) ( ) ( ) ( ),,0,,0,,,0 000 xRxRxIxIlxlxNxN ==≤≤−=  

,00 hxh ≤≤−   (1.8) 

( ) ( ) ,0,0,, ≥==− tltNltN xx  (1.9) 
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( ) ( ) ( )tgxxtRxtI === ,0,,  or ( ) ,0, ≥= tthx  (1.10) 

( ) ( )( ) ( ) ( )( ) ,0,,,, 11 >µ−=′µ−=′ tthtIthtgtItg xx   (1.11) 

where 

( ){ },,0:, lxltxtQ <<−<=  

( ) ( ) ( ){ },,0:, thxtgtxtD <<<=  

( ) ( ) .0,0 00 lhhhgl <=−=<−  

We use the changing region ( ) ( )( )thtg ;  to denote the infective 

environment of disease, where the free boundaries ( )tgx =  and ( )thx =  

represent the spreading fronts of epidemic and will be determined 

together with ( );,, RIN  Here, B  is the coefficient of replenishment of 

susceptible individuals, µ  denotes natural mortality, γ  is the coefficient 

of the transition from the infected class to the recovered class, 1c  denotes 

the infection rate, 2c  is the mortality caused by the disease, δ  is the 

coefficient of loss of immunity. µδ,,,,, 210 ccbh  and 1µ  are positive 

constants and the nonlinear diffusion coefficients of biocapacity ( ),ξid  

3,2,1=i  and the positive initial functions ( ) ( ),, 00 xIxN  and ( )xR0  

satisfy the following conditions: 

(1) ( ) ( ) ( )Ω∈ξ=>>ξ α+1
0 3,2,1,0 Cdidd iii  for all ξ  belonging 

to a closed set; 

(2) ( ) [ ] ( ) ( ) [ ]( ).,,,, 00
2

00
2

0 hhCxRxIllCxN −∈−∈  

Our main goal is to study the influence of advective terms and 

nonlinear diffusion coefficients on the spread of the epidemic, on the 

solvability of the problem, and on the asymptotic behaviour of the 

solution to system (1.5)-(1.11). Unlike others, the problem is considered in 

a limited area, and the boundary condition (1.9) corresponds to the 

restrictions on the movement of people. The asymptotic velocities of the 

front propagation are estimated from below and from above. 
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The paper is organized as follows: section “Preliminaries” presents 

some results for the ODE system related to the definition of reproduction 

number and stability. Then, step by step, we establish the results 

required for the global solvability of the problem. Two-sided estimates are 

established for ( ) ( ) ( ) ( ) ( ),,,,,,,, thtgxtRxtIxtN  and then α+α+ ⋅⋅
21

,   

estimates for the Holder norms. The uniqueness theorem and the 

comparison principle are proved, and finally some asymptotic properties 

of the solution are investigated. 

2. Preliminaries: On the Computation of 0R  

The importance of contact processes is at the center of the study of 

threshold phenomena [27]. In their recent book [9] present an extensive 

and systematic study of threshold phenomena. The following tutorial 

notes also used the next generation approach for the systematic 

computation of the basic reproductive number. The examples used come 

mostly from our own work. Connections between threshold phenomena 

and stability are also explored. The basic reproductive number 0R  is 

typically defined as: the average number of secondary cases produced by 

a “typical” infected individual during his/her entire life as infectious 

(infectious period) when introduced in a population of susceptibles. This 

non-dimensional quantity cannot be computed explicitly in most cases 

because the mathematical description of what is a “typical” infectious 

individual is difficult to quantify in populations with high degree of 

heterogeneity. Regardless of whether or not 0R  can be computed 

explicitly, its role on the study of the stability of equilibria can still be 

determined. Most reasonable epidemic models support at least two type of 

equilibria: A disease-free equilibria and a positive (endemic) equilibria. 

Typically, one can show that the disease-free equilibrium is locally 

asymptotically stable (l.a.s.) if 10 <R  and unstable whenever .10 >R  

Furthermore, in many examples, it has been shown that 10 >R  implies 

the existence of a unique (l.a.s.) endemic equilibrium. Many models found 
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in the literature have been used to show that when 0R  crosses the 

threshold, ,10 =R  a transcritical bifurcation takes place. That is, 

asymptotic local stability is transferred from the infectious-free state to 

the new (emerging) endemic (positive) equilibria. In some situations, it 

can be shown that the transfer of asymptotic stability is independent of 

initial conditions, that is, it is global [28]. 

In this paper, we use the results [8] on the determination of 0R  for 

systems of ODEs. 

Obviously, every solution of (1.2) with the initial condition exists 

globally and is nonnegative. Moreover, for such solutions, we have 

( ) ( ) ( ),/ RISIRISdtRISd ++µ−Λ≤α−++µ−Λ=++   (2.1) 

which implies that the set 

(( ) )µΛ≤+++∈=Ω RISRRIS :,, 3  

is a positively invariant and attractive set for (1.2). For the global 

dynamics of (1.2), it suffices to consider (1.2) with initial conditions in .Ω  

Model (1.2) always has the disease-free equilibrium .0,0,0 







µ

Λ
=E  

Moreover, an equilibrium ( )RIS ,,  satisfies the equilibrium equations 

( )

( ) ( )

( )











=δ+µ−γ

=α+γ+γ+µ−

=δ+γ+−µ−Λ

.0

,0

,0

2

21

1

RI

IISf

RIISfS

  (2.2) 

Then one can easily see that an equilibrium must be endemic if it is 

not disease free. Suppose that ( )∗∗∗ RIS ,,  is an endemic equilibrium. 

Then 

( ) ( )∗∗∗ α+γ+γ+µ= IfIS /21  and 
( )

,2

δ+µ

γ
=

∗
∗ I

R   (2.3) 

where ∗I  is a positive zero of the function H, 
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( ) ( ) ( ) ( )( ) ./// 221 Λ−δ+µµγ+α+µ+α+γ+γ+µµ= IIfIIH   (2.4) 

H is a strictly increasing function on .+R  Moreover, ( ) ( 1
0

lim γ+µµ=
+→

IH
I

 

) Λ−α+γ+ 2  and .0>







µ

Λ
H  Therefore, H  has a positive zero if and 

only if ( ) 021 <Λ−α+γ+βγ+µµ  or equivalently ( 210 / γ+γ+µµβΛ=R  

) .1>α+  Thus, the authors established the following results. 

Theorem 2.1 (Theorem 1.1, [8]). (i) If ,10 ≤R  then (1.2) only has the 

disease-free equilibrium .0E  (ii) If ,10 >R  besides ,0E  (1.2) also has a 

unique endemic equilibrium ( ),,, ∗∗∗∗ = RISE  where ∗I  is the unique 

positive zero of H  defined by (2.4), and ∗S  and ∗R  are given in (2.3). 

Theorem 2.2 (Theorem 2.1, [8]). If ,10 <R  then the disease-free 

equilibrium 0E  of (1.2) is asymptotically stable in .Ω  

Further, the authors consider the following equivalent system: 

( ) ( ) ( )

( )













α−µ−Λ=

δ+µ−γ=

α+γ+γ+µ−−−=

.

,

,

2

21

INdtdN

RIdtdR

IIfRINdtdI

  (2.5) 

Notice that ( )∗∗∗∗ = NRIE ,,  is the unique endemic equilibrium of (2.5) 

when .10 >R  

Theorem 2.3 (Theorem 2.1, [8]). Suppose .10 >R  Then the endemic 

equilibrium ∗E  of (2.5) is globally asymptotically stable in ( ) :,,0 NRI=Ω  

.,0 RISNI ++=>  
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3. Existence and Uniqueness of Solutions 

3.1. A priori estimates 

Lemma 3.1. Let ( ) ( )( )thtgRIN ,,,,  be solution of problem (1.5)-(1.11) 

defined for ( ],,0 Tt ∈  where ( ).,0 ∞+∈T  Then there exist constants ,iM  

4,1=i  independent of T such that 

( ) { }∞µ
=≤< 01 ,max,0 N

B
MxtN  in {( ) },,0:, lxlTtxtQT <<−≤<=  

( ) { }∞=≤< 012 ,max,0 IMMxtI  in {( ) ( ) ( )},,0:, thxtgTtxtDT <<≤<=  

( ) { }∞δ+µ

γ
=≤< 02

2
3 ,max,0 RMMxtR  in ,TD  

( ) ( ) 4141 0,0 MMthMMtg ≤′<≤′−<  for ,0 Tt <<  

where 4M  depends on 02 , IM  and .0h  

Proof. Using the strong maximum principle to the equations of      

the system (1.5)-(1.11), we immediately obtain ( ) 0,1 >≥ xtNM  in ,Q  

( ) ( ) 0,,0, >> xtRxtI  in .D  Hopf lemma then implies that ( )( ) ,0, >tgtIx  

( ( )) ,0, <thtIx  for all ( ].,0 Tt ∈  It then follows from the Stefan 

conditions, that ( ) ( ) .0,0,0 >>′<′ tthtg  

Further arguing as in [29, 30] we can obtain the remaining estimates 

of lemma 3.1. 

We will establish Holder norm bounds α+⋅
1

 and α+⋅
2

 in TQ  and 

.TD  For each equation of the system, we formulate the corresponding 

problem 

( ) ( )

( ) ( )

( ) ( )
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xx

Ttxxx

  (3.1) 
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where ( ) ( ),, 111 IcNBNbNNa xx −µ−+=  

( )( ) ( )

( ) ( )

( )( ) ( )( )

( ) ( )( ) ( ) ( )( )
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xx
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  (3.2) 

where ( ) ( ) ( )( ),,,, 121222 IcIRINcIbRNIIa xx +γ+γ+µ−−−+=  

( )( ) ( )

( ) ( )

( )( ) ( )( )











==

=

=−+

,0,,

,,0

,in0,,

0

33

thtRtgtR

xRxR

DRIRRaRRd Ttxxx

  (3.3) 

where ( ) ( ) .,, 233 RIRbIRRa xx δ+µ−γ+=  

Under these assumptions on the initial date, we can assume that 

( ) ( ) ( ) .0000 === xRxIxN  

Theorem 3.1. Assume that ( ) ( )xtNxtN x ,,,  are continuous in tQ  

and suppose that ( ),, xtN  is a solution for the problem (3.1). Then 

( ) ( ) ., 211 Tx QinMMCxtN ≤  (3.4) 

Moreover, if the weak second derivatives txxx NN ,  in ( ),2
TQL  then 

there exists ( ),1Mα=α  such that 

( ).112,1
CMCN

TQ
≤α+  (3.5) 

Additionally, assume that, ( )xtN ,  satisfying (3.1) in ,TQ  is continuous 

with its derivatives xxxt uuu ,,  and .
,2

∞<α+ TQ
u  Then 

( ).,, 2113,2
CCMCN

TQa
≤+  (3.6) 
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Proof. The estimates (3.4)-(3.6) for ( ) TQxt ∈,  are immediate 

consequences of the results of [31]. For (3.2), a priori estimates are 

constructed as follows. Interior estimates in ( ) xhTtxt ≤−≤≤ 0,0:,  

0h≤  are established, just like in [31]. In order to get bounds near 

unknown curves, we perform the transformation 

( )( ) ( )( )( )
( ) ( )tgth

xthtgx
yt

−

−−−
== ,τ  

and straighten our the boundary. Then ( ) 11,0:, <<−≤<=Ω yTy ττ  

corresponds to region ,TD  and for the function 

( ) ( ( )( )),
2

1
,, hgghyIyu ++−= ττ  

we obtain a parabolic problem with bounded coefficients and right-hand 

side. The rest of the proof is completed by following the steps outlined in 

[31]. In doing so, we first establish bounds for xR  and then for .
1 α+R  

Estimates for the highest derivatives are obtained from the results for 

linear equations [32]. 

Now we will prove that the boundaries ( )tgx =  and ( )thx =  do not 

cross the lateral boundaries lx −=  and lx =  respectively, which means 

that the epidemic will not spread beyond considered area. 

On the other hand, it is necessary for the correctness of the problem 

for an arbitrary time value. It follows from Lemma 2.1 that ( ) ( == xthx  

( ))tg  is monotonic increasing (decreasing) and, therefore, there exists 

( ]) [ )( )0,,0 ∞−∈∞∈ ∞∞ gh  such that ( ) ( ( ) ).limlim ∞
∞+→

∞
∞+→

== gtghth
tt

 

Lemma 3.2. Let ( ) ( )( )thtgRIN ,,,,  be the solution of (1.5)-(1.11) and 

( ) .,2 121200

0

0

c
B

cldxxIh

h

h

+γ+γ+µ≤
µ

<+ ∫
−

 Then ( ) ( ) ltgth <−<0  and 

.lgh <− ∞∞  
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Proof. We have  

( )

( )

( )
( )

( )

( ) ( )( ) ( ) ( )( ) ( )tgtgtIththtIdxxtIdxxtI
dt

d
t

th

tg

th

tg

′−′+= ∫∫ ,,,,  

 

( )

( )

( )( )
( )

( )

( )
( )

( )

[ ( )IRINcdxxtIbdxIId

th

tg

x

th

tg

xx

th

tg

−−++= ∫∫∫ 221 ,  

( ) ]dxIc121 +γ+γ+µ−  

( ) ( )( ) ( ) ( )( )tgtIIdthtIId xx ,, 11 −≤  

( )

( )

[ ( ) ]dxIc
B

c

th

tg

1212 +γ+γ+µ−
µ

+ ∫  

 
( )

( )
( )

( )
( )

( ) ( )( ).
000

1

1

1

1

1

1 thtg
d

tg
d

th
d

′−′
µ

=′
µ

+′
µ

−≤  

Integrating from 0 to t gives 

( ) ( )
( )

( ) .
0

2 0
1

1
0

0

0

dxxI
d

htgth

h

g
∫

µ
+≤−  

Letting ,∞→t  we have .lgh <− ∞∞  

The proof is complete. 

3.2. The uniqueness result 

First we derive an integral expression for the free boundaries. For 

this, we rewrite the equation for ( )xtI ,  in the form 

( )( ) ( ),,,22 RINFIbIIdI xxxt =−−   (3.7) 

where ( ) ( ) ( ) .,, 112 IcIRINcRINF +γ+µ−−−=  
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Integrating (3.7) over ( ) ( ) ( ){ },,0:, η<ξ<η≤η<ξη= hgtDt  we 

obtain 

(( ) ) ( ) ,,,22 ξη=ξ+η− ∫∫∫ ξ

∂

ddRINFIddIbId

tt DD

 

or 

( ) ( )
( )

( )( )
( )

( )

( )

( ) ξξ
µ

+ξξ
µ

+=− ∫∫
−

dtI
d

dI
d

htgth

th

tg

h

h

,
00

2
1

1
0

1

1
0

0

0

 

( )
( ) .,,

01

1 ξη
µ

+ ∫∫ ddRINF
d

tD

  (3.8) 

Theorem 3.2. Suppose that the assumptions of Lemma 2.1 and 

Theorem 2.1 holds. Then (1.5)-(1.11) has a unique solution. 

Proof. Suppose that the functions ( ) ( ) 2,1,,,,, =ithtgRIN iiiii  

solve the system (1.5)-(1.11) and ( ) ( ) ( )( ) ( ) max,,min 2211 == tytgtgty  

( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ).,max,,min,, 21221121 ththtzththtztgtg ==  

Let us formulate problems for the differences and try to establish 

some results. For the ,21 NNN −=  we have 

( ( ) )

( ) ( ) ( )

1 1 2 2 1( ) ,

0, 0, , , 0.

t x x x x

x x

N d N N N d N N b N N c I

N x N t l N t l

 ′= + + − µ −


 = − = =

ɶ

 

By the maximum principle, we obtain 

( ) ,,max3 txtIecN
tQ

cT≤   (3.9) 

where 3c  and c  are known constants. 
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Taking into account the a priori estimates established above, we find 

( )( ) ( )( ) ( ) ( ) ,,, 212221 tgtgKtytItytI −≤−  

( )( ) ( )( ) ( ) ( ) .,, 211211 ththKtztItztI −≤−  

Considering the difference ( ) ( ) ( ),,,, 21 xtIxtIxtI −=  we obtain an 

equation with bounded and smooth coefficients and the problem 

( ) ,in76542
∗++++= DRcNcIcIcIIdI xxxt  

( ) ,,0,0 00 hxhxI ≤≤−=  

( )( ) ( ) ( ) ,max, 21
0

2 η−η≤
≤η≤

yyKtytI
t

 

( )( ) ( ) ( ) ,max, 21
0

1 η−η≤
≤η≤

hhKtztI
t

  (3.10) 

where Kici ,7,6,5,4, =  are known constants, {( ) ,0:, TtxtD ≤<=∗  

( ) ( )}.12 tzxty <<  

From (3.10), using the maximum principle [32], we obtain 

( ) ( ) ( ) [ ( ) ( )η−η




++≤
≤η≤∗∗

21
0
max,max,max, ggxtRxtNKextI

tDD

ct  

( ) ( ) ] .21




η−η+ hh  

A similar (3.9) estimates are established for functions ( )., xtR  

Considering the difference, we get that 

( ) ( ) ( ) ( ) {
( )

( )

( )
( )

( )

( ))ξ+ξξ≤−+− ∫∫ ,, 1102121

1

2

2

1

tIdtIctgtgthth

tz

ty

j

ty

ty

 

( )
( )

( )

( )
( )

( )

( ) ξη+ξξ+ξξ− ∫∫∫
η

η

dRINFddtIdtI jjj

y

y

t

i

tz

tz

,,,,

2

1

2

1 0

2  
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( )

( )

( ) ( ) ξ−η+ ∫∫
η

η

dRINFRINFd

z

y

t

222111

0

,,,,

1

2

 

( )

( )

( ) },,,

2

10

ξη+ ∫∫
η

η

dRINFd jjj

z

z

t

 

where 

( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )





<

<
=

,if,,,,,,

,if,,,,,,

,,

12222

21111

tgtgxtRxtIxtN

tgtgxtRxtIxtN

RIN jjj  

( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )





<

<
=

,if,,,,,,

,if,,,,,,

,,

21222

12111

ththxtRxtIxtN

ththxtRxtIxtN

RIN jjj  

const.-10c  

Further, using the ideas and result of [33] the proof of the theorem is 

completed. 

3.3. The existence result 

It is clear that, the global existence of solutions (1.5)-(1.11) can be 

derived from local existence using the established a priori estimates for 

the solutions of the equations and fee boundaries. 

Theorem 3.3. There is a 0>T  such that problem (1.5)-(1.11) admits 

a unique solution 

( ) ( ) [ ( )] [ ([ ] ) ]2122,12,1 ,0,,,, TCDCQChgRIN TT
α+α+α+α+α+ ××∈  

satisfying 

( ) ( ) ( ) ([ ])TCDCDCQC
hRIN

TTT ,012,12,12,1 α+α+α+α+α+α+α+ +++  

([ ]) ,
,01 Cg

TC
≤+ α+  

where ( ) {( ) } {( ) ≤=≤≤−≤≤=∈α 0:,,,0:,,1,0 xtDlxlTtxtQ TT  

( ) ( )} CthxtgTt ,, ≤≤≤  depend on .,,,, 20000 C
RINh α  
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Proof. Taking into account the established a priori estimates for all 

possible solutions and the uniqueness theorem, the Leray-Schauder 

principle can be applied. The linear problem defines the transformations 

( ) ,10,, ≤≤⋅= kkFw  to which the Leray-Schauder principle applies. A 

fixed point of a operator at 1=k  is the solution of the problem. In this 

case, it is easy to check fulfillment of all conditions of the Leray-Schauder 

principle. A more detailed exposition of the technique can be found, for 

example, in (Section VII, [34]; Section VI, [32]). 

3.3. The comparison principle 

We exhibit the following comparison principle which can be proven be 

the similar argument in [35]. 

Lemma 3.3. Suppose that ( ) [ ]( ) 2,1,,0,,,0 CNTCghT ∈′∈∞∈  

( ) ( )TT QCQ ∩  and ( ) ( )∗∗∈ TT DCDCRI ∩
2,1,  with {( ) ,0:, TtxtDT ≤<=∗  

( ) ( )},thxtg <<  and ([ ]) ( ] ( )( ) ∩llTCNTCgh ,,0,,0, 2,11 −×∈∈  

( ] [ ])llTC ,,0 −×  and ( ) ( )∗∗∗∗∈ TT DCDCRI ∩
2,1,  with {( ) <=∗∗ 0:, xtDT  

( ) ( )}thxtgTt <<≤ ,  satisfying 

( ( ) )

( ( ) ) ( ) ( )

( ( ) ) ( )











δ+µ−γ≥−−

+γ+γ+µ−−−≥−−

−µ−≥−−

∗

∗

,,

,,

,in,

233

121222

111

Txxxt

Txxxt

Txxxt

DinRIRbRRdR

DinIcNIRINcIbIIdI

QIcNBNbNNdN

 

( ( ) )

( ( ) ) ( ) ( )

( ( ) ) ( )











δ+µ−γ≥−−

+γ+γ+µ−−−≥−−

−µ−≥−−

∗∗

∗∗

,,

,,

,,

233

121222

111

Txxxt

Txxxt

Txxxt

DinRIRbRRdR

DinIcIRINcIbIIdI

QinIcNBNbNNdN

 

( ) ( ( )) ( ) ( ( )) ,0,,,, 11 TttgtItgthtIth xx ≤<µ−≤′µ−′ �  

( ) ( ( )) ( ) ( ( )) ,0,,,, 11 TttgtItgthtIth xx ≤<µ−≥′µ−′ �  
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( ) ( ) 0,, == xtRxtI  for ( )tgx ≤  and ( ) ,0, Txthx ≤≤≥  

( ) ( ) 0,, == xtRxtI  for ( )tgx ≤  and ( ) ,0, Txthx ≤≤≥  

( ) ( ) ( ) ( ) ( ) ( ) [ ],,,,0,,0,,,0 00000 hhxxRxRxIxIlxlxNxN −∈≥≥≤≤−≥  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),00,,0,,0,,,0 000 hxgxRxRxIxIlxlxNxN ≤≤≤≤≤≤−≤  

( ) ( ) ( ) ( ) .0,0,0,0 0000 hhhghhhg ≤−≥≥≤  

Then the unique solution ( )hgRIN ,,,,  of problem (1.5)-(1.11) 

satisfies 

NN ≤  in ggRRIIQT ≥≤≤ ,,,  and hh ≤  in ,TD  

NN ≥  in ggRRIIQT ≤≥≥ ,,,  and hh ≥  for ( ) ( ),thxtg ≤≤  

.0 Tt ≤≤  

We can regard ( )hgRIN ,,,,  and ( )hgRIN ,,,,  as the upper and 

lower solutions of problem (1.5)-(1.11), respectively. 

4. On the Asymptotic Behaviour of the Solutions 

Biologically, 0R  is called basic reproduction number. We mention 

that the expression of 0R  can be also be obtained by applying the next 

generation matrix method provided by van den Driessche and Watmoung 

[11]. According to the general result there, 0E  is locally asymptotically 

stable if .10 <R  Regardless of whether or not 0R  can be computed 

explicitly, its role on the study of the stability of equilibria can still be 

determined. Most reasonable epidemic models support at least two type of 

equilibria and a positive (endemic) equilibria. Li et al. [8] obtained the 

global dynamics of system (1.2), which is determined by the basic 

reproduction number 
( )121

2
0 c

Bc
R

+γ+γ+µµ
=  with LaSalle’s invariance 

principle and the Lyapunov direct method. 
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Theorem 4.1. Let ( )hgRIN ,,,,  solution of (1.5)-(1.11) and .10 <R  Then 

( ) [ ]( ) ( ) ( ) ( )[ ]( ) ( ) ( ) ( )[ ]( ) 0,lim,0,lim,,lim
,,,

=⋅=⋅
µ

=⋅
∞→∞→−∞→ thtgCtthtgCtllCt

tRtI
B

tN  

uniformly for all ( ) ( )[ ]., thtgx ∈  

Proof. From the comparison principle, ( ) ( )tNxtN ≤,  for ( )∞∈ ,0t  

and ,lxl ≤≤−  where 

( ) ,0
te

B
N

B
tN µ−

∞ 







µ
−=

µ
=  

which is a solution of 

( ) ( ) .0,0, 0 ∞=>µ−= NNtNBtNt  

Since ( ) ,lim
µ

=
∞→

B
tN

t
 it follows that ( )

µ
≤

∞→

B
tN

t
lim  for [ ].lxl ≤≤−  

If ,10 <R  there exists 0T  such that ( )
0

0

2

1
lim

R

RB
tN

t

+

µ
≤

∞→
 in 

[ ) lxlT ≤≤−×∞,0  we find that ( )xtI ,  satisfies 

( ( ) ) ( )

( ) ( )

( )( ) ( )( )

( ) ( ) ( )
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>==

<<>
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+
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≤+=

.,0,
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1

000

0

0

121
0

0
222

ThxTgxTI

TtxthIxtgI

thxtgTt
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R

RB
cIbIIdI xxt

 

Since 
( )

,1
2

1

0

0

121

2 <
+

+γ+γ+µµ R

R

c

Bc
 we have ( ) ( ) ( )[ ]( ) 0,lim , =⋅

∞→ thtgCt
tI  

and ( ) ( ) ( )[ ]( ) 0,lim =⋅
∞→ thtgCt

tR  uniformly for all ( ) ( )[ ]., thtgx ∈  

The proof is complete. 
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Theorem 4.2. Let .10 =R  Then lh <∞  and lg <− ∞  provided that 

,
8

1
11 ∗
∗ =µ≤µ

M
 

and 

{ }

{ }











=
γ

γ++−

>
γ

γ++−++−

=≤ ∗

,0,
4

2
,

8
min

,0,
4

2
,

4

2
min

2

230
2
33

2

20

2

230
2
3320

2
22

0

K
dbb

b

d

K
dbb

K

Kdbb

hh  

(4.1) 

where ( ) { }
4

3
,,max, 0112112 =

µ
=+γ+γ+µ−= ∗

∞ MN
B

McMcK  

{ }.,max 00 ∞∞ RI  

Proof. As in [18], we take 

( ) ( ) ( ) ( ) ,0,,22 0 ≥−=−= γ− ttstzehts t  

( ) ( ) ,11,1,, 2
1 ≤≤−−== yyyVMxtN  

( ) ( )
(

( )
) ( ) ( )

( ) ( )







<>

≤≤
==

γ−∗

,or,0

,,
,,

tzxtsx

tsxtz
ts

x
VeM

xtRxtI

t

 

where { } γ
µ

= ∞ ,,max 01 N
B

M   and ∗M  are positive constants which 

will be chosen later. We have 

( ) ( ) ( ) ( ) .0,10,24,2
22

0
2

0 <′≤≤−=γ=′ γ−γ− yVyVehtsehts tt  

Let ( ) ( )., 12112 cCCMCK +γ+γ=+µ−=  Since 10 =R  we have 

.0≥K  We consider two cases: 0>K  and .0=K  If ,0>K  it is obvious 

that ( ( ) ) ,021 NBNbNNdN xxxt µ−≥=−−  
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( ( ) ) ( ) ( )IxIINcIbIIdI xxt +µ+−−−− 222  

( ) ( )IcNIcIbIdI xxxt +µ+−−−≥ 222  

[
( ) ( )

( )
V

ts

Id
V

s

tsx
VeM t ′′−′

′
−γ−= γ−∗

2
2

2
 

( )
( )

( )
( ) ]VcVMc

ts

V
b

s

V
eMId t +µ+−

′
−

′
′− γ−∗

1222

2

2  

( ) 0
8 0

2
2
0

20 ≥−−+γ−≥ γ−∗ K
h

b

h

d
eM t  

provided  .
4

2
,

16

20
2
22

02
0

20

K

Kdbb
h

h

d ++−
≤=γ  

Next we find 

( ) ( )RIRbRdR txxxt δ+µγ−−− 233  

( ) ,0
8

2
0

3

2
0

30 ≥γ−−+γ−≥ γ−∗

h

b

h

d
eM t  

if  ,
16 2

0

30

h

d
=γ  and .

4

2

2

230
2
33

0 γ

γ++−
≤

dbb
h  

Now, as in [18] applying the comparison principle, the following 

inequalities are established: ( ) ( )tztg ≥  and ( ) ( )tfth ≤  for .0>t  

Therefore, an immediately result is ( ) .4lim, 0 lhtsgh
t

<=<−
∞→

∞∞  The 

case 0=K  is investigated similarly. This completes the proof of the 

Theorem 4.2. 

Theorem 4.2 show that at 10 =R  the disease disappears in the long 

term if the initial values and the initial area are small enough. It is 

known that 10 >R  means that each infected person is in contact with 
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more than one susceptible person at a time, which leads to a higher 

growth of the epidemic. However, we can find that if 0h  and 1µ  are small 

enough, the diseases will disappear even if .10 >R  

Theorem 4.3. If ,10 >R  then lh <∞  and lg <− ∞  provided that 

∗µ≤µ 11  and { },
4

2
,

4

2
min

2

230
2
3320

2
220

0 γ

γ++−





 ++−

=≤ ∗
dbb

K

Kdbb
hh   

(4.2) 

where ∗µ1  and K  are defined in Theorem 4.2. 

Proof. Since ,10 >R  the proof is similar to the case 0>K  in 

Theorem 4.2. We use Lemma 3.6 and the upper solution constructed here 

is the same as in Theorem 4.2. 
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