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Abstract 

In this paper, using the properties of Schur-convex function, Schur-

geometrically convex function and Schur-harmonically convex function, 

we provide much simpler proofs of the Schur-convexity, Schur-geometric 

convexity on ( ) ,,1 n∞+  and Schur-harmonic convexity on ( ) n∞+,1  for 

a composite function of the elementary symmetric functions. 

1. Introduction 

Throughout the article, R  denotes the set of real numbers, 

( )nxxx ,,, 21 …=x  denotes n-tuple (n-dimensional real vectors), the set 

of vectors can be written as  

( ){ },,,2,1,:,,, 21 nixxxx in
n

⋯… =∈== RR x  

{ },,,2,1,0: nixi
nn

⋯=>∈=+ RR x  

{ }.,,2,1,0: nixi
nn

⋯=<∈=− RR x  

In particular, the notations R  and +R  denote 1
R  and ,1

+R  

respectively. 

Let ( ) .,,, 21
n

nxxx R∈= ⋯x  The elementary symmetric functions 

are defined by 

( ) ( ) ,,,1,:,,,

11

21

1

nxxxxEE
ji

jnii

n ⋯⋯

⋯

=== ∏∑
=≤<<≤

k

k

kk

k

x  

( ) 10 =xE  and ( ) 0=xkE  for 0<k  or .n>k  
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In 2006, Hua Mei et al. [7] studied the Schur-convexity of the 

following composite function of ( ):xkE  

( ) .,,1,
1

:
1

11 1

nx
x

EF
j

j

i
ijnii

⋯

⋯

=













−=






 −= ∏∑

=≤<<≤

k

k

kk

k

x
x

x  (1.1) 

In 2012, using the Lemma 2.2 and Lemma 2.3 in second section, Shao 

[8] proved following the Theorem A and Theorem B, respectively. 

Theorem A ([8]). (1) The function 





 − x

x

1
1E  is Schur-geometrically 

convex on ( ] 





 − x

x

1
,1,0 n

n
E  is Schur-geometrically concave on ( ] .1,0

n
 

(2) For 12 −≤≤ nk  and 





 −

−

−−−
= x

x

1
,

11
k

k

k
E

n

n
a  is Schur-

geometrically convex on ( ] ,,0
n

a  and 





 − x

x

1
kE  is Schur-geometrically 

concave on [ ] .1,
n

a  

Theorem B ([8]). For 





 −= x

x

1
,,,1 kk En⋯  is Schur-harmonically 

concave on ( ] .1,0
n

 

The above results only relates to area ( ] ,1,0
n

 in this paper, we study 

Schur-convexity and Schur-harmonic convexity of 





 − x

x

1
kE  on ,n

R  

and Schur-geometric convexity of 





 − x

x

1
kE  on ,n

+R  we prove the 

following results: 

Theorem 1.1. Let .2≥n   

(1) The function 





 − x

x

1
1E  is Schur-convex on ,n

+R  and 





 − x

x

1
1E  

is Schur-concave on .n
−R  
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(2) The function 





 − x

x

1
nE  is Schur-concave on ( ] .1,

n−∞−  

If n is odd numbers (or even numbers), then 





 − x

x

1
nE  is Schur-

convex (or Schur-concave) function on ( ] n
25,1 −−−  respectively. 

If n is odd numbers (or even numbers), then 





 − x

x

1
nE  is Schur-

concave (or Schur-convex) function on [ ] n
0,25 −−  respectively. 

The function 





 − x

x

1
nE  is Schur-convex on ( ] ,25,0

n−  and 







 − x

x

1
nE  is Schur-concave on ( ] .1,25

n−   

If n is odd numbers (or even numbers), then 





 − x

x

1
nE  is Schur-

convex (or Schur-concave) function on ( ) n∞+,1  respectively. 

(3) For ,12 −≤≤ nk  the 





 − x

x

1
kE  is Schur-concave on ( ] .1,

n−∞−  

If k  is odd numbers (or even numbers), then 





 − x

x

1
kE  is Schur-

convex (or Schur-concave) function on ( ] n
25,1 −−−  respectively. 

If k  is odd numbers (or even numbers), then 





 − x

x

1
kE  is Schur-

concave (or Schur-convex) function on [ ] n
0,25 −−  respectively. 

The function 





 − x

x

1
kE  is Schur-convex on [ ] .25,0

n−  

If n is odd numbers (or numbers even), then 





 − x

x

1
kE  is Schur-

convex (or Schur-concave) function on ( ) n∞+,1  respectively. 
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Theorem 1.2. For n,,2,1 ⋯=k  with .2≥n  

(1) The function 





 − x

x

1
1E  is Schur-geometrically concave on [ ) .,1

n∞+  

(2) If n is odd numbers (or even numbers), then 





 − x

x

1
nE  is Schur-

geometrically concave (or Schur-geometrically convex) function on ( ) n∞+,1  

respectively. 

(3) For ,12 −≤≤ nk  and ,
11

k

k

−

−+−
=

n

n
b  if k  is odd numbers 

(or even numbers), then 





 − x

x

1
kE  is Schur-geometrically convex (or 

Schur-geometrically concave) function on [ ] n
b,1  respectively, and 







 − x

x

1
kE  is Schur-geometrically concave (or Schur-geometrically 

convex) on [ ) .,
n

b ∞+  

Theorem 1.3. Let .2≥n  

(1) The function 





 − x

x

1
1E  is Schur-harmonically convex on ,n

+R  

and the 





 − x

x

1
1E  is Schur-harmonically concave on .n

−R  

(2) The function 





 − x

x

1
nE  is Schur-harmonically convex on 

( ] .52,
n+−∞−  

The function 





 − x

x

1
nE  is Schur-harmonically concave on 

[ ] .1,52
n−+−  
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If n is odd numbers (or even numbers), then 





 − x

x

1
nE  is Schur-

harmonically convex (or Schur-harmonically concave) function on 

[ ) n
0,1−  respectively. 

The 





 − x

x

1
nE  is Schur-harmonically concave on ( ] .1,0

n
  

If n is odd numbers (or even numbers), then 





 − x

x

1
nE  is Schur-

harmonically convex (or Schur-harmonically concave) function on 

[ ] n
52,1 +  respectively. 

If n is odd numbers (or even numbers), then 





 − x

x

1
nE  is Schur-

harmonically concave (or convex) function on [ )n∞++ ,52  respectively. 

(3) If ,12 −≤≤ nk  then the 





 − x

x

1
kE  is Schur-harmonically convex 

on ( ] .52,
n+−∞−  

If n is odd numbers (or even numbers), then 





 − x

x

1
nE  is Schur-

harmonically convex (or Schur-harmonically concave) function on 

[ )n0,1−  respectively. 

The function 





 − x

x

1
kE  is Schur-harmonically concave on ( ] .1,0

n
 

If n is odd numbers (or even numbers), then 





 − x

x

1
kE  is Schur-

harmonically concave (or Schur-harmonically convex) function on 

[ ) n∞++ ,52  respectively. 
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2. Definitions and Lemmas 

For convenience, we recall some definitions as follows. 

Definition 2.1. Let ( )nxxx ,,, 21 ⋯=x  and ( ) .,,, 21
n

nyyy R∈= ⋯y  

(1) yx ≥  means ii yx ≥  for all .,,2,1 ni ⋯=  

(2) Let RR →ΩϕΩ :,n
⊆  is said to be increasing if yx ≥  implies 

( ) ( ).yx ϕ≥ϕ  ϕ  is said to be decreasing if and only if ϕ−  is increasing. 

Definition 2.2 ([6, 10]). Let ( )nxxx ,,, 21 ⋯=x  and ( ,,, 21 ⋯yy=y   

) .n
ny R∈  

(1) x  is said to be majorized by y (in symbols )yx ≺  if 

[ ] [ ]iiii
yx ∑∑ ==

≤
kk

11
 for all 1,,2,1 −= n⋯k  and ,

11 i
n

ii
n

i
yx ∑∑ ==

=  

where [ ] [ ] [ ]nxxx ≥≥≥ ⋯21  and [ ] [ ] [ ]nyyy ≥≥≥ ⋯21  are rearrangements 

of x and y in a descending order. 

(2) n
R⊆Ω  is said to be a convex set if ,10,, ≤α≤Ω∈yx  implies 

( ) ( ( ) ( ) ( ) ) .1,,1,11 2211 Ω∈α−+αα−+αα−+α=α−+α nn yxyxyx ⋯yx  

(3) Let n
R⊆Ω  be a symmetric and convex set, R→Ωϕ :  is said to 

be a Schur-convex function on Ω  if yx ≺  on Ω  implies ( ) ( ).yx ϕ≤ϕ  

The function ϕ  is said to be Schur-concave on Ω  if and only if ϕ−  is a 

Schur-convex function on .Ω  

Lemma 2.1 ([6, 10]) (Schur-convexity decision theorem). Let n
R⊆Ω  

be a symmetric and convex set with nonempty interior .�Ω  The function 

R→Ωϕ :  is continuous on Ω  and continuously differentiable on .�Ω  

Then ϕ  is a Schur-convex (or Schur-concave, respectively) function if and 

only if ϕ  is symmetric on Ω  and  

( ) 0
21

21 ≥







∂

ϕ∂
−

∂

ϕ∂
−

xx
xx  (or ,0≤  respectively) (2.1) 

holds for any .�Ω∈x  
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The first systematical study of the functions preserving the ordering 

of majorization was made by Issai Schur in 1923. In Schur’s honor, such 

functions are said to be “Schur-convex”. It has many important 

applications in analytic inequalities, combinatorial optimization, 

quantum physics, information theory, and other related fields. See [6]. 

Definition 2.3 ([11]). Let ( )nxxx ,,, 21 ⋯=x  and ( )nyyy ,,, 21 ⋯=y  

.n
+Ω∈ R⊆  

(1) ([11, p. 64]) A set Ω  is called a geometrically convex set if 

( ) Ω∈βαβαβα
nn yxyxyx ,,, 2211 ⋯  for all Ω∈yx,  and [ ]1,0, ∈βα  such that 

.1=β+α  

(2) ([11, p. 107]) Let Ω  is a geometrically convex set. The function 

+→Ωϕ R:  is said to be a Schur-geometrically convex function on ,Ω  for 

any ,, Ω∈yx  if ( ) ( )nn yyyxxx ln,,ln,lnln,,ln,ln 2121 ⋯≺⋯  

implies ( ) ( ).yx ϕ≤ϕ  The function ϕ  is said to be a Schur-geometrically 

concave function on Ω  if and only if ϕ−  is a Schur-geometrically convex 

function on .Ω  

Lemma 2.2 ([11, p. 108]) (Schur-geometrically convexity decision 

theorem). Let n
+Ω R⊆  be a symmetric and geometrically convex set with a 

nonempty interior .�Ω  Let +→Ωϕ R:  be continuous on Ω  and 

differentiable in .�Ω  If ϕ  is symmetric on Ω  and 

( ) 0lnln
2

2
1

121 ≥







∂

ϕ∂
−

∂

ϕ∂
−

x
x

x
xxx  (or ,0≤  respectively)  (2.2) 

holds for any ( ) ,,,, 21
�

⋯ Ω∈= nxxxx  then ϕ  is a Schur-geometrically 

convex (or Schur-geometrically concave, respectively) function. 
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The Schur-geometric convexity was proposed by Zhang [11] in 2004, 

and was investigated by Chu et al. [1], Guan [5], Sun et al. [9], and so on. 

We also note that some authors use the term “Schur multiplicative 

convexity”. 

In 2009, Chu ([4], [3], [2]) introduced the notion of Schur-

harmonically convex function. 

Definition 2.4 ([4, 3, 2]). Let n
+Ω R⊆  or ( )n

n xxx ,,,, 21 ⋯=Ω − xR⊆  

and ( ) .,,, 21 Ω∈= nyyy ⋯y  

(1) A set Ω  is said to be harmonically convex if ,,
2

,
2

22

22

11

11 ⋯
yx

yx

yx

yx

+




+

 

Ω∈



+ nn

nn

yx

yx2
 for every ., Ω∈yx  

(2) Let Ω  is a harmonically convex set, a function R→Ωϕ :  is said 

to be Schur-harmonically convex on ,Ω  for any ,, Ω∈yx  if 


















nn yyyxxx

1
,,

1
,

11
,,

1
,

1

2121

⋯≺⋯   implies ( ) ( ).yx ϕ≤ϕ  A function 

ϕ  is said to be a Schur-harmonically concave function on Ω  if and only if 

ϕ−  is a Schur-harmonically convex function on .Ω  

Lemma 2.3 ([4, 3, 2]) (Schur-harmonically convexity decision theorem). 

Let n
+Ω R⊆  or ,n

−Ω R⊆  be a symmetric and harmonically convex set 

with inner points and let R→Ωϕ :  be a continuous symmetric function 

which is differentiable on .�Ω  Then ϕ  is Schur-harmonically convex (or 

Schur-harmonically concave, respectively) on Ω  if and only if 

( ) 0
2

2
2

1

2
121 ≥








∂

ϕ∂
−

∂

ϕ∂
−

x
x

x
xxx  (or ,0≤  respectively), .�Ω∈x   (2.3) 
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Remark 1. We extend the definition and determination theorem of 

Schur-harmonically convex function established by Chu as follows: 

(1) n
+Ω R⊆  is extended to n

+Ω R⊆  or .n
−Ω R⊆  

(2) The function R→Ωϕ :  must not be a positive function. 

Lemma 2.4 ([6, 10]). The function ( )xkE  is increasing and Schur-

concave on .n
+R  If ( )xkk E,1>  is strictly Schur-concave on .n

+R  

Lemma 2.5. If k  is even numbers (or odd numbers, respectively), then 

( )xkE  is decreasing and Schur-concave (or increasing and Schur-convex, 

respectively) on .n
−R  

Proof. Notice that ( ) ( ) ( )xx k

k

k EE 1−=−  for all .nx +∈ R  Using the 

Lemma 2.4, it is easy to the desired result. Lemma 2.5 is proved.  � 

It is easy to see that 

Lemma 2.6. Let function ( )
( )

2

2

1

1

x

xx
xg

+

−
=  for all .R∈x  Then 

(1) the function g is decreasing on ( ];25, −−∞−  

(2) the function g is increasing on [ ];25,25 −−−−  

(3) the function g is decreasing on [ ).,25 ∞+−  

Lemma 2.7. Let function ( )
( )2

2

1

1

xx

x
xg

+

−
=  for all { }.0\R∈x  Then 

(1) the function g is increasing on ( ]52, +−∞−  and g is 

decreasing on [ );0,52 +−  

(2) the function g is decreasing on ( ]52,0 +  and g is increasing on 

[ ).,52 ∞++  
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It is easy to prove that the following lemma holds. 

Lemma 2.8. Let function ( ) x
x

xh −=
1

 for all { }.0\R∈x  Then 

(1) the function ( ) 0>xh  for ( ) ( );1,01, ∪−∞−∈x   

(2) the function ( ) 0<xh  for ( ) ( ).,10,1 ∞+−∈ ∪x  

3. Proof of Theorems 

Proof of Theorem 1.1. For ,2,,,1 ≥= nn⋯k  write 

( ) ( )
( ) ( )

.
21

21 







∂

∂
−

∂

∂
−=∆

x

F

x

F
xx

xx
x kk

k   (3.1) 

The proof is divided into three cases. 

(1) If 1=k  and n
+∈ Rx  (or ,n

−∈ Rx  respectively), we have 

( )
( ) ( )

0
2
2

2
1

21
2

21
1 ≥

+−
=∆

xx

xxxx
x  (or ,0≤  respectively). 

By Lemma 2.1, it follows that Theorem 1.1(1) is holds. 
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(2) If n=k  by Lemma 2.6 and Lemma 2.8, and notice that 

,125 <−  we have 

( )
( )( ) ( ) ( ) ( )

( )xx ~

1

1

1

111
22

2

2
22

2
1

2
11

2
2

2
1

2
2

2
121

−












+

−
−

+

−++−
=∆ nn F

x

xx

x

xx

xx

xxxx
 

( ]

( ]

( ]

[ ]

[ ]

( ]

( ]

( )

( )



























∞+∈≤

∞+∈≥

−∈≤

−−∈≥

−−∈≥

−−∈≤

−−−∈≤

−−−∈≥

−∞−∈≤

=

number,evenis,,1,0

,numberoddis,,1,0

,1,25,0

,25,0,0

,numberevenis,0,25,0

,numberoddis,0,25,0

,numberevenis,25,1,0

,numberoddis,25,1,0

,1,,0

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

x

x

x

x

x

x

x

x

x

 

where ( ).,,~
3 nxx ⋯=x  

By Lemma 2.1, it follows that Theorem 1.1 (2) is holds. 
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(3) If 12 −≤≤ nk  and ( ] ,25,0
n−∈x  by Lemma 2.6 and 

Lemma 2.8, and notice that ,125 <−  we have 

( )
( )( ) ( ) ( ) ( )

( )xx ~

1

1

1

111
22

2

2
22

2
1

2
11

2
2

2
1

2
2

2
121

−












+

−
−

+

−++−
=∆ kn F

x

xx

x

xx

xx

xxxx
 

( ) ( )
( )x~12

2
2
1

21
2

21
−

+−
+ kF

xx

xxxx
 

( ]

( ]

( ]

[ ]

[ ]

( ]

( )

( )





















∞+∈≤

∞+∈≥

−∈≥

−−∈≥

−−∈≤

−−−∈≤

−−−∈≥

−∞−∈≤

=

.numberevenis,,1,0

,numberoddis,,1,0

,25,0,0

,numberevenis,0,25,0

,numberoddis,0,25,0

,numberevenis,25,1,0

,numberoddis,25,1,0

,1,,0

n

n

n

n

n

n

n

n

n

n

n

n

n

n

x

x

x

x

x

x

x

x

 

By the Lemma 2.1, it follows that Theorem 1.1(3) is holds. 

The proof of Theorem 1.1 is completed.  � 

Proof of Theorem 1.2. For [ ) ,,1,
n∞+∈yx  if 

( ) ( )nn yyyxxx ln,,ln,lnln,,ln,ln 2121 ⋯≺⋯  

implies 


















nn yyyxxx

1
ln,,

1
ln,

1
ln

1
ln,,

1
ln,

1
ln

2121
⋯≺⋯  for ( ] .1,0

1
,

1 n∈
yx

 

Notice that ,
111

a
n

n

b
=

−

−−−
=

k

k
 by Theorem A, this shows that 
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(1) If ,1=k  we have 







 −−=














−≤

















−=





 −− y

yyx

x

x
x

y

1111

1

11
1111 kEEEE  

and if ,n=k  then 

( ) ( ) .
1

1
11111

1
11







 −−=














−≥














−=






 −− y

yyx
x

x
yx

n
n

nnn
n

EEEE  

(2) If 12 −≤≤ nk  and [ ] ,,1,
n

b∈yx  then 

( ) ( ) 





 −−=














−≥














−=






 −− y

yyx
x

x
yx

1
1

11111
1

11 k

k

kkk

k
EEEE   (3.2) 

and if 12 −≤≤ nk  and [ ) ,,,
n

b ∞+∈yx  the above inequalities (3.2) is 

reversed. 

By the Definition 2.4(2), from (1) and (2), it follows that Theorem 1.2 

is holds. 

� 

Proof of Theorem 1.3. Let n
+Ω∈ R⊆x  and ,,,1 n⋯=k  .2≥n  

Put 

( ) ( )
( ) ( )

.
2

2
2

1

2
121 








∂

∂
−

∂

∂
−=Λ

x

F
x

x

F
xxx

xx
x kk

k  (3.3) 

The proof is divided into three cases. 

(1) If ,1=k  and n
+∈ Rx  (or ,n

−∈ Rx  respectively), we have 

( ) ( ) ( ) 021
2

211 ≤+−−=∆ xxxxx  (or ,0≤  respectively). 

By Lemma 2.3, it follows that Theorem 1.3(1) is holds. 
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(2) If ,n=k  by Lemma 2.7 and Lemma 2.8, and notice that 

,225 >+  we get 

( ) ( ) ( ) ( )
( ) ( )

( )xx ~

1

1

1

1
11 22

12

2
2

2
11

2
12

2
2
121 −













+

−
−

+

−
++−=Λ nn F

xx

x

xx

x
xxxx  

( ]

[ ]

[ )

[ )

[ ]

[ ]

[ ]

[ )

[ )



























∞++∈≥

∞++∈≤

+∈≤

+∈≥

∈≤

−∈≤

−∈≥

−+−∈≤

+−∞−∈≥

=

number.evenis,,52,0

,numberoddis,,52,0

,numberevenis,52,1,0

,numberoddis,52,1,0

,1,0,0

,numberevenis,0,1,0

,numberoddis,0,1,0

,1,52,0

,52,,0

n

n

n

n

x

n

n

n

n

n

n

n

n

n

n

n

x

x

x

x

x

x

x

x

 

By Lemma 2.3, it follows that Theorem 1.3(2) is holds. 
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(3) If ,12 −≤≤ nk  by Lemma 2.7 and Lemma 2.8, and notice that 

,225 >+ , we get 

( ) ( ) ( ) ( )
( ) ( )












+

−
−

+

−
++−=Λ

2
22

2
2

2
11

2
12

2
2
121

1

1

1

1
11

xx

x

xx

x
xxxxxk  

[ ( )] ( ) ( )[ ( )]xx ~~
121

2
212 −− +−−× kk FxxxxF  

( ]

[ )

[ )

[ ]

[ )

[ )

















∞++∈≥

∞++∈≤

∈≤

−∈≤

−∈≥

+−∞−∈≥

=

number.evenis,,52,0

,numberoddis,,52,0

,1,0,0

,numberevenis,0,1,0

,numberoddis,0,1,0

,52,,0

n

n

x

n

n

n

n

n

n

n

n

x

x

x

x

x

 

By Lemma 2.3, it follows that Theorem 1.3(1) is holds. 

The proof of Theorem 1.3 is completed.  � 

4. Applications 

Define 

( ) i

n

i

n x
n

A ∑
=

=

1

1
x  for ( )

n

i

n

i

n
n xGx

1

1

,













=∈ ∏

=

xR for ,n
+∈ Rx   (4.1) 

and 

( )

n

i

n

i

n x
nH

−

=













= ∑ 1

1

x  for .nn
−+∈ RR ∪x   (4.2) 

These means ( ) ( ),, xx nn GA  and ( )xnH  are respectively called the 

arithmetic, geometric, and harmonic means of numbers .,,, 21 nxxx ⋯  
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Theorem 4.1. Let .2≥n  If ( ]n25,0 −∈x  or ( ]n25,1 −−−∈x  

( )n∞+,1∪  ( n≤≤ k2  and k  is odd number) or [ ]n0,25 −−∈x  

( n≤≤ k2 and k  is even number), or ( ),1=∈ + k
n
Rx  then  

( )
( ) .

11






 −≤








−














x

x
x

x
k

k

k

EA
A

n

n
n

  (4.3) 

If ( ]nx 1, −∞−∈  or ( ] ( )nn ∞+−−−∈ ,125,1 ∪x  ( n≤≤ k2  and k  is 

even number) or [ ]n0,25 −−∈x  ( n≤≤ k2  and k  is odd number), 

or ( ),1=∈ + k
n
Rx  then the inequalities (4.3) is reversed. 

Proof. For ( ) ,,,, 21
n

nxxx R∈= ⋯x  we have 

( ) ( ) ( )( ) ( ) .,,,,,, 21 xxxx =nnnn xxxAAA ⋯≺⋯  (4.4) 

By Theorem 1.1 and Definition 2.2(3), the inequalities (4.3) holds. The 

proof is complete.  � 

Theorem 4.2. Let ,2≥n  and let 
k

k

−

−−−
=

n

n
a

11
 and 

.
11

k

k

−

−+−
=

n

n
b  

If ( ] ( )11,0 =∈ k
n

x  or ( ] ( ),12,0 −≤≤∈ na
n

kx  or ( )n∞+∈ ,1x  

( n=k  and k  is even number), or ( ] ( 12,1 −≤≤∈ nb
n

kx  and k  is odd 

number), or [ ) ( 12, −≤≤∞+∈ nb
n

kx  and k  is even number), then 

( )
( ) .

11






 −≤








−














x

x
x

x
k

k

k

EG
G

n

n
n

  (4.5) 
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If ( ] ( )n
n =∈ k1,0x  or and ( ] ( ),121, −≤≤∈ na

n
kx  or ( ]n∞+∈ ,1x  

( ),1=k  or ( ] ( n
n =∞+∈ k,1x  and k  is odd number), or ( ] ( ≤∈ 2,1

n
bx  

1−≤ nk  and k  is even number), or [ ) ( 12, −≤≤∞+∈ nb
n

kx  and k  

is odd number), then the inequalities (4.5) is reversed. 

Proof. For all ,n
+∈ Rx  we have 

( ( ) ( ) ( )) ( ).ln,,ln,lnln,,ln,ln 21 nnnn xxxGGG ⋯≺⋯ xxx  

Form Definition 2.3(2), Theorem A and Theorem 1.2, we obtain the 

inequalities (4.5). Theorem 4.2 is proved.  � 

Theorem 4.3. Let .2≥n  If ( ),1=∈ + k
n
Rx  or ( ]n52, +−∞−∈x  

( ),2 n≤≤ k  or ( ]n0,1−∈x   ( n≤≤ k2  and k  is odd number), or 

( ] ( n
n =+∈ k52,1x  and k  is odd number), or ( )n∞++∈ ,52x  

( n≤≤ k2  and k  is even number), then 

( )
( ) .

11






 −≤








−














x

x
x

x
k

k

k

EH
H

n

n
n

  (4.6) 

If ( ),1=∈ − k
n
Rx  or [ ] ( ),1,52 n

n =−+−∈ kx  or ( ] ( ≤−∈ 20,1
n

x  

n≤k  and k  is even number), or ( ] ( )n
n ≤≤∈ k21,0x  or 

( ]n52,1 +∈x  ( n=k  and k  is even number), or ( )n∞++∈ ,52x  

( n≤≤ k2  and k  is odd number), then the inequalities (4.6) is reversed. 

Proof. For ,nn
−+∈ RR ∪x  we obtain 

( ) ( ) ( )
.

1
,,

1
,

11
,,

1
,

1

21

















nnnn xxxHHH
⋯≺⋯

xxx
 

Using Definition 2.4(2), Theorem 1.3, the inequalities (4.6) holds. The 

proof is complete.  � 



SCHUR-CONVEXITY OF A CLASS OF ELEMENTARY … 19 

Acknowledgements 

This research was supported partially by the Inner Mongolia Normal 

University High-level Talent Research Startup Funding (2019YJRC010). 

References 

 [1] Y.-M. Chu, X.-M. Zhang and G.-D. Wang, The Schur geometrical convexity of the 

extended mean values, Journal of Convex Analysis 15(4) (2008), 707-718. 

 [2] Y.-M. Chu and Y.-P. Lv, The Schur harmonic convexity of the Hamy symmetric 

function and its applications, Journal of Inequalities and Applications (2009); 

Article ID 838529, 10 pages. 

DOI: https://doi.org/10.1155/2009/838529  

 [3] Y. M. Chu and T. C. Sun, The Schur harmonic convexity for a class of symmetric 

functions, Acta Mathematica Scientia 30(5) (2010), 1501-1506. 

DOI: https://doi.org/10.1016/S0252-9602(10)60142-7  

 [4] Y.-M. Chu, G.-D.Wang and X.-H. Zhang, The Schur multiplicative and harmonic 

convexities of the complete symmetric function, Mathematische Nachrichten        

284(5-6) (2011), 653-663. 

DOI: https://doi.org/10.1002/mana.200810197  

 [5] K.-Z. Guan, Schur-convexity of the complete symmetric function, Mathematical 

Inequalities & Applications 9(4) (2006), 567-576. 

DOI: https://doi.org/10.7153/mia-09-52 

 [6] A. W. Marshall, I. Olkin and B. C. Arnold, Inequalities: Theory of Majorization and 

its Application, Second Edition, Springer, New York, 2011. 

DOI: https://doi.org/10.1007/978-0-387-68276-1  

 [7] H. Mei, C.-L. Bai and H. Man, Extension of an Inequality Guess, Journal of Inner 

Mongolia University for Nationalities 21(2) (2006), 127-129. (in Chinese) 

 [8] Z.-H. Shao, The Schur-geometrical convexity and Schur-harmonic convexity for a 

class of symmetric functions, Mathematics in Practice and Theory 42(16) (2012), 

199-206. (in Chinese) 

 [9] T.-C. Sun, Y.-P. Lv and Y.-M. Chu, Schur multiplicative and harmonic convexities of 

generalized Heronian mean in n variables and their applications, International 

Journal of Pure and Applied Mathematics 55(1) (2009), 25-33. 

 [10] B.-Y. Wang, Foundations of Majorization Inequalities, Beijing Normal University 

Press, Beijing, 1990. (in Chinese) 

 [11] X.-M. Zhang, Geometrically Convex Functions, An’hui University Press, Hefei, 

2004. (in Chinese) 

g 


