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Abstract

In this paper, using the properties of Schur-convex function, Schur-
geometrically convex function and Schur-harmonically convex function,

we provide much simpler proofs of the Schur-convexity, Schur-geometric
convexity on (1, +e)”, and Schur-harmonic convexity on (1, +)” for

a composite function of the elementary symmetric functions.
1. Introduction

Throughout the article, R denotes the set of real numbers,
x = (x1, x9, ..., x,) denotes n-tuple (n-dimensional real vectors), the set

of vectors can be written as
R" ={x = (%1, x9, ..., x,,) : x; e R, i =1, 2, ---, n},
RY ={xeR":x; >0,i=1,2, -, n},
R ={xe R" :x; <0,i=1,2, -, n}.

In particular, the notations R and R, denote R! and ]R{L

respectively.

Let x = (x1, x9, -+, x,,) € R". The elementary symmetric functions
are defined by

k
E,(x) = E;(x1, x9, -+, X,,) = Z Hxij,k=1,---,n,

1< <--<ip<n j=1

Ey(x) =1 and E;(x) =0 for £k <0 or k > n.
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In 2006, Hua Mei et al. [7] studied the Schur-convexity of the

following composite function of E}(x):
1 — _ =1 ...
Fi(x) = Ek(;— x) = > H[— x;, J =1, -, n (LD
1<i <---<ip<n j=1

In 2012, using the Lemma 2.2 and Lemma 2.3 in second section, Shao

[8] proved following the Theorem A and Theorem B, respectively.

Theorem A ([8]). (1) The function E; (i - x) is Schur-geometrically
convex on (0, 1]", En(i - x) is Schur-geometrically concave on (0, 1]".

2) For 2<k<n-1and a = n—J — kk_l,Ek,(%—x) is Schur-
n_

geometrically convex on (0, a]”, and Ek(% - x) is Schur-geometrically
concave on [a, 1]".

Theorem B ([8]). For k =1, ---, n, Ek(i - xj is Schur-harmonically
concave on (0, 1]".

The above results only relates to area (0, 1]”, in this paper, we study

Schur-convexity and Schur-harmonic convexity of Ek(%—x) on R”",

and Schur-geometric convexity of Ek(%—x) on R}, we prove the

following results:

Theorem 1.1. Let n > 2.
(1) The function El(% - x) is Schur-convex on R}, and El(% - x)

is Schur-concave on R”.
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(2) The function En(% - x) is Schur-concave on (—e, — 1]".

If n is odd numbers (or even numbers), then En(% - x) is Schur-

convex (or Schur-concave) function on (-1, — Va5 -2 1" respectively.

If n is odd numbers (or even numbers), then En(% - x) is Schur-
concave (or Schur-convex) function on [— Va5 - 2, 0]"™ respectively.

The function En(%—x) is Schur-convex on (0, \/\/3_2]”, and

En(% - x) is Schur-concave on (V«/g -2,1]"

If n is odd numbers (or even numbers), then En(% - x) is Schur-

convex (or Schur-concave) function on (1, +o)" respectively.

3) For 2 < k < n-—1, the Ek(i - x) is Schur-concave on (-0, —1]".

If k is odd numbers (or even numbers), then Ek(i_ x) is Schur-

convex (or Schur-concave) function on (-1, — Va5 -2 1™ respectively.

If k is odd numbers (or even numbers), then Ek(%— x) is Schur-

concave (or Schur-convex) function on [— Va5 - 2, 0]" respectively.

The function Ek(% - x) is Schur-convex on [0, V+/5 — 2]".

If n is odd numbers (or numbers even), then Ek(% - x) is Schur-

convex (or Schur-concave) function on (1, +o)" respectively.
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Theorem 1.2. For k =1, 2, ---, n with n > 2.

(1) The function E; (% - x) is Schur-geometrically concave on [1, +o0)™.

(2) If n is odd numbers (or even numbers), then En(% - x) is Schur-

geometrically concave (or Schur-geometrically convex) function on (1, +o)"

respectively.
3) For 2<k<n-1, and b = n—\/l + kk_l , if k is odd numbers
n—

(or even numbers), then Ek(i—x) is Schur-geometrically convex (or

Schur-geometrically concave) function on [1, b]" respectively, and

Ek(i—x) is Schur-geometrically concave (or Schur-geometrically

convex) on [b, +o)".

Theorem 1.3. Let n > 2.

(1) The function El(%—x) is Schur-harmonically convex on R,

and the E; (i - x) is Schur-harmonically concave on R”.

(2) The function En(%—x) is Schur-harmonically convex on

(=o0, —V2 +~/5]".

The function En(%—x) is Schur-harmonically concave on

[-V2++5, -1]".
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If n is odd numbers (or even numbers), then En(% - x) is Schur-

harmonically convex (or Schur-harmonically concave) function on

[-1, 0)" respectively.

The En(% - x) is Schur-harmonically concave on (0, 1]".

If n is odd numbers (or even numbers), then En(% - x) is Schur-

harmonically convex (or Schur-harmonically concave) function on

[1, V2 + V5 1™ respectively.

If n is odd numbers (or even numbers), then En(% - x) is Schur-

harmonically concave (or convex) function on [V2 + J5 , +00)" respectively.

B)If 2< k <n-1, then the Ek(i - x) is Schur-harmonically convex

on (-, —V2 +/5]".

If n is odd numbers (or even numbers), then En(% - x) is Schur-
harmonically convex (or Schur-harmonically concave) function on

[-1, 0)" respectively.

The function Ek(i - x) is Schur-harmonically concave on (0, 1]".

If n is odd numbers (or even numbers), then Ek(i - x) is Schur-

harmonically concave (or Schur-harmonically convex) function on

[V2 + 45, +o0)™ respectively.
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2. Definitions and Lemmas

For convenience, we recall some definitions as follows.

Definition 2.1. Let x = (x;, xq9, -**, x,) and ¥ = (y1, y9, =+, ¥,) € R".

(1) x 2y means x; 2 y; foralli =1, 2, ---, n.

(2) Let Q CR", ¢: Q — R is said to be increasing if x > y implies
o(x) = ¢(y). ¢ is said to be decreasing if and only if — ¢ is increasing.

Definition 2.2 ([6, 10]). Let x = (xq, x9, -+, x,,) and y = (y1, y9, =+,
yn)€ R™.

(1) x 1is said to be majorized by y (in symbols x < y) if
Zikzlx[i] < Zik:ly[i] for all £=1,2,---,n—-1 and Zin:1xi = Z?:lyi,
where X[1] 2 X[2] 2 2 X[] and Y] 2 Y[2] 2+ 2 Y[n] are rearrangements
of x and y in a descending order.

(2) @ C R" is said to be a convex set if x, y e Q, 0 < a < 1, implies

ox+ 1 —-a)y =(ox; + (10— )y, axg + (1 —a)yg, -+, ox, +(1—-a)y,)e Q.

(3) Let Q C R"™ be a symmetric and convex set, ¢ : & — R is said to
be a Schur-convex function on Q if x <y on Q implies ¢(x) < ¢(y).
The function ¢ is said to be Schur-concave on Q if and only if — ¢ is a

Schur-convex function on Q.

Lemma 2.1 ([6, 10]) (Schur-convexity decision theorem). Let Q C R"

be a symmetric and convex set with nonempty interior Q°. The function
¢ :Q — R is continuous on Q and continuously differentiable on Q°.
Then ¢ is a Schur-convex (or Schur-concave, respectively) function if and

only if ¢ is symmetricon Q and

(% — xz)(a—(p - a—(p) > 0 (or < 0, respectively) (2.1)
axl 8x2

holds for any x € Q°.
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The first systematical study of the functions preserving the ordering
of majorization was made by Issai Schur in 1923. In Schur’s honor, such
functions are said to be “Schur-convex”. It has many important
applications 1in analytic inequalities, combinatorial optimization,

quantum physics, information theory, and other related fields. See [6].
Definition 2.3 ([11]). Let x = (xq, x9, -+, x,) and ¥ = (y1, Y2, **» Yn)

e Q C RY.

(1) (J11, p. 64]) A set Q 1is called a geometrically convex set if
(xf‘yf, x%yg, o, x%yB)e Q forall x, ye Q and a, B e [0, 1] such that
oa+p=1.

(2) ([11, p. 107]) Let Q is a geometrically convex set. The function
¢:Q — R, issaid to be a Schur-geometrically convex function on Q, for
any x,yeQ, if (Inx,Ilnxg, -, Inx,)<(Iny,Inyy, -, Iny,)
implies @(x) < ¢(y). The function ¢ is said to be a Schur-geometrically
concave function on Q if and only if — ¢ is a Schur-geometrically convex

function on Q.

Lemma 2.2 ([11, p. 108]) (Schur-geometrically convexity decision

theorem). Let Q C R} be a symmetric and geometrically convex set with a
nonempty interior Q°. Let @ :Q — R, be continuous on € and

differentiable in Q°. If ¢ is symmetric on Q and

(Inx; —1In xz)(xl 887(2 - X9 (.zc—q;j > 0 (or <0, respectively) (2.2)

holds for any x = (xq1, x9, -+, x,) € Q°, then ¢ is a Schur-geometrically

convex (or Schur-geometrically concave, respectively) function.
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The Schur-geometric convexity was proposed by Zhang [11] in 2004,
and was investigated by Chu et al. [1], Guan [5], Sun et al. [9], and so on.
We also note that some authors use the term “Schur multiplicative

convexity”.

In 2009, Chu ([4], [3], [2]) introduced the notion of Schur-
harmonically convex function.

Definition 2.4 ([4, 3, 2]). Let Q C R} or Q C R”, x = (x1, X9, -, X,,)

and y = (y1, ¥g, > Yn) € Q.

201 2x9Y9
X1 +y1 0 X9+ Yy

i

(1) A set Q 1is said to be harmonically convex if (

2%,V

e Q for every x, y € Q.

(2) Let Q 1is a harmonically convex set, a function ¢ : Q — R is said

to be Schur-harmonically convex on Q, for any x, ye Q, if

1 1 1 1 1 1 . . .
— =, e, —| =< |=,—, -, —| implies ¢(x) < ¢(y). A function
(xl X9 xn) (yl 0 ynj ? i

¢ is said to be a Schur-harmonically concave function on Q if and only if

— ¢ is a Schur-harmonically convex function on Q.

Lemma 2.3 ([4, 3, 2]) (Schur-harmonically convexity decision theorem).
Let Q CR? or Q C R, be a symmetric and harmonically convex set

with inner points and let ¢ : Q@ — R be a continuous symmetric function

which is differentiable on Q°. Then ¢ is Schur-harmonically convex (or

Schur-harmonically concave, respectively) on Q if and only if

(% - xg)(xlz ;T(p - x% aaT(p) > 0 (or £ 0, respectively), x € Q°.  (2.3)
1 2
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Remark 1. We extend the definition and determination theorem of

Schur-harmonically convex function established by Chu as follows:
(1) @ C RY isextended to Q C R} or Q C R”.
(2) The function ¢ : @ — R must not be a positive function.

Lemma 2.4 ([6, 10]). The function E;(x) is increasing and Schur-

concave on R}, If k > 1, E;(x) is strictly Schur-concave on RY.

Lemma 2.5. If k is even numbers (or odd numbers, respectively), then

E,;(x) is decreasing and Schur-concave (or increasing and Schur-convex,

respectively) on R”.

Proof. Notice that E, (- x) = (- l)kEk (x) for all x € R”. Using the

Lemma 2.4, it is easy to the desired result. Lemma 2.5 is proved. O

It is easy to see that

x(1-x2)

3 for all x € R. Then

Lemma 2.6. Let function g(x) =
1+x

(1) the function g is decreasing on (-, — V6 — 2];

(2) the function g is increasing on [— 5 - 2, — NN 1;
(3) the function g is decreasing on [Vv/5 — 2, +o).

1-x?
——~— forall x € R\{0}. Then

Lemma 2.7. Let function g(x) = 5
x(1+x%)

(1) the function g is increasing on (—oo, —V2 + \/3] and g is
decreasing on [-V2 + /5, 0);

(2) the function g is decreasing on (0, V2 + x/g] and g is increasing on

[V2 + V5, +).
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It is easy to prove that the following lemma holds.
Lemma 2.8. Let function h(x) = %— x for all x € R\{0}. Then
(1) the function h(x) > 0 for x € (=, —1)U (0, 1);
(2) the function h(x) < 0 for x € (-1, 0) U (1, +o0).
3. Proof of Theorems

Proof of Theorem 1.1. For £ =1, ---, n, n > 2, write

(3.1

Balo) = (1 = ey) [ P ST,

dxy dxg
The proof is divided into three cases.

(DIf k=1 and x € R} (or x € R”, respectively), we have

(1 — x9 )2(901 +x9)

xixd

A(x) = > 0 (or < 0, respectively).

By Lemma 2.1, it follows that Theorem 1.1(1) is holds.
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@2 If k=n by Lemma 2.6 and Lemma 2.8, and notice that

V5 -2 < 1, we have

(-2 +2d) (1 +a3) [m0-2f) xma-23)],

A, (x) = n
x%x% 1+ x12 1+ x%

—o(%)

<0, xe€ (-, —1]",

>0, xe (-1, - M]n, n is odd number,
<0, xe (-1, -vv5-2]", nis even number,
<0, xel- m, 0]*, n is odd number,
=920 xe][- Va5 — 2, 0]*, n is even number,
>0, xe(0,-VV5-2]",

<0, xe (WJ5-2,1]",

>0, xe (1, +)", nis odd number,

x € (1, +)", n is even number,

IN
=

where X = (x3, -+, x,,).

By Lemma 2.1, it follows that Theorem 1.1 (2) is holds.
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<k<n-1 and x e (O, - , by Lemma 2.6 an
B3 If 2<k d (0, V5 - 21", by L 2.6 and

Lemma 2.8, and notice that V5 -2 < 1, we have

2 2 2 2
A (x) = (1 —20)I+ 27 ) A +25) |51 —x7)  x9(1-x3) P (%)
n 2 2 2 2 k-2
X1X9 1+x1 1+x2

+

(xl — x2)2(xl + xZ) Fk—l(;c)

xixd

<0, xe (-, —1]",

>0, xe(-1,- \/H]n, n is odd number,
<0, xe(-1,- m]", n is even number,
<0, xel[- m, 0]*, n is odd number,
>0, xel[- m, 0]"*, n is even number,
>0, xe (0, m]”,

>0, xe (1, +<)", nis odd number,

<0, xe (1, +)", nis even number.

By the Lemma 2.1, it follows that Theorem 1.1(3) is holds.

The proof of Theorem 1.1 is completed. O

Proof of Theorem 1.2. For x, y € [1, +)", if

(Inxq, Inxg, -+, Inx,) < (Iny;, Inyg, -+, Iny,)
implies
(lni, lni, e lnij < (lni, lni, e lnij for l, 1 e (0, 1]".
X1 X2 Xn N Yo In x Yy
Notice that 1 - yn-. - k-1 = a, by Theorem A, this shows that

b Vn—k
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(1) If £ =1, we have

1 1 1
— —_— - = — | <
El(x x) B4 _E{
X

and if £ = n, then

QIf2<k<n-1andx,ye [l b]", then

R R e e I AR

x y
and if 2<k<n-1 and x, y € [b, +=)", the above inequalities (3.2) is
reversed.

By the Definition 2.4(2), from (1) and (2), it follows that Theorem 1.2
is holds.

O

Proof of Theorem 1.3. Let x€ Q C R} and k=1,---,n, n>2.
Put

2 0F(x) %2 aFk(x)j’ 3.3)

M) = (o = xp)| 5 2L g
The proof is divided into three cases.
(DIf k=1, and x € R} (or x € R”, respectively), we have
Alx) == (x; - 362)2 (x7 + x9) €0 (or £ 0, respectively).

By Lemma 2.3, it follows that Theorem 1.3(1) is holds.
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@2 If k=n, by Lemma 2.7 and Lemma 2.8, and notice that

V5 + 2 > 2, we get

1—x12 l—xg

Ay (x) = (2] —x9) (1 +x2)(1+x3)

- F,_5(X)
x1(1+x12) x2(1+x12) "

> 0, xe(—m,—m]n,

<0, xel[-Vv2++5, 1],

>0, xe[-1,0)" nis odd number,
<0, xe[-1,0)" nis even number,

=49<0, x€e[0,1]",
xe [, V2++5]", nis odd number,
<0, xe[L,V2++5]", niseven number,

v
N

<0, xe[V2++5,+o), nisodd number,

>0, xe[V2++5,+)", nis even number.

By Lemma 2.3, it follows that Theorem 1.3(2) is holds.
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B) If 2<k<n-1, by Lemma 2.7 and Lemma 2.8, and notice that

Vv/5 + 2 > 2,, we get

1—x12 l—xg

Apx) = (3 —x9) 1+ af ) (1 +23)

xq(1+ xlz) - x9(1 + x%)
X [Fr_o(®)] - (x) - 29)% (1 + x9)[F}_1 (&)]

xe (o, —V2+5]",

2

v

xe[-1,0)", nis odd number,

IN

< x € [0, 1],
xe [V2++/5, +)", nis odd number,

x e [V2++5, +=)", n is even number.

IN

0,
0,
0, xe[-1,0)", nis even number,
0,
0,
0,

\Y

By Lemma 2.3, it follows that Theorem 1.3(1) is holds.

The proof of Theorem 1.3 is completed. O
4. Applications

Define

1
n n n
A, (x) = %le for x e R", G, (x) = [ xiJ for x € RY, (4.1)
and
n -n
H,(x) = n(z LJ for x e R} UR™. (4.2)

These means A, (x), G,(x), and H,(x) are respectively called the

arithmetic, geometric, and harmonic means of numbers x{, xg, -+, x,,.
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Theorem 4.1. Let n > 2. If x € (0, V5 = 2] or xe (-1, -v/5 - 2]"
U +)" (2<k<n and k is odd number) or x e [-v6 -2, 0]"

(2 <k <n and k is even number), or x € R (k =1), then

{3 (m A, (x))k < Ek(i - x) (4.3)

If x € (~oo, —1]" or x € (-1, —\/H]n U@, +)" (2<k<nandkis
even number) or x € [-VV5 -2,0]" (2<k<n and k is odd number),
or x e R? (k =1), then the inequalities (4.3) is reversed.
Proof. For x = (x;, x9, -, x,) € R", we have
(A (x), Ap(x), -, Ap(x)) < (x1, 29, =+, ) = . (4.4)

By Theorem 1.1 and Definition 2.2(3), the inequalities (4.3) holds. The

proof is complete. O
Theorem 4.2. Let n>2, and let a = n-1-vk-1 and
Jn—k
b:Vn—l +Vk -1
Jn—k '

If xe (0,1]"(k=1) or xe (0,a]” (2<k<n-1), or xe (I, +)"
(k =n and k is even number), or x € (1, b]" (2<k <n-1 and k is odd

number), or x € [b, +)" (2 <k < n -1 and k is even number), then

@ (% - Gn(x)jk < Ek(i - x) (4.5)
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If xe (0,1]" (k =n) orand x€ (a,1]" 2<k<n-1), or x € (1, +o]"
(k=1), or x e (1, +]"(k = n and k is odd number), or x € (1, b]"* (2 <

k<n-1 and k is even number), or x € [b, +)" (2<k<n-1 and k

is odd number), then the inequalities (4.5) is reversed.
Proof. For all x € RY, we have
(InG,(x), nG,(x), -, InG,(x)) < (Inx;, Inxg, -+, Inx,,).

Form Definition 2.3(2), Theorem A and Theorem 1.2, we obtain the
inequalities (4.5). Theorem 4.2 is proved. O

Theorem 4.3. Let n > 2. If x € R"(k =1), or xe (-, -V2+~/5]"
(2<k<n), or xe (-1,0]" (2<k<n and k is odd number), or

xe (L,V2+V5](k=n and k is odd number), or x € (N2 ++5, +)"

(2 <k <n and k is even number), then

@ (ﬁ “H, (x)jk < Ek@ - x) (4.6)

If xeR (k=1), or xe[-V2++5,-1"(k =n), or xe (-1, 0]*(2 <
k<n and k is even number), or xe (0,1]" (2<k<n) or

xe (L, V2+5]" (k=n and k is even number), or x € (V2 + 5, +o0)"

(2 <k <n and k is odd number), then the inequalities (4.6) is reversed.

Proof. For x € R} UR", we obtain

(Hnl(x)’ Hnl(x)"”’ H,j(x)j ) (xl_l % xi)

Using Definition 2.4(2), Theorem 1.3, the inequalities (4.6) holds. The

proof is complete. O
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