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Abstract 

Inferential procedures for a normal mean with an auxiliary variable are 

developed. First, the maximum likelihood estimation of the mean and 

its distribution are derived. Second, an F statistic based on the 

maximum likelihood estimation is proposed, and the hypothesis testing 

and confidence estimation are outlined. Finally, to illustrate the 

advantage of using auxiliary variable, Monte Carlo simulations are 

performed. The results indicate that using auxiliary variable can 

improve the efficiency of inference. 
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1. Introduction 

Auxiliary information is very common and an important problem in 

practice. Making full use of auxiliary information can effectively improve 

the accuracy of inference. For instance, we use the sample mean to 

estimate the population mean, but when there is auxiliary information, 

there are other better estimates. Cochran [1] proposed the ratio 

estimation of the population mean in simple random sample survey, and 

pointed out that the ratio estimation reached the best when the research 

variables and auxiliary variables were highly positively correlated and 

the regression line passed through the origin. The product estimation was 

first proposed by Robson [5] and rediscovered by Murthy [4], which is 

suitable for the situation where the research variables and auxiliary 

variables are highly negatively correlated. The regression estimation 

proposed by Watson [8] is suitable for the case that the regression line of 

the research variable and auxiliary variable does not pass through the 

origin. In later years, many scholars proposed various methods to 

improve the estimation of population mean in Simple Random Sampling 

(SRSWOR). For details, see Singh and Tailor [6], Singh et al. [7], Yan and 

Tian [9], Khan et al. [3], and Kadilar [2], etc. 

Unlike the above researchers who consider the problem in Simple 

Random Sampling, we consider the problem with normal assumption. 

Normal assumption is reasonable, since real data are usually normal or 

nearly normal. Moreover, normal population is easy to handle 

mathematically. 

Let the research variable be ,y  the auxiliary variable be ,x  and the 

expectation of x  is known. Together they satisfy 
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where c  is a known constant. Suppose that there are n  independent 

samples on both y  and ,x  and in addition, there are m extra observations 

on x solely. In other words, we have a random sample as follows: 

.,,,,,,, 111 nmnnn yyxxxx ……… ++  (1.1) 

We consider the problems of estimation and hypothesis testing of :µ  

,:vs.: 000 µ=/µµ=µ aHH  (1.2) 

where 0µ  is a given value of .µ  

This article is organized as follows. In the following section, a 

procedure for estimation and hypothesis testing of the mean with 

auxiliary information is developed. In Section 3, to illustrate usefulness of 

auxiliary information, Monte Carlo simulations are conducted to compare 

the powers of the testing in this paper with those of the test without 

using auxiliary variables. 

2. Inference on µ  

2.1. Maximum likelihood estimation of µ  

Partition the data in (1.1) as follows: 
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S  denote the sample mean vector 

and the sum of squares and sum of products matrix respectively based on 

.1D  Similarly, let 2D  and V denote respectively the sample mean and the 

sums of squares based on .2D  
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Consider the density function of data in (1.1). We note that the 

density of x and y can be written as the marginal density of x times the 

conditional density of y given x (we indicate the density of normal 

distribution by ( )⋅f  here), that is, 

( ) ( ) ( ),,,,,, 1.21.21.211 σ+µσ=µ xByfcxfcyxf Σ  

where 

.,, 121.2221.21.21.2
1

11211.2 σ−σ=σ−µ=µσσ= − BcBB   (2.2) 

The likelihood function can be written as 

( ) ( ) ( ).,,, 1.21.21.2

1

11

1

σ+µσ=µ ∏∏
=

+

=

ii

n

i

i

mn

i

xByfcxfL Σ   (2.3) 

The maximum likelihood estimates of 1.21.211 ,,, σµσ B  are those 

values that maximize (2.3). To maximize (2.3) with respect to ,11σ  we 

maximize ( )., 111
σ∏

+

=
cxf i

mn

i
 This procedure gives us the usual 

maximum likelihood estimates of the parameters of a normal distribution 

based on mn +  observations, namely, 
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To maximize (2.3) with respect to 2.1 2.1, Bµ  and 2.1 ,σ  we maximize the 

second term of the right hand side of (2.3). This gives the usual estimates 

of regression parameters, namely, 

( ) ./ˆˆ,ˆˆ,ˆ
1.21.21.21.2

1
1.2 nSBSxBySSB yxyyxxxy −=σ−=µ= −   (2.5) 
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It is easy to see that the maximum likelihood estimates of 2212 ,, σσµ  are 

obtained by solving (2.2), where ,ˆ,ˆ 1.21.21.21.2 BB =µ=µ  and .ˆ 1.21.2 σ=σ  

Hence, we have 

( )cxBy −−=µ 1.2
ˆˆ  with .ˆ 1

1.2
−= xxxySSB  (2.6) 

It is obvious that µ̂  is determined solely by 1D  and it is same as 

regression estimator in sample survey. 

2.2. Hypothesis test and confidence interval for µ  

We consider conditional distribution of µ̂  first. After some 

complicated calculation, we have 

( ) ( [
( )

] ).
1

,~,,ˆ 1.2

2

1 σ
−

+µµ
xx

n S

cx

n
Nxx …   (2.7) 

Meanwhile, we change the estimator of 1.2σ  in (2.5) into an unbiased 

estimator 

( ) ( ).1/ˆˆ 1.21.2 −−=σ nSBS yxyy   (2.8) 

Then we have 

( ) ( ) ( ).2~,,ˆ2 2
1.211.2 −σσ− nxxn n �…  

Moreover, 1.2σ̂  and µ̂  are independent conditional on ( ).,,1 nxx …  

Define 
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then Q  is an F  statistics with 

( ) ( ).2,1~,,1 −nFxxQ n…  
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Since this conditional distribution is free of ( ),,,1 nxx …  we have 

( ).2,1~ −nFQ   (2.10) 

Thus, we have the testing and confidence set of the mean µ  as 

follows: 

(I) For a given level α  and an observed value 0Q  of ,Q  the null 

hypothesis 0µ=µ  will be rejected whenever the p-value 

( ( ) ) ,2,1 001 α<>−α− HQnFP   (2.11) 

where ( )2,11 −α− nF  is the ( ) th-1 α−  quantile of the ( )2,1 −nF  

distribution. 

(II) An α−1  confidence interval for µ  is the set of values of µ  that 

satisfy 
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3. Sizes and Power Comparison 

To illustrate the advantage of using auxiliary variables, we compare 

the sizes and powers of two tests using and not using auxiliary variables. 

First, if not using auxiliary variables, the test statistics for 00 : µ=µH  

0:.vs µ=/µaH  is 

( ) ( )201 / .yyQ n n y S= − − µ   (3.1) 
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For a given level α  and an observed value 0Q  of ,Q  the null 

hypothesis 0µ=µ  will be rejected whenever the p-value 

( )( )0 01, 1 .P F n Q H− > < α   (3.2) 

Second, let ( ) ,ˆˆˆ
1.2

2
0 σµ−µ=T  then 

( )
.

1

ˆ

2
xxScxn

T
Q

−+
=  T  is 

the distance between the true value µ  and the null value 0µ  divided by 

,1.2σ  the residual variance while regressing y on x. So, T̂  can be thought 

as an estimate of the distance between µ  and 0µ  adjusted by the 

auxiliary variable x. 

Without loss of generality, it can be assumed that ∑  be a 

correlation matrix and .0=c  Each simulation result is based on 100,000 

runs. In each run, we generate random data following the normal 

distribution with mean µ  and covariance matrix ,∑  and then test the 

hypothesis .:vs.: 000 µ=/µµ=µ aHH  The proportion of times of 

rejecting 0H  in 100,000 runs is used as the estimates of the power. The 

estimated powers are presented in Table 1. 

Table 1. Monte Carlo estimates of powers of the tests using and no-using 

auxiliary data (in parentheses); 05.0,
1

1
=α















ρ

ρ
=∑  

( )ρµ−µ ,0  

n (0.0,0.5 (0.3, � 0.2) (� 0.5, � 0.4) (0.75,0.6) (1.0, � 0.8) (� 1.5,0.9) 

8 0.051(0.051) 0.105(0.113) 0.231(0.233) 0.544(0.449) 0.942(0.683) 0.999(0.949) 

12 0.050(0.051) 0.152(0.160) 0.372(0.352) 0.797(0.662) 0.997(0.883) 1.000(0.997) 

16 0.050(0.051) 0.194(0.199) 0.501(0.464) 0.920(0.801) 0.999(0.962) 1.000(0.999) 

20 0.050(0.051) 0.245(0.247) 0.612(0.562) 0.971(0.889) 1.000(0.989) 1.000(1.000) 

25 0.050(0.050) 0.302(0.303) 0.724(0.670) 0.992(0.949) 1.000(0.998) 1.000(1.000) 

32 0.050(0.049) 0.380(0.378) 0.836(0.783) 0.999(0.984) 1.000(1.000) 1.000(1.000) 
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Firstly, we observe that the sizes of the test using auxiliary variable 

is more close to the nominal level. Secondly, when the sample size n is 

small, µ  is close to ,0µ  and y is little related to x which indicating large 

,1.2σ  the powers of two tests are about the same. However, when the 

sample size n becomes large, µ  is far from ,0µ  and y is highly related to 

x, the powers of the test using auxiliary data are much higher. Hence, we 

conclude that the tests using auxiliary data is much better. 

4. Concluding Remarks 

In this paper, inferences on a normal mean with an auxiliary variable 

are considered. First, we derive the maximum likelihood estimation, 

confidence estimation, and hypothesis testing of the normal mean. We 

found that the additional observations solely on the auxiliary variable are 

of no use for inference on the mean of the research variable. The reason is 

that the expectation of the auxiliary variable is already known, and so 

this extra part of data have no longer useful information on the research 

variable. Hence, we can simply delete this part of data. Secondly, we 

compare the sizes and powers of two tests using and not-using auxiliary 

information through Monte Carlo simulations. When the sample size and 

the adjusted distance T between the true value µ  and hypothesized value 

0µ  are small, two tests are actually about the same. But when the sample 

size and T become large, the powers of the test using auxiliary variables 

are much higher. This indicates that auxiliary information can improve 

the efficiency of the inference for the normal mean. 
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