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Abstract

In this paper, we introduce the notion of generalized rectangular metric
spaces which extends rectangular metric spaces introduced by Branciari.
Analogues of the some well-known fixed point theorems are proved in this
space. With an example, it is shown that a generalized rectangular metric
space is neither a G-metric space nor a rectangular metric space. Our
results generalize many known results in fixed point theory.
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1. Introduction

The notion of a distance between two points as the case may be is as
old as human civilization. Frechet [8] put this notion into an abstract
form and came out with metric spaces in early 19th century. Metric space
is a crucial device in functional analysis, non-linear analysis and
topology. This aspect of functional analysis has attracted the attention of
many mathematicians due to the development of fixed point theory in it.

Many authors made attempt to generalize the usual notion of metric
space (X, d) to extend the known metric space theorems in a more

general setting (see [1]-[12]). In attempt to generalize these usual metric
spaces, 2-metric spaces, D-metric spaces, G-metric spaces, rectangular
metric spaces, and 7y-generalized quasi metric spaces were respectively,
introduced by Gahler [9], Dhage [7], Mustafa and Sims [10], Branciari [6],
and Adewale et al. [1].

Motivated by these generalizations and the fact that in real life, two
points in a space may be distinct, we present the notion of generalized
rectangular metric space which extends a rectangular metric space. We
also use an example to show that the newly introduced generalized
rectangular metric space is better than rectangular metric space and
different from G-metric spaces. Some fixed point theorems are stated and

proved in this new space.
2. Preliminary

Mustafa and Sims define G-metric spaces as follows:

Definition 2.1 ([10]). For a non-empty set X and a function
G:X® > [0, ) satisfying the following properties:

1) G(x, y,z)=0 ifand only if x = y = z;
(ll) G(x’ X, y) > 0, Vx, Yy € X, with x # y;

(i) G(x, x, y) < G(x, v, 2), Vx, v, ze X, with z # y;
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(iv) G(x, y,2) = G(y, 2, x) = Glx, 2, y) = .5

v) Glx,v,2)<G(x,a,a)+G(a, y,z), Va,x,y,ze X (rectangle
inequality).

The function G is called a G-metric and (X, G) is called a G-metric

space.
Branciari also defined rectangular metric spaces as follows:

Definition 2.2 ([6]). For a non-empty set X and a function
d: X2 - [0, ») satisfying the following properties:

(1) d(x, y)=0 ifandonlyif x = y forall x, y € X;
(i) d(x, y) = d(y, x), Vx ye X;

(i) d(x, y) <d(x, u)+d(u,v)+d@, y), Vx,ye X and all distinct
points u, v e X —{x, y}.

The function dis called a rectangular metric on X and (X, d) is called a

rectangular metric space.
3. Main Results

We introduce the following:

Definition 3.1. For a non-empty set X and a function G : X3 >

[0, ) satisfying the following properties:
(1) G(x,y,z)=0 ifandonlyif x = y = z.
(1) G(x, x, y) >0, Vx, ye X, with x # y.
(i) G(x, y, 2) = G(x, z, y) = G(y, x, 2) = ...

(iv) Glx,y,2)<G(x,a,a)+G(a,b,b)+G(b, y,y)+G(y, y,2), Vx,y, ze X
and all distinct points a, b € X —{x, v, z}.

The function G is called a generalized rectangular metric and (X, G) is

called a generalized rectangular metric space.
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Remark 3.2. If y = z and we set G(x, y, y) = d(x, y), Definition 3.1

reduces to rectangular metric space in [6].

Example 3.3. Let X = R* U{0} and define G: XxXxX — R" U{0}
U {0} by
0, xX=y=2z,
G(x, vy, z) =43, if x+#y+z+x,
1, otherwise.

Then (X, G) is a generalized rectangular metric space but neither a

G-metric space nor a rectangular metric space because
i G, 2,3) > G, 2, 2)+G(2 2 3),
(i1) the points a and b are distinct (a, b ¢ {x, y, z}).

Definition 3.4. Let (X, G) be a generalized rectangular metric

space. For x € X, r > 0, the G-sphere with centre x and radius r is
Sgx,r)=1{ze X :G(x, z, 2) < r}.

Definition 3.5. Let (X, G) be a generalized rectangular metric
space. The sequence {x,} C X is G-convergent to z if it converges to z

in the generalized rectangular metric spaces.

Definition 3.6. Let (X, G) and (X,G) be two generalized

rectangular metric spaces, a function 7 : X — X is G-continuous at a
point x € X if T_l(Sa(T(x), r)) e 7(G), for all r > 0. T is G-continuous

if it 1s G-continuous at all points of X.

The following lemmas will be used in this work.
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Lemma 3.7. Let (X, G) be a generalized rectangular metric space
and {x,} be a sequence in X. Then {x,} converges to x if and only if

G(x,, x,x) > 0 as n — o,

Lemma 3.8. Let (X, G) be a generalized rectangular metric space
and {x,} be a sequence in X. Then {x,} is said to be a Cauchy sequence

if and only if G(x,, x,,, ;) > 0 as n, m, | — oo

Theorem 3.9. Let X be a complete generalized rectangular metric
space and T : X — X be a map for which there exist the real number, k

satisfying 0 < k <1 such that for each pair x, y, z € X.
G(Tx, Ty, Tz) < kG(x, y, z). (1)
Then T has a unique fixed point.

Proof. Considering (1),

G(Tx, Ty, Ty) < kG(x, y, y). 2)

Suppose T satisfies condition (2) and xy € X be an arbitrary point and

define the sequence x, by x, = T"x, then
G(x,, Xpi1s Xpe1) = G(Txpy_y, Txyy, Txy,) < kG(x,y_1, X5, X3,)-
Setting g, =G(x,,, %41, %,41), We have
8n S kgn- 3
We deduce that
8n <kgn-1,

g, <k"gy, Vne N. (4)
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Suppose there exists n € N such that x5 = x,,.
G(xO, TxO, TxO) = G(xn, Txn, Txn),
G(xg, x1, 21) = G(xy, Xpy1, Tpa1),

8o = 8n»

IA

8o < k"go.
Contradiction since &k <1. Hence Vne N, xy # x,. Repeating this
argument, we have that Vn,me N with n # m, x,, # x,,. Then the

terms of the sequence {x,} are distinct.

By repeated use of (iv) in Definition 3.1 and all distinct points

Xpals Xpaos -y X1 With m > n, we have the following for all odd

m—-n:

G(xn’ Xm> xm) = G(xm Xn+ls xn+l) + G(xn+17 Xn+2> xn+2)

+ G(x,409, Xy X))

< 8n t 8n+1 t G(xn+27 Xm> xm)

< 8n t 8n+1 t 8n+2 + 8n+3 + G(xn+4’ Xm> xm)
n+3

< Zgi + G(X a5 Xy Xpy)
i=n
m-1 o

< 8 < Zgi- (5)
i=n i=n

Similarly, if m —n > 4 is even, we have

m-—3
G(x,, Xy, X,,) < Z g +G(xpm_a, Xm» X )- (6)

i=n
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From (4) and (5), we have

G(.’X,‘n, Xms xm) < kngo + kn+1g0 + kn+2g0 + ...+ km_2g0 + km_lgo

IA

(7 + k™ 4 k2 4 3 4y km‘l]go

IA

EML+k+ k2 + k3 + kY + L+ k™ g,
< E"1-k)tg,. (7)
From (4) and (6), we have
G(xy, Xy %) < kA —k) go + Gap_g, s Xp)
< E"(1-k) gy + E™2G(xg, 19, x3). ®)
Taking the limit of G(x,,, x,,, x,,,) as n, m — oo, we have

lim G(x,, x,,, x,,) = 0. 9

n, m—seo
For n,m,le N with n>m > 1,
G(xp, Xy x) < Glxy, Xpoq, Xp1) + Glay g, 49, Xpg)
+ G(x,_9, X, )+ G(x,,, x,,, x7). (10)
Taking the limit of G(x,, x,,, x;) as n, m, I — o, we have

lim Gl(x,, x,, x;) = 0. (11)

n,m,l—oo
So, {x,} is a G-Cauchy sequence.
By completeness of (X, G), there exist v e X such that x, is
G-convergent to u.
Suppose Tu + u

G(x,, Tu, Tu) < kG(x,_1, u, u). (12)
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Taking the limit n — o and using the fact that T is G-continuous in its

variables, we get
G, Tu, Tu) < kG(u, u, u). (13)
Hence,
G(u, Tu, Tu) < 0. (14)

This is a contradiction. So, Tu = u. To show the uniqueness, suppose

v # u 1s such that Tv = v, then
G(Tu, Tv, Tv) < kG(u, v, v). (15)
Since Tu = u and Tv = v, we have
G(u, v, v) <0, (16)
which implies that v = w.

Remark 3.10. Let (X, G) be a rectangular G-metric space and
d: XxX — [0, <) be a function defined by G(x, y, y) = d(x, y), then

Theorem 2.9 reduces to Banach contraction principle in rectangular-
metric space (an analogue of Banach contraction principle in metric

space).

Theorem 3.11. Let X be a complete generalized rectangular metric

space and T : X — X be a map for which there exist the real number b

satisfying 0 < b < % such that for each pair x, y, z € X.
G(Tx, Ty, Tz) < b[G(x, Tx, Tx) + G(y, Ty, Ty) + G(z, Tz, Tz)]. 17

Then T has a unique fixed point.
Proof. Considering (17),

G(Tx, Ty, Ty) < blG(x, Tx, Tx) + G(y, Ty, Ty) + G(z, Tz, Tz)]. (18)



FIXED POINT THEOREMS ON GENERALIZED ... 67
Suppose T satisfies condition (18) and xy € X be an arbitrary point and
define the sequence x,, by x, = T"x,, then we have
G(xp, Xp41s Xpa1) < b[G(xy_q, %y, x,) + Gy, Xpi1s Xpa1)
+ Gxn, Xpa1, Xpi1)]-

We deduce that

IN

G(xn’ Xn+1> xn+1) EG(xn—l’ Xn> xn)

IN

G(xn’ Xn+1> xn+1) pG(xn—l’ Xns xn)

IN

2
p G(xn—2’ Xn-1» xn—l)

IN

3
G(xn’ Xn+1> xn+1) p G(xn—3’ Xn-2> xn—2)

G(xn’ Xn+1s xn+1) < pnG(x07 X1, xl)

n

&n S P 8o (19)
Suppose there exists n € N such that x5 = x,,.

G(xO, TxO, TxO) = G(xn, Txn, Txn),

G(xO’ X1, xl) = G(xn’ Xn+l> xn+1)’
o = E&n»
g0 < k"go.

Contradiction since &k <1. Hence Vne N, xy # x,. Repeating this
argument, we have that Vn,me N with n # m, x,, # x,,. Then the

terms of the sequence {x,} are distinct.
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By repeated use of (iv) in Definition 3.1 and all distinct points

Xpil> Xpa2s s Xm—1, We have the following for all odd m — n:

G(xn’ Xm> xm) = G(xm Xn+ls xn+l) + G(xn+17 Xn+2> xn+2)

+ G(x,49, X0y Xp)

INA

8n t 8n+1 t G(xn+27 Xm> xm)

8n t 8n+1 t 8n+2 + 8n+3 + G(xn+4’ Xm> xm)

INA

n+3

Zgi + G(xn+4’ Xm> xm)
i=n

INA

IA
3

1 oo
g < Zgi- (20)
i=n

i=n

Similarly, if m —n > 4 is even, we have
m-3
G(x,, Xy, %) < Z g +G(xp_2, Xm» Xm)- (21)
i=n

From (19) and (20), we have

1 2 -2 -1
G(x,, Xy, X)) < D80+ 0" 8o+ g0 +...+ P %2y + P 80

< [pn +pn+1 +pn+2 +pn+3 +”.+pm—l]g0
< p"l1+p+p>+pd+pt +...+pm_n_1]g0
-1
< p"1-p) go. (22)

From (19) and (21), we have

-1
8o t G(xm—Z’ Xm> xm)

IA

Gxy, X, Xp) p"(1-p)

p"(1-p)tag + P 2G(xg, x9, x3).  (23)

IA
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Taking the limit of G(x,,, x,,, x,,) as n, m — o, we have

lim G(x,, x,,, x,;,) = 0. (24)

n, m—soo
For n,m,le N with n>m > 1,
Gxp, X, x7) < Glxy, 2y 1, x5-1) + Glry g, X2, ¥y 2)
+ G(x,_9, Xy ) + G(x,,, x,,, X7). (25)
Taking the limit of G(x,,, x,,, x;) as n, m, [ — o, we have

lim G(x,, x,,, x;) = 0. (26)

n,m,l—>o
So, x,, is a G-Cauchy sequence.

By completeness of (X, G), there exist v e X such that x, is
G-convergent to u.

Suppose Tu + u
G(x,, Tu, Tu) < b[G(x,_;, x,, x,,) + G(u, Tu, Tu) + G(u, Tu, Tu)]

INA

b[G(x,,_1, x,, x,) + 2G(u, Tu, Tu)]. @27

Taking the limit as n — « and using the fact that 7' is G-continuous in

its variables, we get

G(u, Tu, Tu) < 2bG(u, Tu, Tu). (28)

Hence,

G(u, Tu, Tu) < 0. (29)

This is a contradiction. So, Tu = u. To show the uniqueness, suppose

v # u 1s such that Tv = v, then
G(Tu, Tv, Tv) < b[G(u, Tu, Tu) + G(v, Tv, Tv) + G(v, Tv, Tv)]. (30)
Since Tu = u and Tv = v, we have
G, v, v) <0, (31)

which implies that v = w.
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Remark 3.12. Let (X, G) be a rectangular G-metric space and
d: XxX — [0, <) be a function defined by G(x, y, y) = d(x, y), then

Theorem 3.11 reduces to Kannan’s fixed point theorem in rectangular-
metric space (an analogue of Kannan’s fixed point theorem in metric

space).

Theorem 3.13. Let X be a complete generalized rectangular metric

space and T : X — X be a map for which there exists real numbers a, b, ¢

satisfying 0<a<1,0<b <%, 0<c¢ <% with & = max{a,&,ﬁ}
and
0, if t=0,
ow=1
55 if t#+0,
such that for each pair x, y, z € X.
G(Tx, Ty, Tz) < 0(8G(x, y, z) + 26G(x, Tx, Tx)). (32)
Then T has a unique fixed point.
Proof. Considering (32),
G(Tx, Ty, Ty) < 0(8G(x, v, y) + 28G(x, Tx, Tx)) (33)

Suppose T satisfies condition (33) and xy € X be an arbitrary point and

define the sequence x, by x, = T"x, then
G(xn’ Xn+1> xn+1) = G(Txn—l7 Tx,, Txn)

< 08G(x,y_1, x5, X)) + 28G(x,_1, Xy, X))

IA

038G (%15 %Xy, X))

IA

3G(x,_1, X, Xp,)-
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Setting g, = G(x,,, X411, X,41), then

gn <88y (34)
Deducing
g < 8,1,
g, < 8"gy, Vne NU{0}L (35)

Suppose there exists n € N such that x5 = x,,.

G(xO, TxO, TxO) G(xn, Txn, Txn),

G(xn > Xn+ls xn+1)’

G(xO’xl’xl)
o = E&n»

go < d"go.

Contradiction since 8 < 1. Hence Vn € N U {0}, xo # x,,. Repeating this
argument, Vn, m € N U {0} with n # m, x,, # x,,,. Then the terms of the

sequence {x, } are distinct.

By repeated use of (iv) in Definition 3.1 and all distinct points
Xpals Xpaos -y X1 With m > n, we have the following for all odd

m—n:

IN

G(xm Xm>s xm) G(xn’ Xn+l> xn+1) + G(xn+l’ Xn+2> xn+2)

+ G(x,409, Xy %)

S 8pt8ua1t G(xn+2’ Xm> xm)

S gn+ 8ni1l t8ni2t 8nis +Gxyig, Xy, X))
n+3

= Zgi +G(xn+47 Xm> xm)
i=n
m-1 oo

< Zgi S Zgi- (36)
i=n i=n
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Similarly, if m —n > 4 is even, we have
m—3
G(xn’ Xms xm) < Zgi + G(xm—2’ Xm> xm)

i=n

From (34) and (36), the following are obtained.

(37

G(xpy, Xpyy Xpy) < 880 + 0" gy + 8" 2gy +...+ 8™ 2gy + 8™ gy

IN

[67 + 8" + 82 + 8" 4+ .+ 8™ g,

IN

' [1+6+8%+8%+8* +... + Sm‘”‘l]go
< §"(1-8)tg,.
From (34) and (37), we have
Gx,y, Xy, %) < "1 =8)tgg + G(xp_s, s Xp)
< 81 -8) gy + 8™ 2G(xg, X9, X3).
Taking the limit of G(x,,, x,,, x,,) as n, m — oo,

lim G(x,, x,,, x,,) = 0.
n,m—soo

For n,m,le NU{0} with n > m > I,
Gy, X, x7) < Glog, Xp1, xy-1) + Glag 1, Xp9, X59)
+ G(x,_9, Xy )+ Gy, x,,, X7).
Taking the limit of G(x,,, x,,, x;) as n, m, | — oo,

lim  Glx,, x,,, ;) = 0.
n,m,l—oo

So, {x,,} is a G-Cauchy sequence.

(38)

(39)

(40)

(41)

(42)
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By completeness of (X, G), there exist uwe X such that x, is

G-convergent to u.
Suppose Tu + u
G(x,, Tu, Tu) < 0(8G(x,,_1, u, u) + 28G(x,,_1, x,,, x,,))- (43)
Taking the limit as n — o and using the fact that T is G-continuous in
its variables,

G(u, Tu, Tu) < 0(8G(u, u, u) + 28G(u, u, u)). (44)
Hence,
G(u, Tu, Tu) < 0. (45)

This is a contradiction. So, Tu = u. To show the uniqueness, suppose
v # u 1s such that Tv = v, then

G(Tu, Tv, Tv) < 0(8G(u, v, v) + 26G(u, Tu, Tu)). (46)
Since Tu = u and Tv = v, then
G(u, v, v) <0, 47)
which implies that v = w.

Remark 3.14. Let (X, G) be a rectangular G-metric space and
d: XxX = [0, ) be a function defined by G(x, y, y) = d(x, y) with
o(t) = t, then Theorem 3.13 reduces to Zamfirescu’s fixed point theorem
in rectangular-metric space (an analogue of Zamfirescu’s fixed point

theorem in metric space).

Theorem 3.15. Let X be a complete generalized rectangular metric
space and T : X — X be a map for which there exists real numbers a, b, c

satisfying 0Sa<1,0£b<%,0£c<% with 5=max{a,&,ﬁ}

such that for each pair x, y, z € X.
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where § € [0,1) and function P :R" — R* with () =t a monotone

increasing sequence. Then T has a unique fixed point.
Proof. Considering (48),

G(Tx, Ty, Ty) < 8G(x, y, y) + p(28G(Tx, y, ¥)). (49)

Suppose T satisfies condition (49) and x5 € X be an arbitrary point and

define the sequence x,, by x, = T"x,, then
G(xp, Xpi1s Xp41) = G(Txyy, Txy, Txy)
< 8G(x,_1, Xp, X,) + V(238G (x,,, x,,, x,,))
< 8G(x,_1s Xp, Xp)-

Setting g, = G(x,,, X411, X,4+1), then

gn < 08,1 (50)
Deducing
g < 8,1,
g, < 8"gy, Vne NU{0}L (51)

Suppose there exists n € N such that x5 = x,,.

G(xO, TxO, TxO) = G(xn, Txn, Txn),

G(xO’ X1, xl) = G(xn’ Xn+1> xn+1)’
o = E&n»
go < 8"go.

Contradiction since 8 < 1. Hence Vn € N U {0}, x( # x,,. Repeating this
argument, Vn, m € N U {0} with n # m, x,, # x,,. Then the terms of the

sequence {x, } are distinct.
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By repeated use of (iv) in Definition 3.1 and all distinct points

Xpil> Xpa2s «oos Xym—1 With m > n, we have the following for all odd
m-—n:

IA

G(xn’ Xm> xm) G(xn’ Xn+ls xn+1) + G(xn+1’ Xn+2s xn+2)

+ G(xn+2’ Xm> xm)

IN

En t 81 t+ G(xn+2’ Xm> xm)

IN

En t 8n+1 + 8n+2 t 8nas t G(xn+4’ Xm>s xm)

n+3

Zgi + G(xn+4’ Xm>s xm)

i=n

IN

IN

m-1 )
Dgis) g (52)
i=n i=n

Similarly, if m —n > 4 is even, we have

m—-3

G(x,,, X, X,,) < Z i +G(xp_9, Xpm» X )- (53)

i=n

From (50) and (52), the following are obtained:

G(xpy, Xy Xpy) < 8o + 08" gy + 8" 2gy + ...+ 8™ 2gy + 8™ gy
< [8% + 8™ 48712 4+ 57 4+ 8™ g,
< '[1+6+8%+8%+8% +... + §m " 1g,
< "(1-8)tg,. (54)

From (50) and (53), we have
Glxn, Xy Xpy) < 8"(1=8)" g0 + Clmogs Tpn» Xm)

< Sn(]. - 8)_1g0 + Sm_zG(XO, X9, XZ). (55)



76 0. K. ADEWALE et al.

Taking the limit of G(x,,, x,,, x,,) as n, m — oo,

lim G(x,, x,,, x,) = 0. (56)

n, Mm-300
For n,m,l e NU {0} with n > m > I,
Gy, X, x7) < Glog, Xp1, xy-1) + Glag, %59, X59)
+ G(xp_g,s Xy %) + G(x),, X, x7). (57)
Taking the limit of G(x,,, x,,, x;) as n, m, | — oo,

lim  Gl(x,, x,, x;) = 0. (58)

n,m,l—oo
So, {x,,} is a G-Cauchy sequence.

By completeness of (X, G), there exist uwe X such that x, is

G-convergent to u.
Suppose Tu + u

G(x,, Tu, Tu) < 8G(x,_1, u, u) + P(28G(x,,, u, u)). (59)

Taking the limit as n — « and using the fact that 7' is G-continuous in

its variables,

G(u, Tu, Tu) < 8G(u, u, u) + P(28G(u, u, u)). (60)

Hence,

G(u, Tu, Tu) < 0. (61)

This is a contradiction. So, Tu = u. To show the uniqueness, suppose

v # u 1s such that Tv = v, then
G(Tu, Tv, Tv) < 8G(u, v, v) + P(26G(Tu, v, V)). (62)

Since Tu = u and Tv = v, then
G, v, v) <0, (63)

which implies that v = w.
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Remark 3.16. Let (X, G) be a rectangular G-metric space and
d: XxX — [0, <) be a function defined by G(x, y, y) = d(x, y) with
P(28G(Tx, y, z)) = 0, then Theorem 3.15 reduces to Banach contraction

principle in rectangular-metric space (an analogue of Banach contraction

principle in metric space).
Example 3.17. Let X = R endowed with a generalized rectangular
metric G(x, y, z) = max{jx — y|, |x — 2, |y — 2|} for all x, y, z € X. Define

the mapping 7 : X — X by
2, if x2>1,
T(x) =11, if xe[0,1),
0, otherwise.

It is observed that Banach contraction principle in G-metric space
introduced by Mustafa and Sims [10] cannot be applied in this case

because

G(T(-1), T1),TB)) = G(,2,2)
= max{|0-2,[0-2,]2-2}
= max{2, 2, 0}
= 2
> kG(-1, 1, 3)
> kmax{]-1-1],[-1-3[, [1 - 3]}
> kmax{2, 4, 2}

> 4k =4%025=1,0.25¢ [0, 1).
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With the newly introduced contractive mapping, the above case can be

taken care off. As a matter of fact, for all x, y, z € X,
G(Tx, Ty, Tz) < 8G(x, y, z) + p(28G(Tx, y, z)).

Since § = max{a, ﬁ, = }, 0 < G(Tx, Ty, Tz) < 2 and »(t) = ¢.

Theorem 3.18. Let X be a complete generalized rectangular metric
space and T : X — X be a map for which there exists real numbers a, b, c

satisfying 0Sa<1,0£b<%,0£c<% with Szmax{a,%,ﬁ}

such that for each pair x, y, z € X.

G(Tx, Ty, Tz) < 0(8G(x, y, z)) + P(28G(x, Tx, Tx)), (64)

where 8¢ [0,1) and functions ¢, p:RT — RY with () = and

2
4
o(t) =% a monotone increasing sequences. Then T has a unique fixed
point.

Proof. Considering (64),

G(Tx, Ty, Ty) < 0(8G(x, y, y)) + P(28G(x, Tx, Tx)). (65)

Suppose T satisfies condition (65) and x5 € X be an arbitrary point and

define the sequence x,, by x, = T"x,, then

G(xn’ Xn+1s xn+1) = G(Txn—l’ Tx,, Txn)

IN

¢(8G(xn—1’ Xns xn)) + ‘D(25G(xn_1, Xns xn))
< 8G(xpy_1, Xpys ).
Setting g, = G(x,,, X411, X,41), then

gn <88y (66)
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Deducing

IA

&n dgn-1,
g, < d"gy, Vne NUI{0} (67)

Suppose there exists n € N such that x5 = x,,.

G(xO, TxO, TxO) = G(xn, Txn, Txn),

G(xO’ X1, xl) = G(xn’ Xn+1> xn+1)’
o = E&n»
go < 8"go.

Contradiction since & <1). Hence Vn e N U {0}, xo # x,. Repeating
this argument, Vn, m € N U {0} with n # m, x,, # x,,,. Then the terms

of the sequence {x,} are distinct.

By repeated use of (iv) in Definition 3.1 and all distinct points

Xpals Xpaos -y X1 With m > n, we have the following for all odd

m—n:

IA

G(xn’ Xm> xm) G(xn’ Xn+ls xn+l) + G(xn+1’ Xn+2> xn+2)

+ G(x,409, Xy X))

IN

8p T 8p+1 t G(xn+2’ Xm> xm)

IN

8n t 8n+1 t 8n+2 t 8n+3 + G(xn+4’ Xm> xm)

n+3

Zgi + G(xn+4’ Xm> xm)
i=n

IN

IN

m-1 =
Dgis) 8 (68)
i=n i=n
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Similarly, if m —n > 4 is even, we have
m-3
G(x,,, X, X,,) < Z i + G(xp_9, Xpm» X )- (69)

i=n

From (66) and (68), the following are obtained:

G(xyy, Xy Xpy) < 8o + 08" gy + 8" 2gy + ...+ 8™ 2gy + 8™ gy
< [8% + 8" 48712 4 57 4+ 8™ g,
< '[1+6+8%+8%+8% +... + §m " 1g,
< 8"(1-8)tg,. (70)

From (66) and (69), we have
G(x,y, Xy, %) < "1 =8)tgg + G(xp_s, s Xp)
< 81 -8) gy + 8™ 2G(xg, xg, Xx3). (71)
Taking the limit of G(x,,, x,,, x,,) as n, m — oo,

lim G(x,, x,,, x,,) = 0. (72)

n, m—so0
For n,m,le NU {0} with n > m > I,
G, X, x7) < Glog, Xpy, xy-1) + Glag 1, %59, X59)
+ G(x,_9, %,, X)) + Gx,,, X, X7)- (73)
Taking the limit of G(x,,, x,,, x;) as n, m, | — oo,

lim  Glx,, x,,, ;) = 0. (74)

n,m,l—oo

So, {x,} is a G-Cauchy sequence.
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By completeness of (X, G), there exist uwe X such that x, is
G-convergent to u.
Suppose Tu + u
G(x,,, Tu, Tu) < 0(8G(x,,_1, u, u)) + (28G(x,_1, X, x,,))- (75)
Taking the limit as n — o and using the fact that 7' is G-continuous in
its variables,
G(u, Tu, Tu) < 0(8G(u, u, u)) + P(28G(u, u, u)). (76)
Hence,
G(u, Tu, Tu) < 0. (77)

This is a contradiction. So, Tu = u. To show the uniqueness, suppose

v # u 1s such that Tv = v, then
G(Tu, Tv, Tv) < ®(8G(u, v, v)) + P(26G(u, Tu, Tu)). (78)
Since Tu = u and Tv = v, then
G, v, v) <0, (79)
which implies that v = w.

Remark 3.19. Let (X, G) be a rectangular G-metric space and
d: XxX — [0, <) be a function defined by G(x, y, y) = d(x, y) with
0@) =t and P(28G(x, Tx, Tx)) = 0, then Theorem 3.18 reduces to

Banach contraction principle in rectangular-metric space.
Clearly, Remark 3.14 can be applied in the case Remark 3.16.

Example 3.20. Let X = R endowed with the a generalized rectangular
metric G(x, y, z) = |x —y|+|x —z|+|y —z]| for all x, y, ze X. Define

the mapping 7' : X — X by
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4 if x> 2

X

T(x) = < 2x, if x e (0, 2],

0, otherwise.

At first, it is observed that Banach contraction principle in G-metric space
introduced by Mustafa and Sims [10] cannot be applied in this case too

because

Il
Q
—_~
S
o
—
SN—

G(T3, T1, T4)

|4 -2+ |4 1]+ |2-1]
= 2

> kG(3, 1, 4)

\Y

k(3 -1|+|3 -4 +[1—-4])
> 6k:6x%:%,%e [0, 1).
But Theorem 3.15 can be applied in this case because
G(T3, T1,T4) = G(4,2,1)
= |3-2/+|3-1+[2-1]

= 2

IA

8G(3, 1, 4) + 28G( % 1, 4)

INA

8[G(3, 1, 4) +2G(5, 1, 4)]

IA

8[(13 1] +]3 - 4] +[1 - 4])

b2l -1 4|4 - 441 - 4]

INA

56
3><8.
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Since 8§ = max{a, %, ﬁ }. Theorem 3.18 can be applied in this case

too because

G(T3, T1, T4) G(4,2,1)

3

= |3 -2[+]5-1+[2-1

= 2

< 0.5x8G(3,1,4)+0.5%x3G(3, 5, %)

< 0.5x3[G3,1,4)+G(3, £, 4]

< 0.5x9[(|13-1|+[3-4]|+[1-4])
+13-31+1B-3l+15 -3l

< Bx§

i = b
Since 8 = max{a, 1%, 75 |-

4. Concluding Remarks

In this paper, we present the notion of generalized rectangular metric
space which extends a rectangular metric space. We also use an example
to show that the newly introduced generalized rectangular metric space is
better than rectangular metric space and different from G-metric spaces.

Some fixed point theorems are stated and proved in this new space.
Acknowledgement

The authors are grateful to the anonymous referee whose comments

improved the original version of this manuscript.



84

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

0. K. ADEWALE et al.
References

0. K. Adewale, J. O. Olaleru, H. Olaoluwa and H. Akewe, Fixed point theorems on a

v-generalized quasi-metric spaces, Creative Mathematics and Informatics 28(2)

(2019), 135-142.

0. K. Adewale, J. O. Olaleru and H. Akewe, On quasiconvex metric spaces,
Advanced Fixed Point Theory 10 (2020), 1-11.

DOLI: https://doi.org/10.28919/afpt/4770

0. K. Adewale, J. O. Olaleru and H. Akewe, Fixed point theorems on a quaternion-
valued G-metric spaces, Communications in Nonlinear Analysis 7(1) (2019), 73-81.

0. K. Adewale and K. Osawaru, G-cone metric spaces over Banach algebras and
some fixed point results, International Journal of Mathematical Sciences and
Optimization: Theory and Applications 2 (2019), 546-557.

0. K. Adewale, J. C. Umudu and A. A. Mogbademu, Fixed point theorems on

A p -metric spaces, International Journal of Mathematical Sciences and Optimization:
Theory and Applications 1 (2020), 657-668.

A. Branciari, A fixed point theorem of Banach-Caccippoli type on a class of
generalized metric spaces, Publicationes Mathematicae 57(1-2) (2000), 31-37.

B. C. Dhage, Generalized metric space and mapping with fixed point, Bulletin of the
Calcutta Mathematical Society 84 (1992), 329-336.

M. Frechet, Sur quelques points du calcul fonctionnel, Rendiconti del Circolo
Matematico di Palermo 22 (1906), 1-72.

S. Gahler, 2-Metrische Raume und ihre topologische Struktur, Mathematishe
Nachrichten 26(1-4) (1963), 115-148.

DOI: https://doi.org/10.1002/mana.19630260109

Z. Mustafa and B. Sims, A new approach to generalized metric spaces, Journal of
Nonlinear and Convex Analysis 7(2) (2006), 289-297.

J. O. Olaleru, Common fixed points of three self-mappings in cone metric spaces,
Applied Mathematics E-Note 11 (2011), 41-49.

J. 0. Olaleru and B. Samet, Some fixed point theorems in cone rectangular metric
spaces, Journal of the Nigerian Mathematical Society 33(1-3) (2014), 145-158.



