
Journal of Mathematical Sciences: Advances and Applications 

Volume 65, 2021, Pages 1-23 

Available at http://scientificadvances.co.in 

DOI: http://dx.doi.org/10.18642/jmsaa_7100122194  

2020 Mathematics Subject Classification: 35J05, 76D05, 76N10, 76D07. 

Keywords and phrases: Navier-Stokes flows, plane diffuser, effects of viscosity, slip boundary 

conditions. 

Received March 4, 2021 

 2021 Scientific Advances Publishers 

This work is licensed under the Creative Commons Attribution International License            

(CC BY 3.0). 

http://creativecommons.org/licenses/by/3.0/deed.en_US 

Open Access 
 

 

CORRELATION BETWEEN NO-SLIP AND SLIP 

BOUNDARY CONDITIONS ASSOCIATED WITH  

A TWO-DIMENSIONAL NAVIER-STOKES  

FLOWS IN A PLANE DIFFUSER 

RANIS IBRAGIMOV1 and VESSELIN VATCHEV2 

1Department of Mathematics 

Wenatchee Valley College 

1300 Fifth St. 

Wenatchee, WA 98801 

U. S. A. 

e-mail: ribragimov@wvc.edu 

2Department of Mathematics 

University of Texas Rio Grande Valley 

One West Boulevard 

Brownsville, TX 78520 

U. S. A. 

e-mail: vesselin.vatchev@utrgv.edu 

 



RANIS IBRAGIMOV and VESSELIN VATCHEV 2 

Abstract 

We examine the viscous effects of slip boundary conditions for the model 

describing two-dimensional Navier-Stokes flows in a plane diffuser. It is shown 

that the velocity profile is related to a half period shifted Weierstrass function 

with two parameters. This allows to approximate the explicit solution by a 

Taylor series expansion with two new micro- parameters, that can be measured 

in physical experiments. It is shown that the assumption for no-slip boundary 

conditions is stable in the sense that a small perturbation of the boundary 

values result in a small perturbation in the solutions.  

1. Introduction 

The governing equations, along with the appropriate constitutive 

relations describe fully the fluid flow within a given geometry. However, 

mathematical model cannot be solved unless we specify the boundary 

conditions for the problem. Physically, the need for boundary conditions is 

not surprising, because the boundary conditions provide information on 

the way the fluid interacts with its surroundings. Mathematically, this is 

expected because upon integration, the differential equations yield 

constants that are fixed using boundary conditions. 

In this paper, we will consider the viscous effects of slip boundary 

conditions for the model describing two-dimensional Navier-Stokes flows 

in a plane diffuser. A diffuser is an engineering device used within 

internal flow systems widely used in industry. For example, ejectors used 

in refrigeration systems as entrainment and compression components or 

expanders, attract interest from engineeries as a means of more efficient 

energy use ([1, 6, 19]). Commonly, such comples flows in a diffuser are 

encountered in turbomachines between a compressor and a combustor or 

at the exit of a turbine, as shown in Figure 1. Diffusing passages may also 

be encountered in small-scale devices such as fluidic actuators and Micro-

Electro-Mechanical Systems. 
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Figure 1. Turbine exhaust diffuser. Sourse [10]. 

It is known that in nozzles the static pressure decreases in the flow 

direction (favourable pressure gradient) [3, 11]. However, fluid particle 

.owing through a diffuser experiences an increasing static pressure 

(adverse pressure gradient) resulting to complex fluid phenomena, 

including flow separation and unsteadiness to transitory stall and violent 

flow-excited static pressure fluctuations ([4, 20]). Such flows are hard to 

predict quantitatively, although they are qualitatively understood [5, 18]. 

In the vast majority of problems, we have fluid flowing along solid 

boundaries. Consistent with continuum theory, the no-slip boundary 

condition states that there is no relative motion between fluid particles 

and the solid boundaries with which they are in contact. That is, 

.wallfluid VV =  (1) 
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No slip condition is the reason for formation of boundary layer in a 

fluid flow [13]. If the wall is not moving, then the fluid velocity at the wall 

is 

.0fluid =V   (2) 

Basically the molecules of the fluid crash into the molecules of the wall 

and get stopped. Then they dribble out and get crashed into by faster 

molecules farther out in the flow.  

For example, all gases experience some slip at the wall where 

typically the slip velocity V  (difference between tangential velocities of 

wall and gas) is given by a condition like 

,21 ttn qasaV −−=   (3) 

where tns  is the tangential-normal element of pressure tensor, tq  is 

tangential heat flux, and 21 , aa  are coefficients that depend on the state 

of the gas. The first term describes classical slip, the second term 

describes what is known as thermal transpiration: a flow driven by a 

temperature gradient along the wall ([16]). 

Despite its apparent simplicity, the no-slip boundary condition cannot 

be derived from first principles and could, in theory, be violated. In 

addition, it leads to some physical inconsistencies, that are not resolved 

completely. For instance, the no-slip boundary condition cannot explain 

the motion of a liquid interface in contact with a solid boundaries; 

according to this condition, the liquid interface in a partially filled glass 

must remain stationary with respect to the glass when the glass is moved. 

At the microscopic level at least, we know that this is not the case. 

Consider also the flow near an exist of a pipe. According to the no-slip 

condition, the velocity of fluid particles near the exit is mathematically 

singular as the velocity changes from zero to a finite value. 
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It has been shown in [15] that the physical inconsistencies can be 

removed mathematically by assuming that the fluid particles in contact 

with solid surface slip. This means that fluid particles in contact with the 

wall can slide, resulting in an apparent fluid velocity. As a matter of fact, 

there is a strong evidence (see, e.g., [14, 17]) that this occurs in many non-

Newtonian fluids. In such cases, the slip velocity sV  is assumed to be 

proportional to the shear along the wall, 

,wsV τλ=  (4) 

where λ  is a proportionality constant to be determined experimentally 

and wτ  is shear along the wall (see also [9]). However, for the most 

Newtonian fluids there are not many experimental evidence to support 

the presence of a slip [12]. In the present work, we consider a special case 

of a diffuser for which we study the relation between sV  and the shear. 

We show that no-slip boundary conditions can be considered as a limit 

case, ,0→λ  of the slip boundary conditions and we study the effect on 

the flow for different ranges of .λ  

2. Mathematical Model and Problem Geometry 

In two dimensions, we introduce polar coordinates ,cos θ= rx  

θ= sinry  and write two-dimensional Navier-Stokes equations 

describing a fully developed flow within a plane diffuser, as a two 

dimensional channel with the line source at the origin, as shown in 

Figure 2 
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Figure 2. Problem geometry. 
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where ru  and θu  are the radial and angular components of the velocity 

vector,  ρ  is a constant density, ( )θ,rp  is a pressure and 

.
11

2

2

22

2
2

θ∂

∂
+

∂

∂
+

∂

∂
=∇

rrrr
 (8) 

From (7), we can introduce the stream function ( )θυ/ ,r  via 

.,
1

r
u

r
ur ∂

∂
−=

θ∂

∂
= θ

ψψ
 (9) 



CORRELATION BETWEEN NO-SLIP AND SLIP … 7 

3. Basic Flow using Stream Function 

The basic flow is assumed to be purely radial emerging from a line 

source, so we can look for particular solution for the problem in the form 

( ) ( ).,,0,, 00000 θ==θ= θ rppuruu rr  (10) 

Then, as follows from Equation (5)-(6), the basic flow (10) satisfies 
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Also, it follows from (7) that υ/  is a function of θ  only. 

Hereafter the index zero is omitted. We next write the model (11)-(12) 

in terms of υ/  as follows: 
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We note that the pressure p  can be determined from Equation (14) as 
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where α  is an arbitrary function. 

4. Derivation of the Main Equation 

We rewrite the Equation (13), in which p is given by (15) 
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The left part of (16) depends only on θ  whereas the right side depends 

only on .r  Hence, the both sides are equal to a constant, say .1c  Then the 

right side of (16) yields 

( ) ,
2

0

2
1

ρ
+−=α
p

r

c
r

�
 (17) 

where .const0 =p  By substituting ( )rα  given by (17) into (15), we obtain 

the following expression for the pressure: 
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Next we modify the main equation and the boundary conditions. We 

denote 

( ) .
θ∂
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=θU  (19) 

Then in terms of ,U  the Equation (16) is written as 
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where 1c  is an arbitrary constant. Multiplying (20) by dU  and 

integrating we get the first order equation 
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where 2c  is a new constant. 

We note that the variables in Equation (21) can be separated, which 

provides us with the relation between U  and θ  in the form 
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where 

( ) .224
3

2
21

23 ccf −ξ+ξ−ξ−=ξ
�

 (23) 

The form (22) suggests that we can find the exact solution of the general 

equation (21) by the substitution 
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where y  is solution of the equation 

2
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for a real constant .2g  The general solution of the above equation is the 

Weierstrass elliptic P function, denoted ,℘  [7]. The function ( )32 ,, ggθ℘  

is a well known function that posses interesting properties and is the 

solution for our BVP problem. The first parameter 2g  appears in 

Equation (25) whereas the second parameter 3g  appears after 

integration of Equation (25). These two parameters 32 , gg  has to be 

determined by the boundary conditions. Next we provide brief overview of 

the function ℘  and it’s application to our model. 

5. Application of the Weierstrass Elliptic Function 

The Weierstrass elliptic function ℘  is well studied and has many 

applications in different branches of pure and applied mathematics, a 

good source for reference is [7]. The function ℘  is doubly periodic with 

complex periods 21 , ww  and can be defined as the solution of the 

equation 

,
2

6 22 g
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or the equivalent first order DE 

( ) ( ) ,4 32
32 gzgz −℘−℘=℘′   (27) 

where 2g  and 3g  are real valued constants. 

The function ℘  is even, ( ) ( ),zz ℘=−℘  with poles at a lattice 

generated by the periods including 0=z  and it has a Laurent expansion 

near the pole 0=z  of the form 
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We are looking for a real valued function U  and hence real valued 

( )θ℘  for real .θ  From [8] for 21 , ww  real and hence 32 , gg  are also real, 

the general solution of the equation 
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one of the periods for the ℘  function. We will show that the Equation (20) 

for the diffuser is solved by the second function for [ ]
2

,
2

00 θθ
−∈θ  thus 

avoiding the poles of ( ).θ℘  If ( )210 ,min2 ww<θ  the function 

( )
2
1w+θ℘  has a single minimum and for θ  away from the poles, it is 

analytic in ,,, 32 ggθ  which provides continuity of the solution with 
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respect to the boundary conditions. Small variations from zero initial 

conditions result in small variations in U  so this might justify the zero 

conditions in some cases. On the other hand since ℘  is defined beyond 

the limits of the interval then (27) provides the relation 
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solution. We can conclude that 00 UU ′µλ=  is not possible for 00 =U  

unless .0=µ  It is interesting to notice that if 00 >U  than the cubic 

relation (31) provides a nonlinear relation between the initial values of U  

and U ′  which is similar in nature to (4). We discuss that fact in Section 8. 

The amount of fluid for any r  is conserved which results in the 

conserving condition 
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It can be expressed in terms of Weierstrass ζ  function, ( ).θ−℘=
θ
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d

d
 The 

Weierstrass elliptic functions are implemented in Mathematica and we 

provide an example.  
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Figure 3. Three graphs for ℘  shifted to have the maximum coinciding. 

Figure 3 shows three graphs for ℘  shifted to have the maximum 

coinciding. These three graphs represent 

( ) ,3/137,29,13.0 −−+℘− x  

( ) ,3/17,2,25.0 −−+℘− x  

( ) .3/13750,1.724, −−℘− x  

All of the functions are analytic in a neighbourhood around the maximum 

value but have irremovable singularities outside finite intervals centered 

at the maximum points. Another observation is that the profile of ℘  

depending on the parameters 32 , gg  can vary a lot with the variation of 

the parameters. In the next section we conduct numerical study of the 

solutions of the BVP. 
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6. Numerical Study 

The Weierstrass function ( )32 ,, ggθ℘  has different representations. 

Computationally, the elliptic theta functions provide better convergence 

than the Laurent series but for our problem we take a different approach. 

The parameterization by 32 , gg  is not appropriate for accessing values of 

the function. The Laurent series expansion is slowly convergent near the 

poles but using the fact that the function is analytic on the domains of our 

interest we mimic the construction of ℘  for the diffuser problem. We 

consider two macro-parameters that could be easily measured during an 

experiment, the maximum velocity of the flow, ,E  and since the amount 

of fluid is con-served for any r  we consider it as a parameter, say .Q  The 

following problem is discussed next. 
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where �  is the viscosity of the fluid, Q,0θ  are positive constants, and s  

is a real parameter. 

The solution of the DE (33) is ( ),
2
1w+θ℘  which is analytic and even 
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with coefficients 

( )( )
( )

.
!2

02

k

k

k

u
a =  (36) 

We introduce two new parameters: the maximum value ( ) EU =0  and s  

from (33). Using the DE we can find a recurrence relation for .ka  For 

0=k  we have ( ) ,00 Eua ==   for 1=k  from the equation 

( )
,

2
2

2

1

2

0 2
1

s
EE

u
+−−=

′′
=

�
a  (37) 

and for 1>k  by differentiating the DE ( ) times-22 −k  we get 

( )

( ) ( )
( )( )

( )

( )!2
4

!2

1

!2

22
222

2

kkk

k
k

k −
− −−=

u
u

u

�
 

( )
( ) ( )

( )

( )
.

!2
4

22

!2

1 22
22

22

0
k

k

k

k
k

k −
−−

−

=

−












 −
−= ∑ u

uu

m

mm

m
�

 (38) 

Since ( )( ) 0012 =−mu  we have 

( )( )
( ) ( )( )

( )( )
( )

( )( )
( )!2

0

!222

0

122

1

!2

0 22221

0

2

m

u

m

uu mm

m
−−−

−=
−−−

=
∑ kkkk

kkk

�
 

( )

( )( )
( )

,
!22

0

122

4 22

−−
−

−

kkk

ku
  (39) 

 

and 

( )
.4

1

122

1
11

1

0













+

−
−= −−−

−

=
∑ kk

k

k
kk

aaaa mm

m
�

  (40) 

 

 



CORRELATION BETWEEN NO-SLIP AND SLIP … 15 

The first seven terms are computed as follows: 
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Considering them as functions of s  all terms 61 ,, aa …  are at most 

cubic. The conserve condition for 0>Q  is 
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This condition for the approximation ( ) m
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polynomial of degree 12 for )6=n  is  
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where ,
2
0θ

=q  and is a cubic equation in .s  In general for a fixed 

maximum value ,E  the n-Taylor’s polynomial is a polynomial for c  and 

we can use numerical methods effectively to approximate s such that the 

solution satisfies the conserve condition. 
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Next we consider [ ]
4

,
4

ππ
−∈x  and study how the boundary values 

at 
4

π
±  and Q  change by varying E  and .�  

Experiment 1. Fix ,5,1 == Q�  then for 6,,2 …=E  from (42) 

with 9=n  we estimate [ ].18.519,20.5,23.5,27.5,=s  Next, using (35) 

we get the approximate solution shown in Figure 4. 

The approximate values for [ ].4.9874,4.99104.9880,5.0338,5.0656,=Q   

The solutions in Figure 4 show that the boundary conditions decrease 

smoothly to zero when E  varys from 2 to 5, and become to negative for 

.6=E  In the case ,6>E  the solution exists only for negative initial 

values. This might be considered corresponding to walls moving in 

opposite direction of the flow. Another observation is that for small values 

of E  but 5=Q  the maximum velocity is along the walls. 

 

Figure 4. 5=Q  and .6,,2 …=E  

Experiment 2. Fix 10,1 == E�  and let s  from 52 to 86, skip 5. By 

using (35), we obtained the following solutions: 
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The conserve quantity is =Q  [7.8194, 8.3485, 8.8662, 9.3732, 9.8700, 

10.3570, 10.8347]. 

According to the numerical results shown in Figure 5, for a fixed 

maximum value, ,10=E  by varying s  the conserve quantity varies 

smoothly and the boundary conditions vary from negative to positive. 

 

Figure 5. 10=E  and s  varies from 52 to 86, skip .5=s  

Experiment 3. In the last experiment we study the effect when ν  

varies from 0.35 to 2.5 with a step 0.2. The maximum value is fixed as 

4=E  and .17=s  Using the McLauren series again we obtained the 

following solutions: 

The conserve quantity is =Q  [2.3411, 3.4708, 4.0885, 4.4909, 4.7752, 

4.9873, 5.1517, 5.2830, 5.3902, 5.4795, 5.5550]. 
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Figure 6 shows that for 35.0=�  the initial conditions are negative and 

when ν  increases they smoothly increase. 

 

Figure 6. 10=E  and s  varies from 52 to 86, skip .5=s  

7. Slip vs. No-Slip Boundary Conditions 

In this section, we show that the no-slip boundary condition can be 

obtained as an uniform limit of the slip boundary condition. Following the 

notation in (4) we introduce 

,

2
0θ

±=θθ
λµ−=
d

dU
Us  (43) 
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where sU  is the fluid velocity along the wall .2/0θ±=θ  For ease of 

notations we assume 1=λ  and then the slip boundary condition (4) 

becomes .ss UU ′µ−=  When coupled with (33) it is equivalent to ( )µsU  

being a positive solution of the cubic equation 

( ),
1 2

2 ss UfU =
µ

  (44) 

where f  is introduced by (23). 

The cubic polynomial ( ) ( ) 21
23 22

1
4

3

2
, cxcxxxP +−

µ
++=µ

�
 as a 

function of µ  is uniformly decreasing for any ,x  indeed 

,0
2 2

3
<

µ
−=

µ∂

∂
x

P
 (45) 

for .0>µ  When ( ) 2,, xxP ≈µ∞→µ  with one positive and one negative 

zeros in a neighbourhood of ,0=x  the third zero approaches .∞−  When 

∞→µ ( ) ( )0,, xPxP →µ  and the zeros approach the zeros of ( ).0,xP  

Our interest is in the behaviour of ( )µsU  when .0→µ  From the above 

considerations, it follows that ( )µsU  is the greatest positive solution of 

the cubic equation ( ) 0, =µµ xP  and ( ) .00 =sU  By using the formulas for 

solutions of cubic equations (44), we can conclude that the positive zero 

( ) ( )20 µ+=µ OUs  when .0→µ  For any choice of 21, cc  and the power 

series expansion of U  it follows that ( ) ( )0,, θ→µθ UU  as .0→µ  An 

example with viscosity 1=�  and ,351 =c  172 =c  on the interval 

[ ]
8

,
8

ππ
−  is illustrated in Figure 6. Table 1 contains the values of µ  and 

the corresponding ( )µsU  as well as the maximum velocity in each case. 
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Table 1 

µ  0 0.03 0.05 0.07 0.09 0.15 0.21 0.26 0.36 0.47 8 800 

( )µsU  0 0.20 0.37 0.54 0.88 1.81 2.85 3.73 4.42 4.42 4.42 4.42 

E  17.50 17.25 17.00 16.75 16.25 14.75 12.75 10.50 6.25 6.25 6.25 6.25 

For small values of µ  the boundary conditions are close to zero with 

maximum velocity in the velocity of 17. For larger values of 36.0>µ  the 

solution U  convergence very fast to the limit case ( ).0,θU  We see that 

slip boundary conditions result in solutions that uniformly converge to 

the solution in the no-slip case when ,0→µ  which is also illustrated in 

Figure 7. 

 

Figure 7. Slip vs no-slip BC: right graph is ( ),µU  left graph is ( ).µθU  

8. Conclusion 

We studied the correlation between no-slip and slip boundary 

conditions for Newtonian fluid for special case of a plane diffuser. The 

general solution of Equations (20) and (25) for the velocity is related to a 

half period shifted Weierstrass P function with parameters ., 32 gg  The 
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explicit solution obtained is a well known function in many areas of 

mathematics but for our analysis we provided a Taylor series expansion 

centered at 0  with two new parameters, the maximum velocity E  and 

the parameter .s  In Section 7, we presented a numerical study of the flow 

described by two macro-parameters, the maximum flow and the 

conserved quantity .Q  These two quantities can be easily measured in 

physical experiments. In a series of examples, we showed that the 

assumption for no-slip boundary conditions is stable in the sense that a 

small perturbation of the boundary values result in a small perturbation 

in the solutions. 

In Section 8, we established that slip boundary conditions are uniform 

limit of no-slip boundary conditions and considered constructive method 

for solving the boundary value problem 

,
1

4 1
2

2

2

cUU
d

Ud
=++

θ �
 (46) 

 .
θ

µ−=
d

dU
U s
s  (47) 

Since ejector-based systems provide a potentially promising solution, 

particularly for moderate heating or cooling applications, refrigeration 

and air conditioning, the results presented in this work might be useful in 

physical experiments studying the fluid velocity and with slip or no-slip 

effect. A better understanding the correlation between slip and no-slip 

boundary conditions in a diffuser may improve the technology of ejector-

based systems, which can recover low-grade energy available as waste 

heat in most industrial processes and use renewable energy or any other 

source at low cost. 
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