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Abstract 

This paper concerns some types of coherent quantale morphisms: Baer, 

minimalisant, quasi rigid, quasi r- and quasi quantale-∗r  morphisms. Firstly, 

we study how the reticulation functor ( )⋅L  preserves the properties that define 

these types of quantale morphisms. Secondly, we prove some characterization 

theorems for quasi rigid, quasi r- and quasi quantale-∗r  morphisms. These 

theorems extend some results existing in the literature of ring extensions and 

frame extensions.  
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1. Introduction 

The papers ([5], [22]) studied some important classes of ring 

morphisms and ring extensions. Among them we mention Baer, 

minimalisant, flat ring morphisms and rigid, r- and ring-∗r  extensions 

(resp., quasi rigid, quasi r- and quasi ring-∗r  extensions). 

The quantales are multiplicative complete lattices that extend the 

lattices of ideals in (unital) commutative rings, as well as other lattices of 

congruences [23, 11, 21]. The reticulation of a quantale A  is a bounded 

distributive lattice ( )AL  whose prime spectrum is homeomorphic to the 

m-prime spectrum of A  (cf. [13, 8]). In fact, the reticulation construction 

provides a covariant functor ( )⋅L  from the category of coherent quantales 

to the category of bounded distributive lattices (see [8]). 

This paper concerns some types of coherent quantale morphisms: 

Baer, minimalisant, quasi rigid, quasi r- and quasi quantale-*r  

morphisms. These notions are abstractions of some remarkable types of 

morphisms and extensions studied in ring theory and frame theory (see 

[3-6, 22]). Firstly, we study how the reticulation functor ( )⋅L  preserves 

the properties that define these types of quantale morphisms. Secondly, 

we prove some characterization theorems for quasi rigid, quasi r- and 

quasi quantale-∗r  morphisms. These theorems extend some algebraic 

and topological results proved in [5] for ring extensions and in [3, 4] for 

frame extensions. 

Now we shall present the structure of paper. Section 2 contains 

definitions and basic properties on quantales: arithmetical properties, 

radical and m-prime elements, Zariski and flat topologies on the m-prime 

spectrum (cf. [23, 11, 14]). Section 3 concerns some transfer properties of 

the reticulation regarding the m-prime elements and the annihilators. 

Section 4 deals with some elementary functorial properties of reticulation 

with emphasis on preservation of the annihilators. In Section 5, we find 
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various descriptions of Baer and w-Baer quantale morphisms and we 

prove two preservation results related to these classes of quantale 

morphisms. In Section 6, we begin the study of m-quantale morphisms. 

Sections 7 and 8 concern the quasi r- and quasi quantale-∗r  morphisms 

respectively. We obtain algebraic and topological characterizations of 

these classes of quantale morphisms and some transfer results. Quasi 

rigid quantale morphisms are studied in Section 9. 

2. Preliminaries on Quantales 

This section contains some basic notions and results in quantale 

theory ([23, 11]). Let ( )1,0,,,, ⋅��A  be a quantale and ( )AK  be the set 

of its compact elements. A  is said to be integral if ( )1,, ⋅A  is a monoid 

and commutative, if the multiplication ⋅  is commutative. A frame is a 

quantale in which the multiplication coincides with the meet [17]. The 

quantale A  is algebraic if any Aa ∈  has the form Xa �=  for some 

subset X  of ( ).AK  An algebraic quantale A  is coherent if ( )AK∈1  and 

( )AK  is closed under the multiplication. Throughout this paper, the 

quantales are assumed to be integral and commutative. Often we shall 

write ab  instead of .ba ⋅  We fix a quantale .A  

Lemma 2.1 ([7]). For all elements cba ,,  of the quantale A  the 

following hold:  

(1) If ,1=ba �  then .baba �=⋅  

(2) If ,1=ba �  then 1=nn ba �  for all integer numbers .1≥n  

(3) If ,1== caba ��  then ( ) ( ) .1==⋅ cbacba ���  
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On each quantale A  one can consider a residuation operation 

}{ baxxba ≤=→ �  and a negation operation ,Aaa
⊥⊥ =  defined by 

.}0{0 =∈=→=⊥ axAxaa �  Thus for all Acba ∈,,  the following 

equivalence holds: cba →≤  if and only if ,cab ≤  so ( )1,0,,,,, →⋅��A  

becomes a (commutative) residuated lattice. 

In this paper, we shall use without mention the basic arithmetical 

properties of a residuated lattice [12]. An element 1<p  of A  is m-prime 

if for all pabAba ≤∈ ,,  implies pa ≤  or .pb ≤  If A  is an algebraic 

quantale, then 1<p  is m-prime if and only if for all ( ) pcdAKdc ≤∈ ,,  

implies pc ≤  or .pd ≤  Let us introduce the following notations: 

( )ASpec  is the set of m-prime elements and ( )AMax  is the set of 

maximal elements of .A  If ( ),1 AK∈  then for any 1<a  there exists 

( )AMaxm ∈  such that .ma ≤  The same hypothesis ( )AK∈1  implies 

that ( ) ( ).ASpecAMax ⊆  

The main example of quantale is the set ( )RId  of ideals of a (unital) 

commutative ring R  and the main example of frame is the set ( )LId  of 

ideals of a bounded distributive lattice .L  Thus the set ( )RSpec  of prime 

ideals in R  is the prime spectrum of the quantale ( )RId  and the set of 

prime ideals in L  is the prime spectrum of the frame ( ).LId   

Following [23], the radical ( ) ( )aa Aρ=ρ  of an element Aa ∈  is 

defined by ( ) ( ) ;}{ paASpecpaA ≤∈=ρ �  if ( )aa ρ=  then a is a 

radical element. We shall denote by ( )AR  the set of radical elements of 

.A  The quantale A  is said to be semiprime if ( ) .00 =ρ  
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Lemma 2.2 ([23]). For all elements Aba ∈,  the following hold: 

(1) ( );aa ρ≤  

(2) ( ) ( ) ( ) ( );baabba ρρ=ρ=ρ ��  

(3) ( ) 1=ρ a  iff ;1=a   

(4) ( ) ( ) ( )( );baba ρρρ=ρ ��  

(5) ( )( ) ( );aa ρ=ρρ  

(6) ( ) ( ) 1=ρρ ba �  iff ;1=ba �  

(7) ( ),)( aap n ρ=  for all integer .1≥n  

Lemma 2.3 ([19]). Let A  be a coherent quantale and .Aa ∈  Then 

(1) ( ) ( ) acAKca ≤∈=ρ k{�  for some integer ;}1≥k  

(2) For any ( ) ( )acAKc ρ≤∈ ,  iff ac ≤k  for some ;1≥k  

(3) A  is semiprime if and only if for any integer 0,1 =≥ k
k c  implies 

.0=c  

Let A  be a quantale such that ( ).1 AK∈  For any ,Aa ∈  denote 

( ) ( ) ( ) }{ paASpecpaDaDA ≤/∈==  and ( ) ( ) SpecpaVaVA ∈== {  

( ) .}paA ≤  Then ( )ASpec  is endowed with a topology whose closed sets 

are ( ( ) ) .AaaV ∈  If the quantale A  is algebraic, then the family 

( )( ) ( )AKccD ∈  is a basis of open sets for this topology. The topology 

introduced here generalizes the Zariski topology (defined on the prime 

spectrum ( )RSpec  of a commutative ring R  [1]) and the Stone topology 

(defined on the prime spectrum ( )LSpecId  of a bounded distributive 

lattice L  [2]). Then this topology will be also called the Zariski topology 

of ( )ASpec  and the corresponding topological space will be denoted by 

( ).ASpecZ  According to [14], ( )ASpecZ  is a spectral space in the sense of 
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[15]. The flat topology on ( )ASpec  has as basis the family of the 

complements of compact open subsets of ( )ASpecZ  (cf. [9, 17]). Recall from 

[14] that the family ( ) ( ) }{ AKccV ∈  is a basis of open sets for the flat 

topology on ( ).ASpec  We shall denote by ( )ASpecF  this topological 

space. 

Let L  be a bounded distributive lattice. For any ,Lx ∈  denote 

( ) ( ) }{ PxLSpecPxD IdId ∈/∈=  and ( ) ( ) .}{ , PxLSpecPxV ZIdId ∈∈=  

The family ( ( )) LxId xD ∈  is a basis of open sets for the Stone topology on 

( );LSpecId  this topological space will be denoted by ( )., LSpec ZId  We will 

denote by ( )LSpec FId,  the prime spectrum ( )LSpecId  endowed with the 

flat topology; the family ( ( )) LxId xV ∈  is a basis of open sets for the at 

topology. 

An element e of the quantale A  is a complemented element if there 

exists Af ∈  such that 1=fe �  and .0=fe �  The Boolean center of 

the quantale A  is the set ( )AB  of complemented elements of A  (cf. [7, 16]).  

The following lemma collects some elementary properties of the 

elements of ( ).AB   

Lemma 2.4 ([7, 16]). Let A  be a quantale and ( ).,, ABeAba ∈∈  

Then the following properties hold: 

(1) ( )ABa ∈  iff ;1=⊥aa �  

(2) ;aeea =�  

(3) ;aeae �⊥=→  

(4) If 1=ba �  and ,0=ab  then ( );, ABba ∈  

(5) ( ) ( ) ( ).ebeaeba ����� =  
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Proposition 2.5. If ,Aa ∈  then ( ( ) ( )).AMinaVa ∩
⊥⊥ = �  

3. Reticulation of a Coherent Quantale 

The reticulation ( )RL  of a commutative ring R  was studied by many 

authors, but the main references on this topic remain [24, 17]. The 

reticulation ( )AL  of a quantale A  (introduced in [13] as a generalization 

of the reticulation of a commutative ring) is a bounded distributive lattice 

whose prime spectrum ( )( )ALSpecId  is homeomorphic to the prime 

spectrum ( )ASpec  of the quantale .A  In this section, we shall recall from 

[8, 13] the axiomatic definition of the reticulation of the coherent 

quantale and some of its basic properties. Let A  be a coherent quantale 

and ( )AK  the set of its compact elements. 

Definition 3.1 ([8]). A reticulation of the quantale A is a bounded 

distributive lattice L together with a surjective function ( ) LAK →λ :  

such that for all ( )AKba ∈,  the following properties hold: 

(1) ( ) ( ) ( );baba λλ≤λ ��  

(2) ( ) ( ) ( );baab λλ=λ �  

(3) ( ) ( )ba λ≤λ  iff ,ban ≤  for some integer .1≥n  

In ([8, 13]), there were proven the existence and the uniqueness of the 

reticulation for each coherent quantale ;A  this unique reticulation will be 

denoted by ( ( ) ( ) ( ))ALAKAL A →λ :,  or shortly ( ).AL  

We remark that the reticulation ( )RL  of a commutative ring R  is 

isomorphic to the reticulation ( )( )RIdL  of the quantale ( ).RId  
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Lemma 3.2 ([8]). For all elements ( )AKba ∈,  the following properties 

hold: 

(1) ba ≤  implies ( ) ( );ba AA λ≤λ  

(2) ( ) ( ) ( );baba AAA λλ=λ ��  

(3) ( ) 1=λ aA  iff ;1=a  

(4) ( ) ;00 =λ A  

(5) ( ) 0=λ aA  iff ,0=na  for some integer ;1≥n  

(6) ( ) ( ),aa A
n

A λ=λ  for any integer ;1≥n  

(7) ( ) ( )ba ρ=ρ  iff ( ) ( );ba AA λ=λ  

(8) ( ) 0=λ aA  iff ( );0ρ≤a  

(9) If A  is semiprime, then ( ) 0=λ aA  implies .0=a  

For any Aa ∈  and ( )( ),ALIdI ∈  let us denote ( ) ( ),{ AKcca A ∈λ=∗  

}ac ≤  and ( ) ( ) .}{ IcAKcI A ∈λ∈=∗ �  

Lemma 3.3 ([8]). The following assertions hold: 

(1) If ,Aa ∈  then ∗a  is an ideal of ( )AL  and ( ) ;∗
∗≤ aa  

(2) If ( )( ),ALIdI ∈  then ( ) ;II =
∗

∗  

(3) If ( ),ASpecp ∈  then ( ) pp =∗
∗  and ( )( );ALSpecp Id∈∗  

(4) If ( )( ),ALSpecP Id∈  then ( );ASpecP ∈∗  

(5) If ( ),AKc ∈  then ( ( )];cc Aλ=∗  

(6) If ( )AKc ∈  and ( )( ),ALIdI ∈  then ∗≤ Ic  iff ( ) ;IcA ∈λ  
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(7) If Aa ∈  and ( )( ),ALIdI ∈  then ( ) ( ) ( )( )∗∗
∗

∗ ρ==ρ aaaa ,  and 

( ) ;∗∗ =ρ II  

(8) If ( )AKc ∈  and ( ),ASpecp ∈  then pc ≤  iff ( ) .∗∈λ pcA  

Often the two previous lemmas shall be used in the proofs without 

mention. 

According to Lemma 3.3, one can consider the following order- 

preserving functions: ( ) ( )( )ALSpecASpec IdA →δ :  and ( )( )ALSpecIdA :�  

( ),ASpec→  defined by ( ) ∗=δ ppA  and ( ) ,∗= PPA�  for all ( )ASpecp ∈  

and ( )( ).ALSpecP Id∈  

Lemma 3.4 ([8, 14]). The functions Aδ  and A�  are homeomorphisms 

w.r.t. the Zariski and the flat topologies, inverse to one another. 

We also observe that Aδ  and A�  are also order-isomorphisms. 

Lemma 3.5. Let A  be a semiprime coherent quantale and ., Aba ∈  

Then ,⊥⊥ ≤ ba  if and only if ( ) .⊥⊥
= bab  

Proof. Since ( ) ⊥⊥
≥ bab  it suffices to prove that ,⊥⊥ ≤ ba  if and only 

if ( ) .⊥⊥
≤ bab  If ( ) ,⊥⊥

≤ bab  then ( ) .⊥⊥⊥ ≤≤ baba  Conversely, assume 

that ,⊥⊥ ≤ ba  therefore .0=abc  Thus ,⊥⊥ ≤≤ bacb  so ,0=cbb  hence 

we get ( ) ( ) ( ) ( ) .0=λ=λλ=λ cbbcbbc AAAA �  Since A  is semiprime it 

follows that .0=bc  Thus ( ) ,0=
⊥

abb  so one gets ( ) .⊥⊥
≤ bab   

� 

For a bounded distributive lattice L  we shall denote by ( )LB  the 

Boolean algebra of the complemented elements of .L  It is well-known 

that ( )LB  is isomorphic to the Boolean center ( )( )LIdB  of the frame 

( )LId  (see [7, 17]). 
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Let us fix a coherent quantale .A  

Proposition 3.6 ([8]). The function ( ) ( ) ( )( )ALBAB
ABA →λ :  is a 

Boolean isomorphism. 

If L  is bounded distributive lattice and ( ),LIdI ∈  then the annihilator 

of I  is the ideal ( ) ( ) ,0{ =∈== yxIxIAnnIAnnL �  for all .}Ly ∈   

Lemma 3.7 ([14]). If ( )AKc ∈  and ( ),ASpecp ∈  then ( ( )) ,∗λ pcAnn A ⊆  

if and only if ( ) .0 pc ≤ρ→  

The next two propositions concern the behaviour of reticulation w.r.t. 

the annihilators. 

Proposition 3.8 ([14]). If a is an element of a coherent quantale, then 

( ) ( )( ) ;0 ∗∗ ρ→= aaAnn  if A is semiprime, then ( ) ( ) .∗⊥∗ = aaAnn  

Proposition 3.9 ([14]). Assume that A is a coherent quantale. If I is 

an ideal of ( ),AL  then ( )( ) ( );0ρ→= ∗∗
IIAnn  if A is semiprime, then 

( )( ) ( ) .
⊥

∗∗ = IIAnn  

If A is a quantale then we denote by ( )AMin  the set of minimal        

m-prime elements of ;A  ( )AMin  is called the minimal prime spectrum of .A  

If ( )AK∈1  then for any ( )ASpecp ∈  there exists ( )AMinq ∈  such that 

.pq ≤  

Proposition 3.10 ([18]). If A is semiprime coherent quantale and 

( ),ASpecp ∈  then ( ),AMinp ∈  if and only if for all ( ) pcAKc ≤∈ ,  

implies .pc ≤/
⊥  

We denote by ( )AMinZ  (resp., ( ))AMinF  the topological space 

obtained by restricting the topology of ( )ASpecZ  (resp., ( ))ASpecF  to 

( ).AMin  Then ( )AMinZ  is homeomorphic to the space ( )( )ALMin ZId  of 

minimal prime ideals in ( )AL  with the Stone topology and ( )AMinF  is 
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homeomorphic to the space ( )( )ALMin FId,  of minimal prime ideals in 

( )AL  with the flat topology (cf. Lemma 3.4). By [14], ( )AMinZ  is a zero-

dimensional Hausdorff space and ( )AMinF  is a compact 1T  space. 

4. Quantale Morphisms 

Let BA,  be two quantales and BAu →:  be a function that 

preserves the arbitrary joins (in this case we have ( ) ).00 =u  Let us 

consider the function :u B A→ɶ  defined by ( )u b =ɶ ( ) ,}{ bauAa ≤∈�  for 

any .Bb ∈  It is well-known that uɶ  is the right adjoint of ( ) bauu ≤:  iff 

( ) ,a u b≤ ɶ  for all Aa ∈  and Bb ∈  (see, e.g., Lemma 3.1 of [25]). 

Let BA,  be two quantales. A function BAf →:  is a morphism of 

quantales if it preserves the arbitrary joins and the multiplication (in this 

case we have ( ) fu ;)00 =  is an integral morphism if ( ) .11 =f  If 

( )( ) ( ),BKAKu ⊆  then we say that u preserves the compacts. If u is an 

integral quantale morphism that preserves the compacts then it is called 

a coherent quantale morphism. In a similar manner one defines the 

frame morphisms, integral frame morphisms, coherent frame morphism, 

etc. (cf. [3, 4]). 

Let 21: RRf →  be a morphism of (unital) commutative rings. If I is 

an ideal of ,1R  then eI  will denote the extension of I to ,2R  i.e., the ideal 

( )IfR2  generated by ( )If  in 2R  (cf. [1], p.9). Then the function 

( ) ( ),: 21 RIdRIdf →•  defined by ( ) ,eIIf =•  for any ( ),1RIdI ∈  is a 

coherent quantale morphism.  
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Let 21: LLf →  be a morphism of bounded distributive lattices. If I 

is an ideal of ,1L  then ( )If •  is the lattice ideal ( )( ]If  generated by ( )If  

in .2L  Then the function ( ) ( ),: 21 LIdLIdf →•  defined by ( ),IfI •
֏  

for any ( ),1LIdI ∈  is a coherent frame morphism. 

Lemma 4.1. Let BAu →:  be a quantale morphism. If ( ),BSpecq ∈  

then ( )u qɶ ( ).ASpec∈  The function ( )Spec B
uɶ ( ) ( )ASpecBSpec →:  is 

continuous w.r.t. the Zariski and the flat topology. 

Proof. Let ba,  be two elements of A  such that ( ).ab u q≤ ɶ  Thus 

( ) ( ) ( ) qabubuau ≤=  (because uɶ  is the right adjoint of u), hence ( ) qau ≤  

or ( ) .qbu ≤  By applying again the adjointness property we get ( )a u q≤ ɶ  

or ( ) ,b u q≤ ɶ  so ( ) ( ).u q Spec A∈ɶ  

Let us assume that ( ).AKc ∈  For any ( )ASpecp ∈  we have 

( ) ( ( ))1
Ap u V c

−
∈ ɶ  iff ( )c u p≤ ɶ  iff ( )( ),cuVp B∈  hence ( ) ( ( ))1

Au V c
−

=ɶ  

( )( )cuVB  and ( ) ( ( ))1
Au D c

−
=ɶ ( )( ).cuDB  Then the two functions ( )Spec Buɶ  

( ) ( )ASpecBSpec ZZ →:  and ( )Spec Buɶ ( ) ( )ASpecBSpec FF →:  are 

continuous.   � 

In the rest of the section we shall assume that BA,  are two coherent 

quantales. 

Proposition 4.2 ([8]). Let BAu →:  be a coherent quantale 

morphism. Then there exists a morphism of bounded distributive lattices 

( ) ( ) ( )BLALuL →:  such that the following diagram is commutative: 
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The following lemma is a well-known result in lattice theory. 

Lemma 4.3. Let MLf →:  be a morphism of bounded distributive 

lattices. For each ( ),LSpecP Id∈  there exists ( )MMinQ ∈  such that 

( ) .1 PQf ⊆
−   

Proof. For sake of completeness we shall present a short proof of this 

lemma. If ( ),LSpecP Id∈  then ( )PLf −∈1  and ( )PLf −  is closed under 

meet. Then there exists ( )MSpecQ ∈′  such that ( ) .0/=−′ PLfQ ∩  Let 

Q  be a minimal prime ideal of M  such that ,QQ ′⊆  so it is easy to see 

that ( ) .1 PQf ⊆
−   � 

Lemma 4.4. Let BAu →:  be a coherent quantale morphism. If 

( ),ASpecp ∈  then there exists ( )BMinq ∈  such that ( ) .u q p≤ɶ  

Proof. Assume that ( ),ASpecp ∈  hence ( )( ).ALSpecp Id∈∗  By 

Lemma 4.3, there exists ( )( )BLMinQ Id∈  such that ( )( ) ( ) .
1 ∗−

pQuL ⊆  

Thus ∗= qQ  for some ( ),AMinq ∈  hence ( )( ) ( ) .
1 ∗∗−

pquL ⊆  

We shall prove that ( ) .u q p≤ɶ  Let c be a compact element of A  such 

that ( ) ,c u q≤ ɶ  so ( ) qcu ≤  (by the adjointness property). Therefore           

by using Proposition 4.2 we get ( ) ( ( )) ( )( ) ,∗∈λ=λ qcucuL BA  hence 

( ) ( )( ) ( ) .
1 ∗∗−

∈λ pquLcA ⊆  By using Lemma 3.3(8) one obtains .pc ≤  We 

conclude that ( ) .u q p≤ɶ   � 

Corollary 4.5. Let BAu →:  be a quantale morphism. If ( ),AMinp ∈  

then there exists ( )BMinq ∈  such that ( ) .u q p=ɶ  
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Proposition 4.6. Let BAu →:  be a coherent quantale morphism 

and assume that the quantales BA,  are semiprime. 

(1) If ,Aa ∈  then ( )( ) (( ( ) ( )) ) ;BB auLau
⊥

∗
∗⊥

=  

(2) If ( )( ),ALIdI ∈  then ( ) ( ) ( )( ) ( )(( ( )) ).∗
∗= IuAnnIuLAnn BLBL  

Proof. (1) For all Aa ∈  and ( )BKd ∈  we shall prove the following 

equivalence:  

( ) 0=adu  if and only if (( ( ) ( ))) ) .0=
∗

∗auLd   (4.1) 

Assume that ( ) .0=adu  Let e be a compact element of B such that 

( ) ( ) ( ),∗∈λ aaLeB  so there exists ( )AKc ∈  such that ac ≤  and ( ) =λ eB  

( ) ( ( )) ( )( )cucuL BA λ=λ  (the last equality is due by Proposition 4.2). Thus 

( ) ( ) ,0=≤ aducdu  so ( ) ( ) ( ) ( ) ( )( ) =λλ=λλ=λ cudedde BBBBB ��  

( ( )) .0=λ cduB  Since B  is semiprime, by Lemma 3.3(9) we have ,0=de  

so the equalities (( ( ) ( )) ) ( ( ) ( ) ( ) ( ) ) =∈λ∈= ∗
∗

∗ }{ auLeBKedauLd B�  

( ) ( ) ( ) ( ) } 0,{ =∈λ∈ ∗auLeBKede B�  hold. 

Conversely, let us suppose that (( ( ) ( ) ) ) .0=∗
∗auLd  Let c be a 

compact element of A such that ,ac ≤  so ( ) ( )BKcu ∈  and ( ) ,∗∈λ acA  

therefore we get ( )( ) ( ) ( ( )) ( ) ( ) .∗∈λ=λ auLcuLcu AB  It follows that 

( ) ( ( ) ( ) ) ,∗
∗≤ auLcu  hence ( ) .0=cdu  Recall that the map u-preserves 

the arbitrary joins. Then the following equalities hold: 

( ) ( ( ) ) ( ) ( ) .0},{}{ =≤∈=≤∈= acAKccduacAKcduadu ��  
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We have proven the equivalence (4.1), therefore the equality ( ( )) =
⊥Bau  

(( ( ) ( ) ) ) BauL
⊥

∗
∗  holds. 

(2) We shall prove that for any ( )BKd ∈  the following equivalence 

holds: 

( ) ( ) ( ) ( )( )IuLAnnd BLB ∈λ  if and only if ( ) ( )(( ( )) ).∗
∗∈λ IuAnnd BLB  

(4.2) 

Assume that ( ) ( ) ( ) ( )( )IuLAnnd BLB ∈λ  and ( ( )) ,∗
∗∈ Iuy  so there 

exists ( )BKe ∈  such that ( )∗≤ Iue  and ( ).ey Bλ=  We remark that 

( ) ( ( ) ( ) ) ( ) ( ) ( ) ,},{}{ IcAKccuIcAKcuIu AA ∈λ∈=∈λ∈=∗ ��   

(4.3) 

therefore from ( )∗≤ Iue  and ( )BKe ∈  we get ( ),cue ≤  for some 

( )AKc ∈  such that ( ) .IcA ∈λ  Then ( ) ( ( )) ( ) ( ),IuLcuL A ∈λ  hence one 

gets ( )( ) ( ) ( )( ) ( ) ( ) ( ( )) .0=λλ=λλ=λ cuLdcudcdu ABBBB ��  Since the 

quantale B  is semiprime we have ( ) ,0=cdu  so .0=de  Thus ( ) ydB �λ  

( ) ( ) ( ) ,0=λ=λλ= deed BBB �  so ( ) ( )(( ( )) ).∗
∗∈λ IuAnnd BLB  

Conversely, assume that ( ) ( )(( ( )) ).∗
∗∈λ IuAnnd BLB  For any 

( ) ( ),IuLz ∈  there exists ( )AKc ∈  such that ( ) ( )AKcA ∈λ  and 

( ) ( ( )) ( )( ).cucuLz BA λ=λ=  Thus ( )( ) ( ) ( ),IuLcuB ∈λ  hence by using 

(4.3) we get ( ) ( ),∗≤ Iucu  therefore ( )( ) ( ( )) .
∗

∗∈λ= Iucuz B  By applying 

the hypothesis, we get ( ) ,0=λ zdB �  hence ( ) ( ) ( ) ( )( ).IuLAnnd BLB ∈λ  

� 
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5. Baer Quantale Morphisms 

Let QRf →:  be a morphism of commutative rings. Following [22], 

we say that f is a Baer ring morphism if for all ( ) ( ) =∈ IAnnRIdjI R,,  

( )JAnnR  implies ( ) ( );e
Q

e
Q JAnnIAnn =  f is said to be a w-Baer ring 

morphism if for all ( ) ( )yAnnxAnnRyx RR =∈ ,,  implies ( )( ) =xfAnnQ  

( )( ).yfAnnQ  

Let MLf →:  be a morphism of bounded distributive lattices. We 

say that f is a Stone lattice morphism if for all ( ) ( ) =∈ IAnnLIdJI L,,  

( )JAnnL  implies ( ) ( );e
M

e
M JAnnIAnn =  f is said to be a w-Stone 

lattice morphism if for all ( ) ( )yAnnxAnnMyx LL =∈ ,,  implies 

( )( ) ( )( ).yfAnnxfAnn MM =  

The previous definitions will be extended from ring and lattice 

morphisms to quantale morphisms. Let BAu →:  be a quantale 

morphism. Then u is said to be a Baer quantale morphism if for all 

AA baAba
⊥⊥ =∈ ,,  implies ( )( ) ( )( ) ubuau BB ;

⊥⊥
=  is said to be a         

w-Baer quantale morphism if for all ( ) AA baAKba
⊥⊥ =∈ ,,  implies 

( )( ) ( )( ) .BB buau
⊥⊥

=  The notions of Baer and w-Baer frame morphisms 

are defined in a similar manner. 

A morphism QRf →:  of commutative rings is a Baer (resp.,         

w-Baer) ring morphism if and only if ( ) ( )QIdRIdf →• :  is a Baer 

(resp., w-Baer) quantale morphism. A morphism MLf →:  of bounded 

distributive lattices is a Stone (resp., w-Stone) lattice morphism if and 

only if ( ) ( )MIdLIdf →• :  is a Baer (resp., w-Baer) frame morphism. 

The class of Baer (resp., w-Baer) quantale morphisms is closed under 

the composition. The following result generalizes the main part of 

Proposition 8 of [22]. 
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Proposition 5.1. Let us consider two semiprime coherent quantales 

BA,  and a coherent quantale morphism .: BAu →  Then the following 

assertions are equivalent: 

(1) u is a Baer quantale morphism; 

(2) For any 0, =∈ ⊥AaAa  implies ( )( ) ;0=
⊥Bau  

(3) For all AA baAba
⊥⊥ ≤∈ ,,  implies ( )( ) ( )( ) ;BB buau

⊥⊥
≤  

(4) For any ( )( ) ;))((, BBBA auauAa
⊥⊥⊥⊥ =∈  

(5) For any 0)(, =∈ ⊥⊥ AB
AbBb  implies ,0=b  whenever A

Bb
⊥

 is 

the element of A defined by ( ) .}0{ =∈=⊥
bcuAcb A

B �  

Proof. We shall assume that a and b are arbitrary elements of the 

quantale .A  

( ) ( )21 ⇒  Assume that u is a Baer quantale morphism. If ,0=
⊥Aa  

then ,1⊥⊥
=Aa  hence ( )( ) ( )( ) .011 === ⊥⊥⊥ BBB uau  

( ) ( )42 ⇒  Since ( ) ,0== ⊥⊥⊥⊥⊥ AAAAA aaaa ��  by applying the 

hypothesis (2) we get ( ( )) ,0=
⊥⊥ BAaau �  hence ( )( ) ( ( )) =

⊥⊥⊥ BAB auau �  

( ( ) ( )) ( ( )) .0==
⊥⊥⊥⊥ BABA aauauau ��  Thus ( )( ) ,0))(( =⊥⊥⊥ BAB auau  

so we get the inequality ( )( ) .))(( BBBA auau
⊥⊥⊥⊥ ≥  

On the other hand, ( ) ( ) 00)()( === ⊥⊥
uaauauau AA  implies 

( ) ( ) ,)( BAauau
⊥⊥≤  therefore the converse inequality ( ) ≤

⊥⊥⊥ BBAau )(  

( ) Bau
⊥

)(  holds. Thus u is a Baer quantale morphism. 
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( ) ( )14 ⇒  If ,AA ba
⊥⊥

=  then 

( ) ( ) ( ) ( ) .)()()()( BBBABBAB bubuauau
⊥⊥⊥⊥⊥⊥⊥⊥

===  

( ) ( )13 ⇒  Obviously. 

( ) ( )31 ⇒  By using Lemma 3.5, the following implications hold: 

( ) ( )( ) ( )( ) .BBAAAA buabubabba
⊥⊥⊥⊥⊥⊥ ==⇒≤  

Observing that ( ) ( ) ( ) ( )aubuauabu ≤=  implies ( )( ) ( )( ) BB abuau
⊥⊥

≤  it 

follows that AA ba
⊥⊥ ≤  implies ( )( ) ( )( ) .BB buau

⊥⊥
≤   

( ) ( )52 ⇒  Assume that ( ) 0=
⊥⊥ AB

A
b  so ( ( )) 0=

⊥⊥ BB
A

bu  (by 

applying the hypothesis (2)). We remind that u preserves arbitrary joins, 

hence the following equalities hold: ( ) ( ( ) ==∈=⊥
}0{ bcuAcbubbu

A
B �  

( ) ( ) ( ) ( ) .0}0,{}0{ ==∈== bcuAccbubcucub ��  Therefore ( Bbub
⊥≤ (  

) ,0) =
⊥B

A  so .0=b  

( ) ( )25 ⇒  Assume that Aa ∈  and .0=⊥Aa  For any ,Bc ∈  the 

following implications hold: 

( )( ) ( ) ( ) ABBB
AA

ccaacuauc
⊥⊥⊥⊥

⇒≤⇒=⇒≤ 0  

.00 =⇒=≤ ⊥
ca A  

In particular, we obtain ( )( ) .0=
⊥Bau  

� 

For the rest of section, let us fix two semiprime coherent quantales 

BA,  and a coherent quantale morphism .: BAu →  We shall describe 

the way in which the reticulation functor ( )⋅L  transforms the Baer (resp., 

w-Baer) quantale morphisms into the Stone (resp., w-Stone) lattice 

morphisms. 
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Theorem 5.2. The following assertions are equivalent: 

(1) u is a Baer quantale morphism; 

(2) ( )uL  is a Stone lattice morphism. 

Proof. ( ) ( )21 ⇒  Let JI ,  be two ideals of ( )AL  such that 

( )( ) ( )( ).JAnnIAnn ALAL =  Recall that the quantales A  and B  are 

semiprime. According to Proposition 3.9, ( ) ( ( )( )) == ∗
⊥

∗ IAnnI AL
A  

( ( )( )) ( ) ,AJJAnn AL
⊥

∗∗ =  therefore, by applying the hypothesis that u is 

a Baer quantale morphism, it follows that ( ( )) ( ( )) .BB JuIu
⊥

∗
⊥

∗ =  Then 

by using Proposition 3.8, we get 

( )(( ( )) ) (( ( )) ) (( ( )) ) ( )(( ( )) ).∗
∗

∗⊥
∗

∗⊥
∗

∗
∗ === JuAnnJuIuIuAnn BLBL

BB  

By Proposition 4.6(2) we get ( )( ( ) ( )) ( )( ( ) ( )),JuLAnnIuLAnn BLBL =  so 

( )uL  is a Stone lattice morphism. 

( ) ( )12 ⇒  Let ba,  be two elements of A  such that .AA ba
⊥⊥ =  By 

Proposition 3.8, we have ( )( ) ( ) ( ) ( )( ).∗∗⊥∗⊥∗ === bAnnbaaAnn ALAL
AA  

Since ( )uL  is a Stone lattice morphism we get ( )( ( ) ( )) =∗auLAnn BL  

( )( ( )( )),∗buLAnn BL  therefore ( ( )( ( )( ))) ( ( )( ( )( ))) .*
∗

∗
∗ = buLAnnauLAnn BLBL  

In accordance with Proposition 3.9 we get (( ( ) ( )) ) (( ( )uLauL B =
⊥

∗
∗  

( )) ) ,Bb
⊥

∗
∗  hence ( ( )) ( ( )) BB buau

⊥⊥
=  (by using Proposition 4.6(1)). 

� 
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Lemma 5.3. For any ( ) ( ( )) ., AA ccAKc
⊥⊥ ρ=∈  

Proof. Firstly we observe that ( )cc ρ≤  implies ( ( )) .AA cc
⊥⊥ ρ≥  In 

order to show that ( ( )) ,AA cc
⊥⊥ ρ≤  let us consider a compact element c of 

A such that ,Acd
⊥

≤  hence .0=dc  Let c be a compact element of A such 

that cen ≤  for some integer ,1≥n  therefore .0=≤ dcden  It follows 

that the following equalities hold: ( ) ( ( ) ,{ ceAKedcd n ≤∈=ρ �  for 

some integer ) ( ) ,{}1 ceAKden n ≤∈=≥ �  for some integer .0}1 =≥n  

Thus ( ( )) ,Acd
⊥

ρ≤  so we conclude that ( ( )) .AA cc
⊥⊥ ρ≤  

Theorem 5.4. The following assertions are equivalent: 

(1) u is a w-Baer quantale morphism; 

(2) ( )uL  is a w-Stone lattice morphism. 

Proof. ( ) ( )21 ⇒  Assume that u is a w-Baer quantale morphism and     

dc,  are two compact elements of A  such that ( )( ( )) =λ cAnn AAL  

( )( ( )),dAnn AAL λ  so, by applying Proposition 3.9, the following equalities 

hold: 

(( ( )] ) ( ( )(( ( )] )) ( ( )(( ( )] )) (( ( )] ) .AA ddAnncAnnc AAALAALA
⊥

∗∗

⊥
λ=λ=λ=λ  

We remark that ( ( )] ( ) ( )cccA ρ==λ
∗

∗
∗

 and ( ( )] ( ) ( )dddA ρ==λ
∗

∗
∗

    

(cf. Lemma 3.3(5) and (7)), hence, by using Lemma 5.4, we get 

( ( )) ( ( )) .AAAA cdcc
⊥⊥⊥⊥ =ρ=ρ=  Then ( ( )) ( ( )) BB ducu

⊥⊥
=  (by the 

hypothesis (1)), hence, by using Proposition 3.8, the following hold: 

( )(( ( )) ) (( ( )) ) (( ( )) ) ( )(( ( )) ).∗∗⊥∗⊥∗ === duAnnducucuAnn BLBL
BB  
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By Proposition 4.2 and Lemma 3.3(5), we obtain the following equalities 

hold: ( )( ( ) ( ( ))) ( ) ( ( ( ))) ( )(( ( )) ) ==λ=λ ∗cuAnncuAnncuLAnn BLBBLABL  

( )(( ( )) ) ( ) ( ( ) ( ( ))).duLAnnduAnn ABLBL λ==∗ ⋯  We conclude that ( )uL  

is a w-Stone lattice morphism. 

( ) ( )12 ⇒  Assume that ( )uL  is a w-Stone lattice morphism. Let dc,  

be two compacts of A  such that .AA dc
⊥⊥ =  By using Lemma 3.3(5), the 

following equalities hold: ( ) ( ( ) ) ( ) ( ) ( ) ===λ ∗⊥∗ AccAnncAnn ALAAL  

( ) ( ) ( ) ( ) ( ( )).dAnndAnnd AALAL
A λ== ∗∗⊥

 Applying the hypothesis and 

Proposition 4.2, we get ( ) ( ( ( ))) ( ) ( ( ) ( ( ))) =λ=λ cuLAnncuAnn BBLBBL  

( ) ( ( ) ( ( ))) ( ) ( ( ( ))).duAnnduLAnn BBLBBL λ=λ  

In virtue of Proposition 3.8, we get (( ( )) ) ( ) ( ( ( ))) =λ=∗⊥
cuAnncu BBL

B  

( ) ( ( ( ))) (( ( )) ) ,∗⊥
=λ BduduAnn BBL  therefore (( ( )) ) ((( ( )) ) ) ==ρ

∗
∗⊥⊥ BB cucu  

((( ( )) ) ) (( ( )) ).BB dudu
⊥

∗
∗⊥

ρ=  By using Lemma 5.3 we obtain ( ( )) =
⊥Bcu  

( ( )) ,Bcu
⊥

 so u is a w-Baer quantale morphism. 

� 

6. Minimalisant Quantale Morphisms 

Let SRf →:  be a morphism of commutative rings. By [22], f is said 

to be a minimalisant ring morphism (= m-ring morphism) if for each 

( ) ( ) ( )., 1 RMinQfSMinQ ∈∈ −  This notion can be generalized to the 

quantale framework: a quantale morphism BAu →:  is said to be a 

minimalisant quantale morphism (= m-quantale morphism) if for each 

( ),BMinq ∈  ( )u qɶ  ( ).AMin∈  It is clear that a ring morphism SRf →:  

is an m-ring morphism if and only if ( ) ( )SIdRIdf →• :  is an                 

m-quantale morphism. 
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Let MLf →:  be a morphism of bounded distributive lattices. Then 

f is said to be a minimalisant lattice morphism (= m-lattice morphism) if 

for each ( ) ( ) ( )., 1 LMinQfMMinQ ∈∈ −  We remark that MLf →:  is 

an m-lattice morphism if and only if ( ) ( )MIdLIdf →• :  is an m-frame 

morphism. 

If BAu →:  is an m-quantale morphism then we consider the 

function ( ) ( )AMinBMin →Γ :  defined by ( ) ( ) ,q u qΓ = ɶ  for any 

( ).BMinq ∈  

Lemma 6.1. Assume that u is an m-quantale morphism. 

(1) If ( ),AKc ∈  then ( ( ) ( )) ( ( )) ( );1 BMincuVAMincV BA ∩∩ =Γ−  

(2) Γ  is a continuous map w.r.t. the Zariski and the flat topologies. 

Let us fix two semiprime coherent quantales BA,  and a coherent 

quantale morphism SRf →:  According to Proposition 4.2, one can 

consider the lattice morphism ( ) ( ) ( ).: BLALuL →  

Lemma 6.2. If ( ),BSpecq ∈  then ( ( )) ( ) =∗−
quL

1 ( ( ) ) .u q
∗ɶ  

Proof. Assume that ( ( )) ( )∗−
∈ quLx

1
 so there exists ( )AKc ∈  such 

that ( )cx Aλ=  and ( ) ( ( )) .∗∈λ qcuL A  According to Proposition 4.2, we 

get ( ( )) ,∗∈λ qcu A  hence ( ) qcu ≤  (by Lemma 3.3(8)). By using the 

adjointness property we get ( ) ,c u q≤ ɶ  hence ( ) ∈λ= cx A ( ( ) ) .u q
∗ɶ  Thus 

we obtain the inclusion ( ( )) ( ) ⊆∗−
quL

1 ( ( ) ) .u q
∗ɶ  
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In order to prove the converse inclusion ( ( ) )u q
∗ɶ ( ( )) ( ),1 ∗−

quL⊆  

assume that d is a compact element of A such that ( ).d u q≤ ɶ  Then we 

have ( ) ,qdu ≤  hence ( ) ( ( )) ( ( ( )) ,∗∈λ=λ qduduL BA  i.e., ( )) ∈λ dA  

( ( )) ( ).1 ∗−
quL  Thus the inclusion ( ( ) )u q

∗ɶ ( ( )) ( )∗−
quL

1
⊆  follows. 

� 

Proposition 6.3. The following assertions are equivalent: 

(1) u is an m-quantale morphism; 

(2) ( )uL  is an m-lattice morphism. 

Proof. ( ) ( )21 ⇒  Let Q be a minimal prime ideal of the lattice ( ),BL  

so ∗= qQ  for some ( ).BMinq ∈  By the hypothesis that u is an m-

quantale morphism we have ( )u qɶ ( ),AMin∈  so ( ( ) )u q
∗ɶ ( )( ).ALMinId∈  In 

accordance with Lemma 6.2, we have ( )( ) ( ) ( )( ) ( )*
11

quLQuL
−−

=  ( ( ) ) ,u q
∗

= ɶ  

so ( )( ) ( )QuL
1−

 is a minimal prime ideal of the lattice ( ).AL  Then ( )uL  is 

an m-lattice morphism. 

( ) ( )12 ⇒  Assume that ( )uL  is an m-lattice morphism. Let q be a 

minimal prime element of the quantale B, hence ( )( ).* BLMinq Id∈  By 

taking into account the hypothesis, it follows that ( )( ) ( ) ∈∗−
quL

1
 

( )( ).ALMinId  By using Lemma 6.2, we get ( ( ) )u q
∗ɶ ( )( ),ALMinId∈  hence 

( )u qɶ ( ).AMin∈  We conclude that u is an m-quantale morphism. 

� 
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Lemma 6.4. The following assertions are equivalent: 

(1) u is an m-quantale morphism; 

(2) For all ( )AMinq ∈  and ( ) qcAKc ≤∈ ,  implies ≤/
⊥Ac ( ) ;u qɶ  

(3) For all ( )AMinq ∈  and ( ) qcAKc ≤∈ ,  if and only if ≤/
⊥Ac ( ).u qɶ  

Proof. By Proposition 3.10. 

� 

Proposition 6.5. If BAu →:  is an m-quantale morphism, then it 

is a w-Baer quantale morphism. 

Proof. Let dc,  be two compact elements of A such that .AA dc
⊥⊥ =  

Assume by absurdum that ( ( )) ( ( )) ,BB ducu
⊥⊥

=/  so ( ( )) ( ( )) BB ducu
⊥⊥

≤/  

or ( ( )) ( ( )) .BB cudu
⊥⊥

≤/  For example, suppose that ( ( )) ( ( )) ,BB ducu
⊥⊥

≤/  

so there exists ( )BKe ∈  such that ( ( )) Bcue
⊥

≤  and ( ( )) .Bdue
⊥

≤/  Then 

( ) 0=/deu  so there exists ( )BMinq ∈  such that ( ) qdeu ≤  (because 

( ) ),0=BMin�  hence qe ≤/  and ( ) .qdu ≤/  Since u is an m-quantale 

morphism we have ( )u qɶ ( ).AMin∈   

From qe ≤/  and ( )( ) Bcue
⊥

≤  we get ( ) ,qecu B ≤≤ ⊥
 hence ( )c u q≤ ɶ  

(because uɶ  is the right adjoint of u). Since ( )u qɶ ( ),AMin∈  by applying 

Proposition 3.10 we get ( ).Ac u q
⊥ ≤/ ɶ  

From ( ) qdu ≤/  we get ( )d u q≤/ ɶ  (by the adjointness property), hence 

AA dc
⊥⊥ = ( ).u q≤ ɶ  We obtained a contradiction, hence ( ( )) ( ( )) ,BB ducu

⊥⊥
=  

so u is a w-Baer quantale morphism. 

� 
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Remark 6.6. According to Proposition 2.4 of [22], if SRf →:  is a 

w-Baer ring morphism and ( )RMinZ  is compact, then f is a minimalisant 

ring morphism. An open question is if this assertion can be generalised to 

quantale morphisms: if BAu →:  is a w-Baer quantale morphism and 

( )AMinZ  is compact, then is u a minimalisant quantale morphism?. 

7. Quasi r-Quantale Morphisms 

Let SQf →:  be a morphism of commutative rings. We say that f is 

an r-ring morphism (resp., a quasi r-ring morphism) if for each 

( )SMinQ ∈  and for each finitely generated ideal J  of S  such that 

QJ ⊈  there exists an element Ra ∈  (resp., a finitely generated ideal I  

of )R  such that ( ) Qaf ∈/  and ( ) ( )e
SS IAnnsAnn ⊆  (resp., QI e ⊈  and 

( ) ( )).e
SS IAnnJAnn ⊆  

The notion of quasi r-ring morphism can be extended to quantale 

theory: a quantale morphism BAu →:  is said to be a quasi r-quantale 

morphism if for all ( )BMinq ∈  and ( )AKd ∈  such that qd ≤/  there 

exists ( )AKc ∈  such that ( ) qcu ≤/  and ( )( ) .BB cud
⊥⊥ ≤  In a similar 

way, we define the notion of quasi r-frame morphism. 

Let us fix two semiprime coherent quantales BA,  and a coherent 

quantale morphism .: BAu →  

Proposition 7.1. Let BAu →:  be a quasi r-quantale morphism. 

Then u is an m-quantale morphism and the function ( ) ( )AMinBMin →Γ :  

is bijective. 

Proof. Assume by absurdum that BAu →:  is not an m-quantale 

morphism, so there exists ( )BMinq ∈  such that ( )u qɶ  ( ).AMin∈/  Then 

there exists ( )AMinp ∈  such that ( ).p u q< ɶ  According to Corollary 4.5, 

there exists ( )BMinr ∈  such that ( ) ,p u r= ɶ  so the minimal prime 
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elements rq,  of the quantale B  are distinct (assuming that qr =  we 

get ( ) ( ) ,p u r u q= =ɶ ɶ  contradicting ( ) ).p u q< ɶ  Thus there exists 

( )BKd ∈  such that rd ≤  and ,qd ≤/  hence there exists ( )AKc ∈  such 

that ( ) qcu ≤/  and ( )( ) BB cud
⊥⊥ ≤  (because u is a quasi r-quantale 

morphism). 

By Proposition 3.10, rd ≤  and ( )AMinr ∈  imply ,rd B ≤/
⊥

 hence 

( )( ) ,rcu B ≤/
⊥

 therefore ( ) rcu ≤  (because r is an m-prime element). By 

using the adjointness property we have ( ) ( ) ,c u r p u q≤ = <ɶ ɶ  so ( ) .qcu <  

We obtained a contradiction, so u is an m-quantale morphism. 

According to Corollary 4.5, for any ( )AMinp ∈  there exists 

( )BMinq ∈  such that ( ) ,u q p=ɶ  so Γ  is surjective. 

Assume that ( )BMinqq ∈21 ,  and ,21 qq =/  so there exists ( )BKd ∈  

such that 1qd ≤  and .2qd ≤/  Since u is a quasi r-quantale morphism 

there exists ( )AKc ∈  such that ( ) 2qcu ≤/  and ( )( ) .BB cud
⊥⊥ ≤  

In accordance with Corollary 4.5, the following implications hold: 

( )( ) ( ) ≤⇒≤⇒≤/⇒≤/⇒≤
⊥⊥ cqcuqcuqdqd BB

1111 ( )1 .u qɶ  

Since ( ) 2qcu ≤/  implies ( )2c u q≤/ ɶ  it follows that ( ) ( )1 2 ,u q u q=/ɶ ɶ  so Γ  is 

injective. 

� 

Theorem 7.2. The following assertions are equivalent: 

(1) u is a quasi r-quantale morphism; 

(2) The function ( ) ( )AMinBMin ZZ →Γ :  is a homeomorphism. 
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Proof. ( ) ( )21 ⇒  According to Proposition 7.1, we know that Γ  is a 

continuous bijective map. A basic open subset of ( )BMinZ  has the form 

( ),dDB  where d is a compact element of .B  We shall prove that 

( ( )) ( ))BMindDB ∩Γ  is an open subset of ( ).AMinZ   

We observe that ( ( ) ( )) ( ) ( ){ , }.BD d Min B u q q Min B d qΓ = ∈ ≤/ɶ∩  Let 

( )u qɶ  be a point of ( ( ) ( )) ,BD d Min BΓ ∩  i.e., ( )BMinq ∈  and .qd ≤/  

Since u is a quasi r-quantale morphism, there exists ( )AKc ∈  such that 

( ) qcu ≤/  and ( )(( ) .AB cud
⊥⊥ ≤  

We shall show that ( ) ( ) ( ) ( ( ) ( ) ).A Bu q D c Min A D d Min B∈ Γɶ ∩ ∩⊆  

From ( ) qcu ≤/  one obtains ( ) ,c u q≤ ɶ  so ( ) ( ) ( ).Au q D c Min A∈ɶ ∩  Now let us 

consider that ( ) ( ),AMincDp A ∩∈  so ( )AMinp ∈  and .pc ≤/  By taking 

into account Corollary 4.5, from ( )AMinp ∈  it follows that ( ) ,p u r= ɶ  for 

some ( ).AMinr ∈  

The following implications hold: 

( ) ( ) ( )( ) ( ).B B
Bc p u r u c r u c r d r d r r D d

⊥ ⊥≤ = ⇒ ≤ ⇒ ≤ ⇒ ≤ ⇒ ≤ ⇒ ∈/ / /ɶ  

Since ( ) ( ) ,p u r r= = Γɶ  we obtain the following inclusion: 

( ) ( ) ( ( ) ( )).BMindDAMincD BA ∩∩ Γ⊆  

( ) ( )12 ⇒  Assume that ( ) ( )AMinBMin ZZ →Γ :  is a homeomorphism 

and consider the elements ( ) ( )BKdBMinq ∈∈ ,  such that .qd ≤/     

Thus ( ) ( ),BMindDq B ∩∈  so ( )qΓ  is an element of the open subset 

( ( ) ( ))BMindDB ∩Γ  of ( ).AMinZ  Therefore there exists a compact element 

c  of A  such that ( ) ( ) ( ) ( ( ) ( )),BMindDAMincDq BA ∩∩ Γ∈Γ ⊆  hence 

( ) ( ).c q u q≤ Γ =/ ɶ  By the adjointness property we have ( ) .qcu ≤/  
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In order to prove that ( )( ) ,BB cud
⊥⊥ ≤  consider a compact element e 

of A  such that ,Bde
⊥

≤  so .0=ed  For any ( ),BMinr ∈  we have two 

possibilities: 

� If ( ) ,rcu ≤  then ( ) ;rceu ≤  

� If ( ) ,rcu ≤/  then ( ) ,c u r≤/ ɶ  so ( ) ( ) ( ).Au r D c Min A∈ɶ ∩  It follows that 

( ) ( ) ( ( ) ( ) ) ,Br u r D d Min BΓ = ∈ Γɶ ∩  hence ( )dDr B∈  (because Γ  is bijective), 

i.e., .rd ≤/  Thus ,rde B ≤≤
⊥

 so ( ) .receu ≤≤  

Then ( ) ( ) ,0=≤ BMinceu �  so ( ) ,0=ceu  i.e., ( )( ) .Bcue
⊥

≤  We 

conclude that ( )( ) ,BB cud
⊥⊥ ≤  hence u is a quasi r-quantale morphism. 

� 

Let MLf →:  be a morphism of bounded distributive lattices. Then 

f is called an r-lattice morphism if for all ( )MMinQ Id∈  and My ∈  

such that Qy ∈/  there exists Lx ∈  such that ( ) Qxf ∈/  and ( ) ⊆yAnnM  

( )( ).xfAnnM  We remark that f is an r-lattice morphism if and only if 

( ) ( )MIdLIdf →• :  is a quasi r-frame morphism. 

Theorem 7.3. The following assertions are equivalent: 

(1) BAu →:  is a quasi r-quantale morphism; 

(2) ( ) ( ) ( )BLALuL →:  is an r-lattice morphism. 

Proof. ( ) ( )21 ⇒  Let us consider an element ( )BLy ∈  and a minimal 

prime ideal Q  of ( )BL  such that .Qy ∈/  We have to show that there exists 

( )ALx ∈  such that ( ) ( ) QxuL ∈/  and ( )( ) ( ) ( ) ( )( ).xuLAnnyAnn BLBL ⊆  

 



SOME CLASSES OF QUANTALE MORPHISMS 139 

Let us take a compact element d of B  and a minimal m-prime 

element q  of B  such that ( )dy Aλ=  and ,∗= qQ  hence ( ) .∗∈/λ qdA  By 

Lemma 3.3(8) we have ,qd ≤/  hence, by applying the hypothesis that u is 

a quasi r-quantale morphism it follows that there exists ( )AKc ∈  such 

that ( ) qcu ≤/  and ( )( ) .BB cud
⊥⊥ ≤  

Denote ( )cx Aλ=  and assume by absurdum that ( ) ( ) ,QxuL ∈  hence 

by Proposition 4.2 we have ( )( ) ( ) ( )( ) ( ) ( ) .∗∈==λ qxuLcuuLcuB  By 

Lemma 3.3(8) we get ( ) ,qcu ≤  contradicting ( ) .qcu ≤/  Then                  

one obtains ( ) ( ) .QxuL ∈/  By applying Proposition 3.8, it results           

that ( )( ) ( )( ( )) ( )( ) ( ) .
∗⊥∗ ==λ= BddAnndAnnyAnn BLBBLBL  Similarly, 

( ) ( ) ( )( ) ( )( ( ) ( ( ))) ( )( ( )( )) ( )BLBBLABLBL AnncuAnncuLAnnxuLAnn =λ=λ=  

( ( )( ) ) ( ( )( ) ) .
∗⊥∗ = Bcucu   

Since ( )∗⋅  is an order-preserving map, from the inequality ≤⊥Bd  

( )( ) Bcu
⊥

 we get ( ) ( ( )( ) ) ,
∗⊥∗⊥ BB cud ⊆  so ( )( ) ( ) ( ) ( )( ).xuLAnnyAnn BLBL ⊆   

We conclude that ( )uL  is an r-lattice morphism. 

( ) ( )12 ⇒  Assume that ( )BMinq ∈  and d is a compact element of B  

such that .qd ≤/  We have to prove that there exists ( )AKc ∈  such that 

( ) qcu ≤/  and ( )( ) .BB cud
⊥⊥ ≤  We observe that ( )( ),BLMinq Id∈∗  so 

qd ≤/  implies ( ) ∗∈/λ qdB  (cf. Lemma 3.3(8)). By applying the hypothesis 

that ( ) ( ) ( )BLALuL →:  is an r-lattice morphism, there exists ( )AKc ∈  

such that ( ) ( ( )) ∗∈/λ qcuL A  and ( )( ( )) ( ) ( )( ( ( ))),cuLAnndAnn ABLBBL λλ ⊆  

hence ( )( ) ( ) ( ( )) ,∗∈/λ=λ qcuLcu AB  hence ( ) ( )( ) == ∗∗⊥
dAnnd BL

B  

( )( ( )) ( ) ( )( ( ( ))) ( )( ( ( ))) ( )BLABLABLBBL AnncuAnncuLAnndAnn =λ=λλ ⊆  

( ( )( ) ) ( ( )( ) ) .
∗⊥∗

= Bcucu   
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From ( )( ) ∗∈/λ qcuB  we get ( ) .qcu ≤/  By using Lemmas 5.3 and 

3.3(7), from the inclusion ( ) ( ( )( ) )∗⊥∗⊥ BB cud ⊆  one obtains  

( ) (( ) ) (( ( )( ) ) ) ( ( )( ) ) ( )( ) .BBBBBB cucucuddd
⊥⊥

∗
∗⊥

∗
∗⊥⊥⊥

=ρ=≤=ρ=  

It follows that u is a quasi r-quantale morphism. 

� 

8. Quasi Quantale-∗r  Morphisms 

Let SQf →:  be a morphism of commutative rings. We say that f  

is an ring-∗r  morphism (resp., a quasi ring-∗r  morphism) if for each 

( )SMinQ ∈  and for each finitely generated ideal J  of S  such that 

QJ ⊆  there exists an element Ra ∈  (resp., a finitely generated ideal I 

of R) such that ( ) Qaf ∈  and ( ) ( )e
SS IAnnsAnn ⊆  (resp., QI e

⊆  and 

( ) ( )).e
SS IAnnJAnn ⊆  

The notion of quasi r-ring morphism can be extended to quantale 

theory: a quantale morphism BAu →:  is said to be a quasi 

quantale-∗r  morphism if for all ( )BMinq ∈  and ( )AKd ∈  such that 

qd ≤  there exists ( )AKc ∈  such that ( ) qcu ≤  and ( )( ) .BB dcu ⊥⊥
≤  

Let us fix two semiprime coherent quantales BA,  and a coherent 

quantale morphism .: BAu →  

Proposition 8.1. Let BAu →:  be a quasi quantaler -∗  morphism. 

Then u is an m-quantale morphism and the function ( ) ( )AMinBMin →Γ :  

is bijective. 
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Proof. In order to prove that u is an m-quantale morphism assume 

that ( ),BMinq ∈  hence ( ) ( )u q Spec A∈ɶ  (cf. Lemma 4.1). Then there exists 

( )p Min A∈  such that ( ).p u q≤ ɶ  According to Corollary 4.5, there exists 

( )r Min B∈  such that ( ).p u r= ɶ  Assume by absurdum that the minimal 

prime elements ,q r  of the quantale B are distinct, so there exists 

( )d K B∈  such that d r≤  and .d q≤/  Since u be a quasi quantale-∗r  

morphism, from d r≤  it follows that there exists ( )c K A∈  such that 

( )u c q≤  and ( )( ) .BB dcu ⊥⊥
≤  Thus ( ) ( ) ,c u r p u q≤ = ≤ɶ ɶ  so ( ) ,qcu ≤  

therefore ( )( ) qcu B ≤/
⊥

 (cf. Proposition 3.10). On the other hand, qd ≤/  

implies ,qd B ≤
⊥

 so ( )( ) .qdcu BB ≤≤ ⊥⊥
 We obtained a contradiction, so 

,qr =  therefore ( ) ( ) ( ).u q u r p Min A= = ∈ɶ ɶ  It follows that u is an              

m-quantale morphism. 

According to Corollary 4.5, for any ( )AMinp ∈  there exists 

( )BMinq ∈  such that ( ) ,u q p=ɶ  so Γ  is surjective. Assume that 

( )BMinqq ∈21,  and ,21 qq =/  so there exists ( )BKd ∈  such that 

1qd ≤  and .2qd ≤/  Since u is a quasi quantale-∗r  morphism there 

exists ( )AKc ∈  such that ( ) 1qcu ≤  and ( )( ) .BB dcu ⊥⊥
≤  From 2qd ≤/  

we get ,2qd B ≤⊥
 hence ( )( ) .2qcu B ≤

⊥
 By applying Proposition 3.10 we 

get ( ) ,2qcu ≤/  hence 1q  and 2q  are distinct. Then Γ  is injective. 

� 

Theorem 8.2. The following assertions are equivalent: 

(1) u is a quasi quantaler -∗  morphism; 

(2) The function ( ) ( )AMinBMin FF →Γ :  is a homeomorphism. 
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Proof. ( ) ( )21 ⇒  We know that ( ) ( )AMinBMin FF →Γ :  is a 

continuous map, and by Proposition 8.1, it is bijective. It remains to show 

that Γ  is an open map. A basic open subset of ( )BMinF  has the form 

( ),dVB  where d is a compact element of .B  We shall prove that 

( ( ) ( ))BMindVB ∩Γ  is an open subset of ( ).AMinF  

Consider a point ( ( ) ( )),BMindVB ∩Γ∈  so there exists ( )dVq B∈  

such that ( ).p u q= ɶ  Since u is a quasi r-quantale morphism, from qd ≤  it 

follows that there exists ( )AKc ∈  such that ( ) qcu ≤  and ( ( )( )) Acu
⊥

 

.Bd
⊥≤  We shall show that ( ) ( ) ( ( ) ( )).BMindVAMincVp BA ∩∩ Γ∈ ⊆  

From ( )c u q p≤ =ɶ  one obtains ( ) ( ).AMincVp A ∩∈  

Now let us consider a point ( ) ( ),AMincVr A ∩∈  so ( )AMinr ∈  and 

.rc ≤  By Corollary 4.5, there exists ( )BMins ∈  such that ( ) ,r u s= ɶ  so 

( )c r u s≤ = ɶ  implies ( ) .scu ≤  In accordance with Proposition 3.10, we get 

( )( ) ,scu B ≤/
⊥

 hence ,sd B ≤/
⊥

 therefore sd ≤  (because s is m-prime). 

This implies ( ) ( ),BMindVs B ∩∈  hence ( ) ( ( ) ( )).BMindVsr B ∩Γ∈Γ=  

We conclude that ( ) ( ) ( ( ) ( )),BMindVAMincVp BA ∩∩ Γ∈ ⊆  so 

( ( ) ( ))BMindVB ∩Γ  is an open subset of ( ).AMinF  

( ) ( )12 ⇒  Assume that ( ) ( )AMinBMin FF →Γ :  is a homeomorphism 

and consider the elements ( )BMinq ∈  and ( )BKd ∈  such that .qd ≤  

Thus ( ) ( ),BMindVq B ∩∈  so ( ) ( )u q q= Γɶ  is an element of the open 

subset ( ( ) ( ))BMindVB ∩Γ  of ( ).AMinF  Thus, there exists a compact 

element c  of A  such that ( ) ( ) ( ) ( ( ) ( )).A Bu q V c Min A V d Min B∈ Γɶ ∩ ∩⊆   

From ( ) ( )Au q V c∈ɶ  we get ( ) ,c u q≤ ɶ  hence ( ) .qcu ≤  
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In order to prove that ( ( )) ,BB dcu ⊥⊥
≤  consider a compact element y  

of A  such that ( )( ) ,Bcuy
⊥

≤  so ( ) .0=cyu  For any ( ),BMinr ∈  we have 

two possibilities: 

� If ,rd ≤  then ;rdy ≤  

� If ,rd ≤/  then ( ) ( ( ) ( ))Bu r V d Min B≤ Γ/ɶ ∩  (because Γ  is a bijection), 

hence ( ) ( ) ( ) ,Bu r V c Min A∈/ɶ ∩  i.e., ( ).c u r≤/ ɶ  Thus ( ) ,rcu ≤/  so ( ( )) .rcu B ≤
⊥

 

It follows that ,ry ≤  so .rdy ≤  

Then we obtain ( ) ,0=≤ BMindy �  so ,0=dy  i.e., .Bdy
⊥

≤  We 

conclude that ( )( ) ,BB dcu ⊥⊥
≤  hence u is a quasi quantale-∗r  morphism. 

� 

Let MLf →:  be a morphism of bounded distributive lattices. Then 

f is called an lattice-∗r  morphism if for all ( )MMinQ Id∈  and Qy ∈  

there exists Lx ∈  such that ( ) Qxf ∈  and ( )( )xfAnnM  ( ).yAnnM⊆  We 

remark that f is an lattice-∗r  morphism if and only if ( ) ( )MIdLIdf →• :  

is a quasi frame-∗r  morphism. 

Theorem 8.3. The following assertions are equivalent: 

(1) BAu →:  is a quasi quantaler -∗  morphism; 

(2) ( ) ( ) ( )BLALuL →:  is an latticer -∗  morphism. 

Proof. ( ) ( )21 ⇒  Let us consider an element ( )BLy ∈  and a minimal 

prime ideal Q  of ( )BL  such that .Qy ∈  We have to show that there exists 

( )ALx ∈  such that ( ) ( ) QxuL ∈  and ( ) ( ) ( )( ) ( )( ).yAnnxuLAnn BLBL ⊆  
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Let us take a compact element d  of B  and a minimal m-prime 

element q  of B  such that ( )dy Bλ=  and ,∗= qQ  hence ( ) .∗∈λ qdB  By 

Lemma 3.3(8) we have ,qd ≤  hence, by applying the hypothesis that      

u is a quasi quantale-∗r  morphism it follows that there exists ( )AKc ∈  

such that ( ) qcu ≤  and ( )( ) .BB dcu ⊥⊥
≤  From ( ) qcu ≤  we get 

( ) ( ( )) ( )( ) .QqcucuL BA =∈λ=λ ∗  If we denote ( )cx Aλ=  then it follows 

that ( ) ( ) .QxuL ∈  

By using the proof of Theorem 7.3, we have ( )( ) ( )∗⊥
= BdyAnn BL  and 

( ) ( ) ( )( ) ( ( )( ) ) .
∗⊥

= BcuxuLAnn BL  Since ( )∗⋅  is an order-preserving map, 

from the inequality ( )( ) BB dcu ⊥⊥
≤  we get the inclusion ( ( )( ) )∗⊥Bcu  

( ) ,
∗⊥Bd⊆  so ( ) ( ) ( )( ) ( )( ).yAnnxuLAnn BLBL ⊆  We conclude that ( )uL  is 

an lattice-∗r  morphism. 

( ) ( )12 ⇒  Assume that ( )BMinq ∈  and d  is a compact element of B  

such that .qd ≤  We have to prove that there exists ( )AKc ∈  such that 

( ) qcu ≤  and ( )( ) .BB dcu ⊥⊥
≤  We observe that ( )( ),BLMinq Id∈∗  so 

qd ≤  implies ( ) ∗∈λ qdB  (cf. Lemma 3.3(8)). By applying the hypothesis 

that ( ) ( ) ( )BLALuL →:  is an lattice-∗r  morphism, there exists 

( )AKc ∈  such that ( ) ( ( )) ∗∈λ qcuL A  and ( )( ( ) ( ( ))) ⊆cuLAnn ABL λ  

( )( ( )).dAnn BBL λ  By using Proposition 4.2 we get ( )( ) =λ cuB Ł(u) 

( ( )) ,∗∈λ qcA  therefore ( ) qcu ≤  (by Lemma 3.3(8)). 

On the other hand, we have 

( ) ( )( ) ( )( ( )) ( )( ( ) ( ( )))cuLAnndAnndAnnd ABLBBLBL
B λλ== ∗∗⊥

⊇  

 ( )( ( ( ))) ( )(( ( )) ) ( ( )( ) ) .
∗⊥∗

==λ= BcucuAnncuAnn BLABL  
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Recall that ( )∗⋅  is an order-preserving map. Then by using Lemmas 

5.3 and 3.3(7), from the ( ) ( ( )( ) )∗⊥∗⊥ BB cud ⊇  one obtains 

( ) (( ) ) ((( ( )) ) ) (( ( )) ) ( )( ) .BBBBBB cucucuddd
⊥⊥

∗
∗⊥

∗
∗⊥⊥⊥

=ρ=≥=ρ=  

It follows that u is a quasi quantale-∗r  morphism. 

� 

9. Quasi Rigid Quantale Morphisms 

Let SRf →:  be a morphism of commutative rings. Then f is said to 

be a quasi rigid ring morphism if for each finitely generated ideal J  of S  

there exists a finitely generated ideal I  of R  such that ( ( )) =• IfAnnS  

( ).JAnnS  

Let BA,  be two coherent frames. According to [4, 6], a frame 

morphism BAu →:  is said to be a rigid frame morphism if for each 

( )BKd ∈  there exists ( )AKc ∈  such that ( )( ) .BB dcu ⊥⊥
=  

Let BA,  be two coherent quantales and BAu →:  a quantale 

morphism. Then u is said to be a quasi rigid quantale morphism if for 

each ( )BKd ∈  there exists ( )AKc ∈  such that ( )( ) .BB dcu ⊥⊥
=  

If SRf →:  is a morphism of commutative rings, then f  is a quasi 

rigid ring morphism if and only if ( ) ( )SIdRIdf →• :  is a quasi rigid 

quantale morphism. 

Let us fix two semiprime coherent quantales BA,  and a coherent 

quantale morphism .: BAu →  

Proposition 9.1. If BAu →:  is a quasi rigid quantale morphism, 

then it is a quasi r-quantale morphism and a quasi quantaler -∗  morphism. 
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Proof. Assume that ( )BMinq ∈  and ( ).BKd ∈  By hypothesis, there 

exists ( )AKc ∈  such that ( )( ) .BB dcu ⊥⊥
=  According to Proposition 3.10, 

the following implications hold: 

(a) ( )( ) ( )( ) ;qcuqcuqdqd BBB ≤/⇒≤⇒≤⇒≤/
⊥⊥⊥

 

(b) ( )( ) ( )( ) .qcuqcuqdqd BBB ≤⇒≤/⇒≤/⇒≤
⊥⊥⊥

 

Thus u is a quasi r-quantale morphism and a quasi quantale-∗r  

morphism. 

� 

Corollary 9.2. Assume that BAu →:  is a quasi rigid quantale 

morphism. Then ( ) ( )AMinBMin ZZ →Γ :  and ( ) ( )AMinBMin FF →Γ :  

are homeomorphisms. 

Proof. We apply Theorems 7.2 and 8.2. 

� 

Theorem 9.3. If BAu →:  is a quasi quantaler -∗  morphism, then 

the following assertions are equivalent: 

(1) BAu →:  is a quasi rigid quantale morphism; 

(2) Γ  maps basic open sets of ( )BMinF  to basic open sets of 

( ).AMinF  

Proof. ( ) ( )21 ⇒  A basic open set of ( )BMinF  has the form 

( ) ( ),BMindVB ∩  where ( ).BKd ∈  By the hypothesis that u is a quasi 

rigid quantale morphism we have ( )( ) ,BB dcu ⊥⊥
=  for some ( ).AKc ∈  

In order to show that Γ  maps basic open sets of ( )BMinF  to basic open 

sets of ( )AMinF  it suffices to prove that the equality ( ( ) ( )) =Γ BMindVB ∩  

( ) ( )AMincVA ∩  holds. 
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Assume that ( ( ) ( )),BMindVp B ∩Γ∈  hence there exists ( )BMinq ∈  

such that qd ≤  and ( ).p u q= ɶ  According to Proposition 3.10, the 

following implications hold: ( )( ) ( )cuqcuqdqd BB ⇒≤/⇒≤/⇒≤
⊥⊥

 

⇒≤ q ( ) ( ) ( ) ( ) ( ) ( ).A Ac u q u q V c p u q V c Min A≤ ⇒ ∈ ⇒ = ∈ɶ ɶ ɶ ∩  It follows that 

( ( ) ( )) ( ) ( ).AMincVBMindV AB ∩∩ ⊆Γ  

In order to prove that ( ) ( ) ( ( ) ( ))BMindVAMincV BA ∩∩ Γ⊆  we 

assume that ( ) ( ).AMincVp A ∩∈  By using Corollary 4.5, there exists 

( )BMinq ∈  such that ( ) ( ).p u q q= = Γɶ  By using Proposition 3.10, the 

following implications hold: ( ) ( ) ( ) ( )( ) B
Ap V c c p u q u c q u c

⊥
∈ ⇒ ≤ = ⇒ ≤ ⇒ɶ  

( ) ( ).B
Bq d q d q q V d Min B

⊥
≤ ⇒ ≤ ⇒ ≤ ⇒ ∈/ / ∩  It follows that ( ( )Bp V d∈ Γ  

( )) ,Min B∩  so we get the desired inclusion. 

( ) ( )12 ⇒  Assume that ( ).BKd ∈  By using the hypothesis that Γ  

maps basic open sets of ( )BMinF  to basic open sets of ( ),AMinF  there 

exists ( )AKc ∈  such that ( ( ) ( )) ( ) ( ).AMincVBMindV AB ∩∩ =Γ  By 

Lemma 6.1(1), we have ( ( ) ( )) ( )( ) ( ).1 BMincuVAMincV BA ∩∩ =Γ−  

According to Proposition 8.1, from the hypothesis that u is a quasi 

quantale-∗r  morphism it follows that Γ  is bijective, therefore  

( ) ( ) ( ( ) ( )) ( )( ) ( ).1 BMincuVAMincVBMindV BAB ∩∩∩ =Γ= −  

Thus for any ( ).BMinq ∈  the following equivalences hold: qd B ≤
⊥

 

iff qd ≤/  iff ( ) qcu ≤/  iff ( )( ) qcu B ≤
⊥

 (we used Proposition 3.10). It 

follows that ( ) ( ) ( ( )( ) ) ( ).BMincuVBMindV BB
BB ∩∩

⊥⊥
=  By applying 

Proposition 2.5, we get  

( ( ) ( )) ( ( ( )( ) ) ( )) ( )( ) ,BBBB cuBMincuVBMindVd BB
⊥⊥⊥⊥

=== ∩∩ ��  

therefore u is a quasi rigid quantale morphism. 

� 
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Let MLf →:  be a morphism of bounded distributive lattices. Then 

f  is said to be a rigid lattice morphism if for any My ∈  there exists 

Rx ∈  such that ( )( ) ( ).yAnnxfAnn MM =  It is clear that f  is a rigid 

lattice morphism if and only if ( ) ( )MIdLIdf →• :  is a rigid frame 

morphism. 

Theorem 9.4. The following assertions are equivalent: 

(1) BAu →:  is a quasi rigid quantale morphism; 

(2) ( ) ( ) ( )BLALuL →:  is a rigid lattice morphism. 

Proof. ( ) ( )21 ⇒  Assume that ( )BLy ∈  so ( )dy Bλ=  for some 

( ).BKd ∈  According to the hypothesis that u is a quasi rigid quantale 

morphism there exists ( )AKc ∈  such that ( )( ) .BB dcu ⊥⊥
=  By applying 

Propositions 4.2 and 3.8, the following equalities hold: 

( ) ( ) ( )( ) ( )( ( ) ( ( ))) ( )( ( )( ))cuAnncuLAnnxuLAnn BBLABLBL λ=λ=  

( )(( ( )( ) ) ( ( )( ) ) ( )∗⊥∗⊥∗
=== BB dcucuAnn BL  

( )( ) ( )( ( )) ( )( ).yAnndAnndAnn BLBBLBL =λ== ∗  

Thus ( )uL  is a rigid lattice morphism. 

( ) ( )12 ⇒  Let d be a compact element of ,B  so there exists ( )AKc ∈  

such that ( )( ( ) ( ( )) ( )( ( ))dAnncuLAnn BBLABL λ=λ  (because ( )uL  is a 

rigid lattice morphism). By using Proposition 3.8 and Lemma 3.3(5), we 

get ( ( )( ) ) ( )( ( )( )) ( )( ( )) ( ) .
∗⊥∗⊥

=λ=λ= BB ddAnncuAnncu BBLBBL  
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According to Lemmas 5.3 and 3.3(7), the following equalities hold: 

( )( ) ( ( )( ) )) (( ( )( ) ) ) (( ) ) (( ) )) .BBBBBB dddcucucu
⊥⊥

∗
∗⊥

∗
∗⊥⊥⊥

=ρ===ρ=  

We conclude that u is a quasi rigid quantale morphism. 

� 
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10. Appendix 

Let SR ⊆  be an extension of commutative rings. In ([5], p. 1805) 

were defined the following types of ring extensions: 

� SR ⊆  is a rigid (resp., a quasi rigid) extension if for any Sy ∈  

there exists an element Rx ∈  (resp., a finitely generated ideal I  of )R  

such ( ) ( )xAnnyAnn SS =  (resp., ( ) ( ));e
SS IAnnyAnn =  

� SR ⊆  is an r-extension (resp., a quasi r-extension) if for all 

( )SMinQ ∈  and QSy −∈  there exists an element Rx ∈  (resp., a 

finitely generated ideal I of )R  such that Qx ∈/  and ( ) ( )xAnnyAnn SS ⊆  

(resp., QI e ⊈  and ( ) ( ));e
SS IAnnyAnn ⊆  

� SR ⊆  is an extension-∗r  (resp., a quasi )extension-∗r  if for all 

( )SMinQ ∈  and QSy −∈  there exists an element Rx ∈  (resp., a 

finitely generated ideal I  of )R  such that Qx ∈  and ( ) ( )xAnnyAnn SS ⊇  

(resp., QI e
⊆  and ( ) ( )).e

SS IAnnyAnn ⊇  

Remark 10.1. For any ring extension ,SR ⊆  the following 

equivalences hold: 

� SR ⊆  is quasi rigid iff for any finitely generated ideal J  of S  there 

exists a finitely generated ideal I of R such that ( ) ( );e
SS IAnnJAnn =  

� SR ⊆  is a quasi r-extension iff for each ( )SMinQ ∈  and for each 

finitely generated ideal J  of S  such that QJ ⊈  there exists a finitely 

generated ideal I  of R  such that QI e ⊈  and ( ) ( );e
SS IAnnJAnn ⊆  

� SR ⊆  is a quasi ring-∗r  extension iff for each ( )SMinQ ∈  and for 

each finitely generated ideal J of S such that QJ ⊆  there exists a finitely 

generated ideal I  of R  such that QI e
⊆  and ( ) ( ).e

SS IAnnJAnn ⊇  
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The previous remark allows us to define the corresponding types of 

ring morphisms, then to formulate the definition of quasi rigid, quasi        

r- and quasi quantale-∗r  morphisms (see Sections 7-9). We observe that 

the notions of rigid, r- and quantale-∗r  morphisms cannot be defined in 

the framework of quantales. 


