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1. Introduction

The papers ([5], [22]) studied some important classes of ring
morphisms and ring extensions. Among them we mention Baer,

minimalisant, flat ring morphisms and rigid, r- and r#*-ring extensions

(resp., quasi rigid, quasi r- and quasi r+-ring extensions).

The quantales are multiplicative complete lattices that extend the
lattices of ideals in (unital) commutative rings, as well as other lattices of
congruences [23, 11, 21]. The reticulation of a quantale A is a bounded

distributive lattice L(A) whose prime spectrum is homeomorphic to the

m-prime spectrum of A (cf. [13, 8]). In fact, the reticulation construction

provides a covariant functor L(-) from the category of coherent quantales

to the category of bounded distributive lattices (see [8]).

This paper concerns some types of coherent quantale morphisms:

Baer, minimalisant, quasi rigid, quasi r- and quasi r#-quantale

morphisms. These notions are abstractions of some remarkable types of
morphisms and extensions studied in ring theory and frame theory (see

[3-6, 22]). Firstly, we study how the reticulation functor L(-) preserves

the properties that define these types of quantale morphisms. Secondly,
we prove some characterization theorems for quasi rigid, quasi r- and

quasi rx-quantale morphisms. These theorems extend some algebraic

and topological results proved in [5] for ring extensions and in [3, 4] for

frame extensions.

Now we shall present the structure of paper. Section 2 contains
definitions and basic properties on quantales: arithmetical properties,
radical and m-prime elements, Zariski and flat topologies on the m-prime
spectrum (cf. [23, 11, 14]). Section 3 concerns some transfer properties of
the reticulation regarding the m-prime elements and the annihilators.
Section 4 deals with some elementary functorial properties of reticulation

with emphasis on preservation of the annihilators. In Section 5, we find
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various descriptions of Baer and w-Baer quantale morphisms and we
prove two preservation results related to these classes of quantale
morphisms. In Section 6, we begin the study of m-quantale morphisms.

Sections 7 and 8 concern the quasi r- and quasi r*-quantale morphisms

respectively. We obtain algebraic and topological characterizations of
these classes of quantale morphisms and some transfer results. Quasi

rigid quantale morphisms are studied in Section 9.
2. Preliminaries on Quantales

This section contains some basic notions and results in quantale
theory ([23, 11]). Let (A, V, A, -, 0, 1) be a quantale and K(A) be the set

of its compact elements. A is said to be integral if (A, -, 1) is a monoid
and commutative, if the multiplication - is commutative. A frame is a

quantale in which the multiplication coincides with the meet [17]. The

quantale A is algebraic if any a € A has the form a =V X for some
subset X of K(A). An algebraic quantale A 1is coherentif 1 € K(A) and
K(A) is closed under the multiplication. Throughout this paper, the

quantales are assumed to be integral and commutative. Often we shall

write ab instead of a - b. We fix a quantale A.

Lemma 2.1 ([7]). For all elements a, b, ¢ of the quantale A the
following hold.:

ODIfavb=1,thena-b=aAb.
2 If a vV b=1, then a” vV b" =1 for all integer numbers n > 1.

B Ifavb=aVc=1thenaV(b-c)=aV (bAc)=1.
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On each quantale A one can consider a residuation operation
a — b= V{x|ax < b} and a negation operation at = aLA, defined by
at=a>0=Vi{xe Alax = 0}. Thus for all a, b, ce A the following
equivalence holds: @ < b — ¢ if and only if ab < ¢, so (4, V, A, -, =, 0, 1)
becomes a (commutative) residuated lattice.

In this paper, we shall use without mention the basic arithmetical
properties of a residuated lattice [12]. An element p <1 of A is m-prime
if for all a, be A, ab < p implies a < p or b < p. If A is an algebraic
quantale, then p < 1 is m-prime if and only if for all ¢, d € K(A), ed < p
implies ¢ < p or d< p. Let us introduce the following notations:
Spec(A) is the set of m-prime elements and Max(A) is the set of
maximal elements of A. If 1€ K(A), then for any a <1 there exists
m € Max(A) such that ¢ < m. The same hypothesis 1 € K(A) implies
that Max(A) C Spec(A).

The main example of quantale is the set Id(R) of ideals of a (unital)
commutative ring R and the main example of frame is the set Id(L) of
ideals of a bounded distributive lattice L. Thus the set Spec(R) of prime
ideals in R is the prime spectrum of the quantale Id(R) and the set of

prime ideals in L is the prime spectrum of the frame Id(L).

Following [23], the radical p(a) =py(a) of an element ae A is
defined by p4(a) = A{p e Spec(A)|a < p}; if a=p(a) then a is a
radical element. We shall denote by R(A) the set of radical elements of

A. The quantale A is said to be semiprime if p(0) = 0.
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Lemma 2.2 ([23]). For all elements a, b e A the following hold:
(1) a < pla);

2) pla A b) = p(abd) = p(a) A p(b);

@) pla)=1iffa=1

(@) pla v b) = p(p(a) v p(b));

(5) plp(a)) = pla);

) pla) vpb)=1iffavb=1

(7) p(a™) = pla), for all integer n > 1.

Lemma 2.3 ([19]). Let A be a coherent quantale and a € A. Then
(1) pla) = V {c € K(A)|c* < a for some integer k > 1};

(2) For any ¢ € K(A), ¢ < p(a) iff ¥ < a for some &k > 1;

(3) A is semiprime if and only if for any integer k > 1, cF =0 implies
c=0.

Let A be a quantale such that 1e K(A). For any a € A, denote
Dy(a) = D(a) = {p € Spec(A)|a £ p} and Vy(a)=V(a)={pe Spec
(A)|a < p}. Then Spec(A) is endowed with a topology whose closed sets
are (V(a)),c 4. If the quantale A is algebraic, then the family

(D(c)), < K(4) 1s a basis of open sets for this topology. The topology

introduced here generalizes the Zariski topology (defined on the prime
spectrum Spec(R) of a commutative ring R [1]) and the Stone topology
(defined on the prime spectrum Specy;(L) of a bounded distributive

lattice L [2]). Then this topology will be also called the Zariski topology
of Spec(A) and the corresponding topological space will be denoted by

Specz(A). According to [14], Spec;(A) is a spectral space in the sense of
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[15]. The flat topology on Spec(A) has as basis the family of the
complements of compact open subsets of Specy(A) (cf. [9, 17]). Recall from
[14] that the family {V(c)|c € K(A)} is a basis of open sets for the flat
topology on Spec(A). We shall denote by Specr(A) this topological

space.

Let L be a bounded distributive lattice. For any x € L, denote
Dyq(x) ={P e Specyy(L)|x ¢ P} and Vp;(x) = {P € Specyy z(L)|x € P}.

The family (Dpg(x)) is a basis of open sets for the Stone topology on

xeL
Specyq(L); this topological space will be denoted by Specy; z(L). We will
denote by Specjy p(L) the prime spectrum Specyy(L) endowed with the
flat topology; the family (Vz(x)),. is a basis of open sets for the at
topology.

An element e of the quantale A is a complemented element if there

exists f € A suchthat eV f =1 and e A f = 0. The Boolean center of
the quantale A isthe set B(A) of complemented elements of A (cf. [7, 16]).

The following lemma collects some elementary properties of the
elements of B(A).

Lemma 2.4 ([7, 16]). Let A be a quantale and a,be A, e e B(A).

Then the following properties hold.:
(1) ae B(A) iffa Vv at =1;
(2) a A e=ae
(3)e—>a=el V a;
@WIfavb=1and ab =0, then a, be B(A);

B)(@nbd)Vve=(aVe)A(DdAe).
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Proposition 2.5. If a € A, then a® = /\(V(ai)n Min(A)).

3. Reticulation of a Coherent Quantale

The reticulation L(R) of a commutative ring R was studied by many

authors, but the main references on this topic remain [24, 17]. The

reticulation L(A) of a quantale A (introduced in [13] as a generalization

of the reticulation of a commutative ring) is a bounded distributive lattice

whose prime spectrum Specjy(L(A)) is homeomorphic to the prime
spectrum Spec(A) of the quantale A. In this section, we shall recall from

[8, 13] the axiomatic definition of the reticulation of the coherent
quantale and some of its basic properties. Let A be a coherent quantale

and K(A) the set of its compact elements.

Definition 3.1 ([8]). A reticulation of the quantale A is a bounded
distributive lattice L together with a surjective function A : K(A) — L

such that for all a, b € K(A) the following properties hold:
(1) Ma v b) < Ma) vV Md);
(2) Mab) = Ma) vV Mb);
(3) Ma) < Md) iff a” < b, for some integer n > 1.

In ([8, 13]), there were proven the existence and the uniqueness of the

reticulation for each coherent quantale A; this unique reticulation will be

denoted by (L(A), A4 : K(A) - L(A)) or shortly L(A).

We remark that the reticulation L(R) of a commutative ring R is

isomorphic to the reticulation L(Id(R)) of the quantale Id(R).
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Lemma 3.2 ([8]). For all elements a, b € K(A) the following properties
hold:

(1) @ <b implies A4(a) < A4 (B);

2) 2ala Vv b)=hyla) vV Ay(b);

() Mal@)=1iffa=1

(4) 14(0) = 0;

(5) Ag(a) =0 iff a™ =0, for some integer n > 1;

6) hq(a™) = Ay(a), for any integer n > 1;

(1) pla) = p0) iff hala) = 1 4();

(8) Lala) =0 iff a < p(0);

(9) If A is semiprime, then A 4(a) = 0 implies a = 0.

Forany a € A and I € Id(L(A)), let us denote a* = {A4(c)|c € K(A),
c<a}and I, = V{ce K(A)|Ay(c)e I}.

Lemma 3.3 ([8]). The following assertions hold:

(1) If a € A, then a* is an ideal of L(A) and a < (a*),;

(2) If I € Id(L(A)), then (I.)" = I;

(3) If p € Spec(A), then (p*), = p and p* € Specry(L(A));
(4) If P € Specjy(L(A)), then P, € Spec(A);

(5) If c € K(A), then ¢* = (Ay(c)];

©)If ce K(A) and I € Id(L(A)), then ¢ < L, iff Ay(c) e I;
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() If ae A and I € Id(L(A)), then p(a) = (a*),, a* = (p(a))" and
P(I*) = I;

(8 If ce K(A) and p € Spec(A), then ¢ < p iff Ay(c) e p*.

Often the two previous lemmas shall be used in the proofs without

mention.

According to Lemma 3.3, one can consider the following order-

preserving functions: 8 4 : Spec(A) — Specyy(L(A)) and ¢4 : Specpy(L(A))
— Spec(A), defined by 84 (p) = p* and €4 (P) = P,, for all p € Spec(A)
and P e Specy;(L(A)).

Lemma 3.4 ([8, 14]). The functions 84 and ¢, are homeomorphisms
w.r.t. the Zariski and the flat topologies, inverse to one another.

We also observe that § 4 and ¢4 are also order-isomorphisms.

Lemma 3.5. Let A be a semiprime coherent quantale and a, b € A.

Then at < b*, if and only if (ab)* = b*.

Proof. Since (ab)" > b' it suffices to prove that a* < b*, if and only
if (ab)t < bt If (ab)t < bt, then at < (ab)t < bt. Conversely, assume
that a* < bl, therefore abc = 0. Thus ¢b < a* < bl, so ¢bb = 0, hence
we get Lg(bc) = A4(0) A Ayg(c) = Ay(cbb) = 0. Since A is semiprime it
follows that bc = 0. Thus b(ab)™ = 0, so one gets (ab)™ < bt.

O

For a bounded distributive lattice L we shall denote by B(L) the

Boolean algebra of the complemented elements of L. It is well-known

that B(L) is isomorphic to the Boolean center B(Id(L)) of the frame
Id(L) (see [7, 17]).



120 GEORGE GEORGESCU

Let us fix a coherent quantale A.

Proposition 3.6 ([8]). The function 7‘A|B(A) : B(A) - B(L(A)) is a
Boolean isomorphism.

If L is bounded distributive lattice and I € Id(L), then the annihilator
of I istheideal Anny(I)= Ann(I)={xe I|x A y =0, forall ye L}.

Lemma 3.7 ([14]). If ce K(A) and p e Spec(A), then Ann(\4(c))C p*,
if and only if ¢ — p(0) < p.

The next two propositions concern the behaviour of reticulation w.r.t.

the annihilators.

Proposition 3.8 ([14]). If a is an element of a coherent quantale, then

Ann(a*) = (a = p(0))*; if A is semiprime, then Ann(a*) = (a®l)".

Proposition 3.9 ([14]). Assume that A is a coherent quantale. If I is
an ideal of L(A), then (Ann(I)), = I, — p(0); if A is semiprime, then

(Ann(D), = (L)

If A is a quantale then we denote by Min(A) the set of minimal
m-prime elements of A; Min(A) is called the minimal prime spectrum of A.
If 1 e K(A) then for any p € Spec(A) there exists ¢ € Min(A) such that
q < p.

Proposition 3.10 ([18]). If A is semiprime coherent quantale and
p € Spec(A), then pe Min(A), if and only if for all ce K(A),c < p
implies et « p.

We denote by Miny(A) (resp., Minp(A)) the topological space
obtained by restricting the topology of Spec;(A) (resp., Specp(A)) to
Min(A). Then Miny;(A) is homeomorphic to the space Minyy 7 (L(A)) of

minimal prime ideals in L(A) with the Stone topology and Ming(A) is
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homeomorphic to the space Mingy p(L(A)) of minimal prime ideals in

L(A) with the flat topology (cf. Lemma 3.4). By [14], Min;(A) is a zero-

dimensional Hausdorff space and Ming(A) is a compact 7} space.

4. Quantale Morphisms

Let A, B be two quantales and u: A — B be a function that
preserves the arbitrary joins (in this case we have u(0) = 0). Let us
consider the function % : B — A defined by @(b) = V{a € A|u(a) < b}, for
any b e B. It is well-known that # is the right adjoint of u: u(a) < b iff
a<iu(), forall a e A and b e B (see, e.g., Lemma 3.1 of [25]).

Let A, B be two quantales. A function f : A — B is a morphism of

quantales if it preserves the arbitrary joins and the multiplication (in this

case we have u(0)=0); f is an integral morphism if f(1)=1. If
w(K(A)) C K(B), then we say that u preserves the compacts. If © is an

integral quantale morphism that preserves the compacts then it is called
a coherent quantale morphism. In a similar manner one defines the
frame morphisms, integral frame morphisms, coherent frame morphism,
ete. (cf. [3, 4]).

Let f: Ry > Ry be a morphism of (unital) commutative rings. If I is

an ideal of R;, then I° will denote the extension of I to Ry, i.e., the ideal

Ryf(I) generated by f(I) in Ry (cf. [1], p.9). Then the function

f* : Id(Ry) — Id(Ry), defined by f°(I) = I¢, for any I e Id(R;), is a

coherent quantale morphism.
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Let f: L; — Ly be a morphism of bounded distributive lattices. If 1
is an ideal of L;, then f°(I) is the lattice ideal (f(I)] generated by f(I)
in Lg. Then the function f° : Id(L;) — Id(Lsy), defined by I > f°(I),
for any I € Id(L,), is a coherent frame morphism.

Lemma 4.1. Let u : A — B be a quantale morphism. If q € Spec(B),
then 1ii(q) e Spec(A). The function ﬂlSpec(B) : Spec(B) — Spec(A) is
continuous w.r.t. the Zariski and the flat topology.

Proof. Let a, b be two elements of A such that ab<i(q). Thus
w(a)u(d) = u(ab) < q (because @ is the right adjoint of ), hence u(a) < q
or u(b) < q. By applying again the adjointness property we get a <i(q)
or b<i(q), so i(q)e Spec(A).

Let us assume that ce K(A). For any pe Spec(A) we have
pe (@)t (Vale)) iff c<a(p) iff pe Vg(ulc)), hence (ﬁ)_l(VA(c)) =
Vg(u(c)) and (@) (D4 (c) = Dg(ulc)). Then the two functions ] Spec(B)
: Specy(B) — Specz(A) and i Spec(B) : Specp (B) — Specp(A) are
continuous. O

In the rest of the section we shall assume that A, B are two coherent
quantales.
Proposition 4.2 ([8]). Let u: A — B be a coherent quantale

morphism. Then there exists a morphism of bounded distributive lattices

L(u) : L(A) — L(B) such that the following diagram is commutative:

U|K(A)
K(A) > K(B)

)\A >\B

L(A) L
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The following lemma is a well-known result in lattice theory.

Lemma 4.3. Let f : L — M be a morphism of bounded distributive
lattices. For each P e Specjy(L), there exists @ € Min(M) such that

Q) c P.

Proof. For sake of completeness we shall present a short proof of this
lemma. If P € Specy;(L), then 1 € f(L — P) and f(L — P) is closed under

meet. Then there exists @ € Spec(M) such that Q'ﬂ f(L-P)=0. Let
@ be a minimal prime ideal of M such that @ C @', so it is easy to see

that (@) C P. O

Lemma 4.4. Let u: A — B be a coherent quantale morphism. If
p € Spec(A), then there exists ¢ € Min(B) such that i(q) < p.

Proof. Assume that p e Spec(A), hence p* e Specjy(L(A)). By
Lemma 4.3, there exists @ € Miny;(L(B)) such that (L)) () C p*.

Thus @ = g* for some g € Min(A), hence (L(x)) *(¢*)C p*.

We shall prove that #(q) < p. Let ¢ be a compact element of A such
that c<u(g), so ulc)<q (by the adjointness property). Therefore
by using Proposition 4.2 we get L(u)(A4(c)) = Ag(u(c)) € g*, hence
Aale) e (L(u))_l(q* )C p*. By using Lemma 3.3(8) one obtains ¢ < p. We

conclude that @(q) < p. O

Corollary 4.5. Let u : A — B be a quantale morphism. If p € Min(A),

then there exists q € Min(B) such that i(q) = p.
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Proposition 4.6. Let u: A — B be a coherent quantale morphism
and assume that the quantales A, B are semiprime.

(V) If a € A, then (u(a))*B = ((L(w)(a*)), ) B;

@ If I € IA(I(A), then Anny(g)(L(w)(D)) = Anny (L)),

Proof. (1) For all a € A and d € K(B) we shall prove the following

equivalence:

du(a) = 0 if and only if d((L(x)(a*)),) = 0. (4.1)

Assume that du(a) = 0. Let e be a compact element of B such that
Ag(e) e L(a)(a*), so there exists ¢ € K(A) such that ¢ < a and Ag(e) =
L(u) (A 4(c)) = Ag(u(c)) (the last equality is due by Proposition 4.2). Thus
du(c) < du(a) =0, so Apg(de)=Ag(d) A Agle) =Ag(d) A Ag(ulc)) =
Ag(du(c)) = 0. Since B is semiprime, by Lemma 3.3(9) we have de = 0,
so the equalities d((L(u)(a*)),) =d(V{e e K(B)|kg(e)e L(u)(a*)}) =

V{dele € K(B), Ag(e) € L(u)(a*)} = 0 hold.

Conversely, let us suppose that d((L(u)(a*)),)=0. Let ¢ be a
compact element of A such that ¢ < a, so u(c) e K(B) and A4(c) € a¥,
therefore we get Apg(ulc)) = L(u)(A4(c)) € L(u)(a*). It follows that

u(c) < (L(w) (a*)),, hence du(c) = 0. Recall that the map u-preserves

the arbitrary joins. Then the following equalities hold:

du(a) = du(V {c € K(A)|c < a}) = V{dulc)|c € K(A), c <a} =0.
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We have proven the equivalence (4.1), therefore the equality (u(a))™B =

((L(w)(a*)), )8 holds.

(2) We shall prove that for any d € K(B) the following equivalence
holds:

r5(d) e Anng(p)(L(u)(I)) if and only if Ag(d) € Annpg)((w(1,))).
(4.2)
Assume that Ap(d)e Annyp) (L) (I)) and ye (u(L.))*, so there
exists e € K(B) such that e < u(I,) and y = Ag(e). We remark that
u(l,) = ulV{ce K(A)[halc) e I}) = Viulc)lc e K(A), halc)e I},

(4.3)
therefore from e < u(Il.) and ee K(B) we get e < u(c), for some
c e K(A) such that A4(c)e I. Then L(u)(A4(c)) € L(u)(I), hence one
gets Ap(dulc)) = Ap(d) Arp(ulc)) = Ap(d) A L(w) (Ag(c)) = 0. Since the

quantale B is semiprime we have du(c) = 0, so de = 0. Thus Ag(d) A ¥

= Ap(d) A Ag(e) = Ag(de) = 0, so Ag(d) e Anng(p)((u(1.))").

Conversely, assume that Ap(d)e AnnL(B)((u(I*))*). For any
ze L(u)(I), there exists ce K(A) such that A4(c)e K(A) and
z = L(u)(Ag(c)) = Ag(ulc)). Thus Apg(ulc)) e L(w)(I), hence by using
(4.3) we get u(c) < u(I,), therefore z = Ag(u(c)) € (u(I,))". By applying

the hypothesis, we get Ap(d) A z = 0, hence Ag(d) € Annp(p)(L(u)(1)).

O
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5. Baer Quantale Morphisms

Let f: R — @ be a morphism of commutative rings. Following [22],
we say that fis a Baer ring morphism if for all I, j € Id(R), Anng(I) =
Annp(J) implies Anng(I¢) = Anng(J°); fis said to be a w-Baer ring
morphism if for all x, y € R, Anng(x) = Anng(y) implies Anng(f(x)) =
Anng(f(y)).

Let f: L — M be a morphism of bounded distributive lattices. We
say that f is a Stone lattice morphism if for all I, J € Id(L), Anny(I) =

Anny(J) implies Anny(1°) = Anny(J€); f is said to be a w-Stone

lattice morphism if for all x, ye M, Anny(x) = Anny(y) implies
Annyr(f(x)) = Annyr(f(y)).

The previous definitions will be extended from ring and lattice
morphisms to quantale morphisms. Let w: A — B be a quantale

morphism. Then u is said to be a Baer quantale morphism if for all
a,be A, at4 = b4 implies (u(a))"B = (w(b))™B; u is said to be a
w-Baer quantale morphism if for all a, be K(A), a*4 = b4 implies

(w(@))*B = (u(b))*B. The notions of Baer and w-Baer frame morphisms

are defined in a similar manner.

A morphism f: R —» @ of commutative rings is a Baer (resp.,
w-Baer) ring morphism if and only if f°: Id(R) — Id(Q) is a Baer
(resp., w-Baer) quantale morphism. A morphism f : L — M of bounded
distributive lattices is a Stone (resp., w-Stone) lattice morphism if and
onlyif f* : Id(L) — Id(M) is a Baer (resp., w-Baer) frame morphism.

The class of Baer (resp., w-Baer) quantale morphisms is closed under

the composition. The following result generalizes the main part of
Proposition 8 of [22].
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Proposition 5.1. Let us consider two semiprime coherent quantales

A, B and a coherent quantale morphism u : A — B. Then the following

assertions are equivalent:

(1) u is a Baer quantale morphism;

(2) For any a € A, a4 = 0 implies (u(a))LB = 0;

(3) Forall a,be A, a4 < b4 implies (u(a))™ < (u(b))"B;

(4) For any a € A, (u(at4))tB+B = (u(a))iB;

(5) For any b e B, (b™B| 2)*A = 0 implies b = 0, whenever b B| 4 is

the element of A defined by blB| 4= Vd{ce Alul(c)b = 0}.

Proof. We shall assume that a and b are arbitrary elements of the
quantale A.

(1) = (2) Assume that u is a Baer quantale morphism. If at4 =0,

then at4 = 1%, hence (u(a))*8 = ()8 =18 = 0.

(2) = (4) Since (a Vv at4)t4 = g4 A gt414 = 0, by applying the
hypothesis (2) we get (w(a V at4 ))*B =0, hence (w(a))™B A (u(a™4))'B =
(u(@)V u(a™4 )8 = (u(a Va4 ))*B =0. Thus (u(a))*B(ua™4)B =0,
so we get the inequality (w(a™4))*B1B > (u(a))'B.

On the other hand, u(a)u(@t4) = u(aa'4) =u(0)=0 implies
u(a) < (w(@*4))'B, therefore the converse inequality (u(a™4)) BB <

(w(a) )*B holds. Thus u is a Baer quantale morphism.



128 GEORGE GEORGESCU
(4) = (1) If a*4 = b4, then
(w(@)'B = (u(a™4)) BB = (u(dr4)) B B = (u(b))*5.
(3) = (1) Obviously.
(1) = (3) By using Lemma 3.5, the following implications hold:
at4 <btA = (ab)tA = bHA (u(ab))'B = (u(b))B.

Observing that u(ab) = u(a)u(d) < u(a) implies (u(a))*B < (u(ab))'B it

follows that at4 < b4 implies (u(a))*B < (u(b))*B.

(2) = (5) Assume that (blB|A Y4 =0 so (u(bLB|A DB =0 (by
applying the hypothesis (2)). We remind that u preserves arbitrary joins,
hence the following equalities hold: bu(bJ‘B|A) = bu(V{ce Alulc)b = 0} =
bV {ulc)|ulc)b = 0} = V {bu(c)|c € A, ulc)b = 0} = 0. Therefore b < (u(biB|

)8 =0, 50 b =0.

(5) = (2) Assume that ae€ A and a'4 =0. For any ce B, the

following implications hold:
¢ < w@)® = cula)=0=a < cLB|A = (ciB|A)LA
<atd =0=c=0.
In particular, we obtain (u(a))*B = 0.

O

For the rest of section, let us fix two semiprime coherent quantales

A, B and a coherent quantale morphism u : A — B. We shall describe
the way in which the reticulation functor L(-) transforms the Baer (resp.,

w-Baer) quantale morphisms into the Stone (resp., w-Stone) lattice

morphisms.
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Theorem 5.2. The following assertions are equivalent:
(1) v is a Baer quantale morphism;

(2) L(u) is a Stone lattice morphism.

Proof. (1) = (2) Let I,J be two ideals of L(A) such that
Annp4)(I) = Annpa)(J). Recall that the quantales A and B are

semiprime. According to Proposition 3.9, (I,)'4 = (Anng4)(I)), =
(Anng4)(J)). = (J, )4 | therefore, by applying the hypothesis that u is

a Baer quantale morphism, it follows that (u(I.))*B = (u(J,))B. Then

by using Proposition 3.8, we get

Anngy (1)) = ((T))B ) = (@) B ) = Anng gy ((u(T.))).
By Proposition 4.6(2) we get Annpp)(L(u)(I)) = Annyg)(L(u)(J)), so
L(u) is a Stone lattice morphism.

(2) = (1) Let a, b be two elements of A such that ™4 = b14. By
Proposition 3.8, we have Annp4)(a*) = (atA ) = (bHA ) = Annp4)(b*).
Since L(u) is a Stone lattice morphism we get Annpg)(L(u)(a*)) =
Annyp)(L(u)(b*)), therefore (Annp,g)(L(u)(a*))), =(Annyg)(Lw)(b*)))s.
In accordance with Proposition 3.9 we get ((L(u)(a*)), Y'B = ((L(x)

(6*)),)"B, hence (u(a))™ = (u(b))"B (by using Proposition 4.6(1)).
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Lemma 5.3. For any ¢ € K(A), ¢*4 = (p(c))*4.

Proof. Firstly we observe that ¢ < p(c) implies ¢4 > (p(c))*4. In
order to show that ¢4 < (p(c))*4, let us consider a compact element c of
A such that d < cLA, hence dc = 0. Let ¢ be a compact element of A such
that e” < ¢ for some integer n > 1, therefore de” < dc = 0. It follows
that the following equalities hold: dp(c) = d(V {e € K(A)|e" < ¢, for
some integer n > 1}) = V {de € K(A)|e" < ¢, for some integer n > 1} = 0.

Thus d < (p(c))*4, so we conclude that ¢4 < (p(c))*4.

Theorem 5.4. The following assertions are equivalent:

(1) u is a w-Baer quantale morphism;

(2) L(u) is a w-Stone lattice morphism.

Proof. (1) = (2) Assume that u is a w-Baer quantale morphism and
¢, d are two compact elements of A such that Annp4)(dalc)) =
Annpa)(M4(d)), so, by applying Proposition 3.9, the following equalities
hold:

(A4 = (Annga) (A a(@)])), = (Anngay(Aa(@]), = (Aa(@)])A.

We remark that (A4(c)] = (c*), = plc) and (A4(d)], = (d*), = p(d)
(cf. Lemma 3.3(5) and (7)), hence, by using Lemma 5.4, we get
¢t = (pe))4 = (p(d)*4 = c™A. Then (u(e))™® = (w(d))"® (by the
hypothesis (1)), hence, by using Proposition 3.8, the following hold:

Anng ) (w(©))*) = (W) B ) = (W) B ) = Annyg)(w(d)).
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By Proposition 4.2 and Lemma 3.3(5), we obtain the following equalities

hold:  Annpg)(L(u) (A 4(c))) = Annyp) (Ap(ulc))) = Annyp)((u(c))*) =

Annpp)((u(d))*) = --- = Annpp) (L(u) (A 4(d))). We conclude that L(u)
is a w-Stone lattice morphism.

(2) = (1) Assume that L(u) is a w-Stone lattice morphism. Let ¢, d

be two compacts of A such that ctA = dta, By using Lemma 3.3(5), the
following equalities hold: Annpa) (A4(c)) = Annp ) (c*) = (ct4 )=

(dt4 )*= Annp 4y (d*) = Annpq) (ha(d)). Applying the hypothesis and
Proposition 4.2, we get Annpp)(Ap(ulc))) = Annpp) (L) (Ap(c))) =
Annppy (L(u) (Ag(d))) = Anngg) (Ap(u(d))).

In virtue of Proposition 3.8, we get ((u(c))*B )* = Annp gy (Ag(ulc))) =

Anny gy (M p(u(d))) = ((w(d)) 7B ), therefore p((u(c)) B ) = (((ulc) ~B)*), =

(((w(d))*B )* ), = p((w(d))*B). By using Lemma 5.3 we obtain (u(c))"B

(u(c)) 1B, so u is a w-Baer quantale morphism.

6. Minimalisant Quantale Morphisms

Let f : R —» S be a morphism of commutative rings. By [22], fis said
to be a minimalisant ring morphism (= m-ring morphism) if for each
Q € Min(S), f1(Q) e Min(R). This notion can be generalized to the
quantale framework: a quantale morphism u : A — B 1is said to be a
minimalisant quantale morphism (= m-quantale morphism) if for each
q € Min(B), i(q) € Min(A). It is clear that a ring morphism f : R — S
is an m-ring morphism if and only if f°:Id(R) —» Id(S) is an

m-quantale morphism.
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Let f: L — M be a morphism of bounded distributive lattices. Then
f is said to be a minimalisant lattice morphism (= m-lattice morphism) if

for each @ € Min(M), f1(Q) € Min(L). We remark that f : L — M is

an m-lattice morphism if and only if f° : Id(L) — Id(M) is an m-frame

morphism.

If u: A — B is an m-quantale morphism then we consider the
function T : Min(B) — Min(A) defined by T (q) = d(g), for any
q € Min(B).

Lemma 6.1. Assume that u is an m-quantale morphism.
(1) I ¢ € K(A), then T™"(Va(e) (| Min(A)) = Vg(u(c) (| Min(B);

(2) T is a continuous map w.r.t. the Zariski and the flat topologies.

Let us fix two semiprime coherent quantales A, B and a coherent
quantale morphism f : R — S According to Proposition 4.2, one can

consider the lattice morphism L(u) : L(A) — L(B).
Lemma 6.2. If ¢ € Spec(B), then (L(u)) ™ (g*) = (ii(q))".

Proof. Assume that x € (L(u))_l(q*) so there exists ¢ € K(A) such
that x = A4(c) and L(u)(A4(c)) € ¢*. According to Proposition 4.2, we
get u(ry(c)) e ¢* hence u(c) <q (by Lemma 3.3(8)). By using the
adjointness property we get ¢ < @(g), hence x = A 4(c) € (é(q) )*. Thus

we obtain the inclusion (L(u))(g*) C (ii(q))".
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In order to prove the converse inclusion (@(q))" C (L(w)) (g*),
assume that d is a compact element of A such that d < @(g). Then we
have u(d) <q, hence L(u)(As(d)) = (Ag(uld)) e q* ie., Ay(d))e

(L(x))'(g*). Thus the inclusion (ii(q))" C (L(w)) ' (g*) follows.

Proposition 6.3. The following assertions are equivalent:

(1) u is an m-quantale morphism,;

(2) L(u) is an m-lattice morphism.

Proof. (1) = (2) Let @ be a minimal prime ideal of the lattice L(B),
so @ =q* for some q € Min(B). By the hypothesis that u is an m-
quantale morphism we have i(q) € Min(A), so (i(q))" € Mingy(L(A)). In
accordance with Lemma 6.2, we have (L(x)) ™ (Q) = (L(w)) (¢*) = (ii(q))",

S0 (L(u))_l(Q) is a minimal prime ideal of the lattice L(A). Then L(u) is

an m-lattice morphism.

(2) = (1) Assume that L(u) is an m-lattice morphism. Let g be a

minimal prime element of the quantale B, hence ¢* € Miny;(L(B)). By
taking into account the hypothesis, it follows that (L(u))_l(q*) €

Mingy(L(A)). By using Lemma 6.2, we get (ii(q))" € Ming;(L(A)), hence

ii(q) € Min(A). We conclude that u is an m-quantale morphism.
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Lemma 6.4. The following assertions are equivalent:

(1) u is an m-quantale morphism,;

(2) For all ¢ € Min(A) and ¢ € K(A), ¢ < q implies ¢c*A £ i(q);

(3) Forall ¢ € Min(A) and c € K(A), ¢ < q ifand only if ¢+4 « i(q).
Proof. By Proposition 3.10.
O

Proposition 6.5. If u : A —» B is an m-quantale morphism, then it

is a w-Baer quantale morphism.

Proof. Let ¢, d be two compact elements of A such that ¢+4 = d*4.
Assume by absurdum that (u(c))™® # (u(d))"B, so (u(c))"B % (u(d))"B
or (u(d))*B £ (u(c))*B. For example, suppose that (u(c))*B £ (u(d))*B,
so there exists e € K(B) such that e < (u(c))*B and e £ (u(d))*B. Then
eu(d) # 0 so there exists g € Min(B) such that eu(d) < g (because

A Min(B) = 0), hence e £ ¢ and u(d) £ ¢q. Since u is an m-quantale

morphism we have i(q) € Min(A).

From e £ ¢ and e < (u(c))'B we get u(c) < e'B < g, hence ¢ < i(q)

(because # is the right adjoint of u). Since i(q) € Min(A), by applying
Proposition 3.10 we get ctA « u(q)-
From u(d) £ ¢ we get d £ @(q) (by the adjointness property), hence

¢4 = d*4 < §(q). We obtained a contradiction, hence (u(c))*B = (u(d))*B,

so u 1s a w-Baer quantale morphism.
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Remark 6.6. According to Proposition 2.4 of [22],if f: R — S 1s a
w-Baer ring morphism and Minz(R) is compact, then fis a minimalisant

ring morphism. An open question is if this assertion can be generalised to
quantale morphisms: if u : A — B is a w-Baer quantale morphism and

Minz(A) is compact, then is u a minimalisant quantale morphism?.

7. Quasi r-Quantale Morphisms

Let f: @ — S be a morphism of commutative rings. We say that f is
an r-ring morphism (resp., a quasi r-ring morphism) if for each
@ € Min(S) and for each finitely generated ideal J of S such that

J ¢ Q there exists an element a € R (resp., a finitely generated ideal I
of R) such that f(a) ¢ @ and Anng(s) C Anng(I°) (resp., I° ¢ @ and
Anng(J) C Anng(I?)).

The notion of quasi r-ring morphism can be extended to quantale
theory: a quantale morphism u : A — B 1is said to be a quasi r-quantale
morphism if for all ¢ € Min(B) and d € K(A) such that d £ ¢ there
exists ¢ e K(A) such that u(c) £ ¢ and d*B < (u(c))*B. In a similar
way, we define the notion of quasi r-frame morphism.

Let us fix two semiprime coherent quantales A, B and a coherent
quantale morphism u : A —» B.

Proposition 7.1. Let u: A — B be a quasi r-quantale morphism.
Then u is an m-quantale morphism and the function T : Min(B) — Min(A)
is bijective.

Proof. Assume by absurdum that v : A — B is not an m-quantale
morphism, so there exists ¢ € Min(B) such that @(q) ¢ Min(A). Then
there exists p € Min(A) such that p < @(q). According to Corollary 4.5,

there exists r e Min(B) such that p =(r), so the minimal prime
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elements q, r of the quantale B are distinct (assuming that r = ¢ we
get p =1a(r) =al(q), contradicting p < i(q)). Thus there exists
d € K(B) such that d < r and d £ g, hence there exists ¢ € K(A) such

that u(c) £ q and d*B < (u(c))'B (because u is a quasi r-quantale
morphism).
By Proposition 3.10, d <r and r e Min(A) imply dB £ r, hence

(u(c))*B £ r, therefore u(c) < r (because r is an m-prime element). By
using the adjointness property we have ¢ <a(r)=p <u(q), so ulc) < q.

We obtained a contradiction, so © is an m-quantale morphism.

According to Corollary 4.5, for any pe Min(A) there exists

q € Min(B) such that @(q) = p, so I is surjective.

Assume that qp, g3 € Min(B) and ¢ # g9, so there exists d € K(B)

such that d < ¢; and d £ g5. Since u is a quasi r-quantale morphism
there exists ¢ € K(A) such that u(c) £ g9 and d*B < (u(c))'B.
In accordance with Corollary 4.5, the following implications hold:
d<q = d'B £q = ) £q = ul) < q = c<ilg).

Since u(c) £ g9 implies ¢ £i(gy) it follows that @(q) + @(gy), so T is

injective.

Theorem 7.2. The following assertions are equivalent:
(1) u is a quasi r-quantale morphism;

(2) The function T : Miny(B) — Minz(A) is a homeomorphism.
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Proof. (1) = (2) According to Proposition 7.1, we know that I' is a
continuous bijective map. A basic open subset of Minz(B) has the form

Dpg(d), where d is a compact element of B. We shall prove that

) ﬂ Min(B)) is an open subset of Miny(A).

We observe that I'( Dg (d) ﬂ Min(B)) ={u(q)| g€ Min (B), d £ q}. Let

i(q) be a point of I'( Dy (d ﬂMzn , Le., g€ Min(B) and d £ q.

Since u is a quasi r-quantale morphism, there exists ¢ € K(A) such that

u(c) £ ¢ and d*B < ((u(c))*A.

We shall show that #(q)e Dy(c ﬂMm ) CT'(Dg(d ﬂMm
From u(c) £ ¢ one obtains ¢ <#(q), so @(g)e Dy (c ﬂ Min(A). Now let us
consider that p € DA(c)ﬂMin(A), so p e Min(A) and ¢ £ p. By taking

into account Corollary 4.5, from p € Min(A) it follows that p =d(r), for

some r € Min(A).
The following implications hold:
c£p=ﬁ(r):u(c)£r:(u(c))i3 <ro>dB<rodfrsre Dg (d).
Since p =i(r) =T(r), we obtain the following inclusion:
c)ﬂ Min(A) C T(Dg(d ﬂMm

(2) = (1) Assume that I' : Miny(B) —» Min;(A) is a homeomorphism
and consider the elements q € Min(B), d € K(B) such that d £ q.
Thus q € DB(d)ﬂMin(B), so I'(g) is an element of the open subset

ﬂ Min(B)) of Miny(A). Therefore there exists a compact element
¢ of A such that T'(g) € Dylc ﬂMm ) C T(Dg(d ﬂMzn , hence

¢ £T(q) = i(q). By the adjointness property we have u(c) £ q.
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In order to prove that d*B < (u(c))*B, consider a compact element e
of A such that e < dB, so ed = 0. For any r € Min(B), we have two
possibilities:

o If u(c) < r, then eulc) < r;

o If u(c) £ r, then c£a(r), so a(r)e Dy(c ﬂ Min(A). It follows that
I'(r)y=a(r)e T'(Dg(d ﬂ Min(B)), hence r € Dg(d) (because I is bijective),

ie,d%r. Thuse<d™B <r,soeulc)<es<r

Then eu(c) < A Min(B) =0, so eu(c) =0, ie., e< (u(c)B. We
conclude that d*B < (u(c))LB , hence u is a quasi r-quantale morphism.

O

Let f: L — M be a morphism of bounded distributive lattices. Then
f is called an r-lattice morphism if for all @ € Miny;(M) and ye M
such that y ¢ @ there exists x € L such that f(x) ¢ @ and Anny(y) C

Annp;(f(x)). We remark that f is an r-lattice morphism if and only if
f°: Id(L) — Id(M) is a quasi r-frame morphism.

Theorem 7.3. The following assertions are equivalent:

(1) u : A - B isa quasi r-quantale morphism;

(2) L(u) : L(A) — L(B) is an r-lattice morphism.

Proof. (1) = (2) Let us consider an element y € L(B) and a minimal

prime ideal @ of L(B) such that y ¢ @. We have to show that there exists
x € L(A) such that L(u)(x) ¢ @ and Annpg)(y) € Anngg)(L(u)(x)).
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Let us take a compact element d of B and a minimal m-prime

element ¢ of B such that y = A 4(d) and @ = g*, hence A4(d) ¢ g*. By
Lemma 3.3(8) we have d £ ¢, hence, by applying the hypothesis that u is

a quasi r-quantale morphism it follows that there exists ¢ € K(A) such
that u(c) £ ¢ and d*B < (u(c))*B.

Denote x = A4(c) and assume by absurdum that L(u)(x) € @, hence
by Proposition 4.2 we have Ag(u(c)) = L(v) (u(c)) = L(u)(x) € g*. By
Lemma 3.3(8) we get u(c)<gq, contradicting u(c)£q. Then

one obtains L(u)(x)¢ @. By applying Proposition 3.8, it results
that Annpp)(y) = Anngp)(Ap(d)) = Annpp)(d*) = (d*B)*. Similarly,
Anny,(p)(L(u) (x)) = Annyp)(L(u) (A4 (c) = Annyg) (A (u(c))) = Annyp)

(@(@)) = ((ule))™B )"

Since ()" is an order-preserving map, from the inequality d'B <
(u(e))"B weget (B )" C ((u(e)"B)", so Annyp)(y) € Anngp)(L(u) (x)).
We conclude that L(u) is an r-lattice morphism.

(2) = (1) Assume that g € Min(B) and d is a compact element of B
such that d £ q. We have to prove that there exists ¢ € K(A) such that
u(c) £ ¢ and d*B < (u(c))*B. We observe that g* e Mingy(L(B)), so

d £ q implies Ag(d) ¢ ¢* (cf. Lemma 3.3(8)). By applying the hypothesis
that L(u) : L(A) — L(B) is an r-lattice morphism, there exists ¢ € K(A)

such that L(u) (A 4(c)) ¢ ¢* and Annpp)(Ap(d)) C Anngp)(L(u) (A 4(c))),
hence Apg(u(c)) = L(u)(Ay(c)) ¢ ¢*, hence (d'B )" = AnnL(B)(d*) =
Annppy(Ap(d)) C Annpp)(L(u) (A 4(c))) = Annpp)(A4(ulc))) = Annyp)

(we)) = ()8 ).
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From Ap(u(c)) ¢ g+ we get u(c) £ gq. By using Lemmas 5.3 and

3.3(7), from the inclusion (dB)* C ((w(c))*B ) one obtains

d*B = p(d™B) = ((dB)), < (W) B) ) = p((e))B) = (w(e))E.

It follows that u is a quasi r-quantale morphism.

8. Quasi r*-Quantale Morphisms

Let f: @ — S be a morphism of commutative rings. We say that f
is an r*-ring morphism (resp., a quasi r*-ring morphism) if for each
@ € Min(S) and for each finitely generated ideal J of S such that
J C @ there exists an element a € R (resp., a finitely generated ideal
of R) such that f(a) e @ and Anng(s) C Anng(I°) (resp., I° C @ and
Anng(J) C Anng(I?)).

The notion of quasi r-ring morphism can be extended to quantale

theory: a quantale morphism u: A — B is said to be a quasi

r¥-quantale morphism if for all ¢ € Min(B) and d € K(A) such that
d < q there exists ¢ € K(A) such that u(c) < ¢ and (u(c))*B < d*B.

Let us fix two semiprime coherent quantales A, B and a coherent
quantale morphism v : A — B.

Proposition 8.1. Let u : A — B be a quasi r*-quantale morphism.
Then u is an m-quantale morphism and the function T : Min(B) — Min(A)

is bijective.
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Proof. In order to prove that u is an m-quantale morphism assume
that ¢ € Min(B), hence ii(q) € Spec(A) (cf. Lemma 4.1). Then there exists
pe Min(A) such that p <i(g). According to Corollary 4.5, there exists
re Min(B) such that p=1i(r). Assume by absurdum that the minimal
prime elements g, r of the quantale B are distinct, so there exists
de K(B) such that d<r and d£gq. Since u be a quasi r*-quantale

morphism, from d<r it follows that there exists ce K(A) such that
u)<q and (u(c))'B <d'B. Thus c<a(r)=p<ilg), so ulc)<q,
therefore (u(c))lB £ g (cf. Proposition 3.10). On the other hand, d £ q
implies d'B < g, so (u(c))'B < d'B < q. We obtained a contradiction, so

r =q, therefore i(q)=u(r)=pe Min(A). It follows that = is an

m-quantale morphism.

According to Corollary 4.5, for any pe Min(A) there exists
q € Min(B) such that @(¢)=p, so ' is surjective. Assume that
q1, 92 € Min(B) and ¢ # g2, so there exists d e K(B) such that

d<q and d £ qgg. Since u is a quasi r*-quantale morphism there
exists ¢ € K(A) such that u(c) < ¢; and (w(c))*B < d*B. From d £ Q2

we get d'B < qs, hence (u(e))'B < Q9. By applying Proposition 3.10 we

get u(c) £ g9, hence q; and qq are distinct. Then T is injective.

Theorem 8.2. The following assertions are equivalent:
(1) v is a quast r*-quantale morphism;

(2) The function T : Ming(B) - Ming(A) is a homeomorphism.
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Proof. (1) = (2) We know that ' : Minp(B) » Ming(A) is a
continuous map, and by Proposition 8.1, it is bijective. It remains to show

that ' is an open map. A basic open subset of Ming(B) has the form

Vgz(d), where d is a compact element of B. We shall prove that
d) ﬂ Min(B)) is an open subset of Ming(A).

Consider a point € I'(Vg(d ﬂMzn ), so there exists ¢ € Vg(d)

such that p =(q). Since u is a quasi r-quantale morphism, from d < g it
follows that there exists ¢ € K(A) such that u(c) < ¢ and ((u(c)))J‘A

< d*B. We shall show that p e V,(c)("] Min(A) C T(V(d)(") Min(B

From ¢ <ii(q) = p one obtains p e VA(c)ﬂ Min(A)

Now let us consider a point r € V4 (c)ﬂ Min(A), so r € Min(A) and

¢ < r. By Corollary 4.5, there exists s € Min(B) such that r=af(s), so

¢ <r=1u(s) implies u(c) < s. In accordance with Proposition 3.10, we get

(w(c))*B £ s, hence d*B £ s, therefore d <s (because s is m-prime).

This implies s e Vp(d)("| Min(B), hence r = I'(s) e T(Vg(d)[ | Min(B

We conclude that pe VA(c)ﬂ Min(A) C T(Vg(d ﬂMm SO
d) ﬂ Min(B)) is an open subset of Ming(A).

(2) = (1) Assume that I : Ming(B) —» Ming(A) is a homeomorphism
and consider the elements q € Min(B) and d € K(B) such that d < q.
Thus q € VB(d)ﬂMin(B), so (q)=T(q9) is an element of the open
subset I'(Vg(d ﬂMm (B)) of Ming(A). Thus, there exists a compact

element ¢ of A such that i(q)e V4 (c ﬂMzn ) CI'(Vg(d ﬂMzn

From #(g)e V4 (c) we get ¢ <i(q), hence u(c) < q.
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In order to prove that (u(c))'B < d*B, consider a compact element y

of A such that y < (u(c))*B, so yu(c) = 0. For any r e Min(B), we have

two possibilities:

eIf d <r, then dy <r;
o If d£r, then (r) £I'(Vg(d ﬂ Min (B)) (because T' is a bijection),

hence #(r)¢ Vg(c ﬂMm ), ie, c£a(r). Thus ulc) £ r, so (w(e))*B < r.

It follows that y < r, so dy < r.
Then we obtain dy < A Min(B) =0, so dy =0, ie., y<d'B. We
conclude that (u(c))lB < d*B, hence u is a quasi r#-quantale morphism.

O

Let f: L — M be a morphism of bounded distributive lattices. Then
f is called an rx-lattice morphism if for all @ € Miny;(M) and ye @
there exists x € L such that f(x) e @ and Anny(f(x)) C Anny(y). We

remark that fis an r+*-lattice morphism if and only if f°® : Id(L) — Id(M)
1s a quasi r*-frame morphism.
Theorem 8.3. The following assertions are equivalent:

(1) u: A - B isaquasi rx-quantale morphism;
(2) L(u) : L(A) — L(B) is an r*-lattice morphism.

Proof. (1) = (2) Let us consider an element y € L(B) and a minimal
prime ideal @ of L(B) such that y € @. We have to show that there exists
x € L(A) such that L(u)(x) € @ and Annpg)(L(u)(x)) € Annpp)().
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Let us take a compact element d of B and a minimal m-prime
element ¢ of B such that y = Ag(d) and @ = ¢*, hence Ag(d) € ¢*. By
Lemma 3.3(8) we have d < ¢q, hence, by applying the hypothesis that

u is a quasi r#-quantale morphism it follows that there exists ¢ € K(A)
such that u(c)<q and (u(c)'B <d'B. From u(c)<q we get
L(u) (A 4(c)) = Ag(ulc)) € ¢* = Q. If we denote x = A4(c) then it follows
that L(u)(x) € Q.

By using the proof of Theorem 7.3, we have Annpp)(y) = (d*B)* and
Anngpy(L(u) (x)) = ((w(c))*B)*. Since (-)" is an order-preserving map,
from the inequality (u(c)*B < d'B we get the inclusion ((u(c))B)*
C (d*B)*, so Annppy(L(u) (x)) € Annpp)(y). We conclude that L(u) is
an r*-lattice morphism.

(2) = (1) Assume that ¢ € Min(B) and d is a compact element of B

such that d < q. We have to prove that there exists ¢ € K(A) such that
u(c) < ¢ and (u(c))*B < d*B. We observe that ¢* e Ming;(L(B)), so

d < q implies Ag(d) € ¢* (cf. Lemma 3.3(8)). By applying the hypothesis

that L(u): L(A) - L(B) is an r*-lattice morphism, there exists
ce K(A) such that L(u)(Ay(c)) € ¢° and Annpp)(L(u)(Ag(c))) C
Annppy(Ag(d)). By using Proposition 4.2 we get Ap(u(c)) =k(w)
(A4g(c)) € g*, therefore u(c) < g (by Lemma 3.3(8)).

On the other hand, we have

(d*B) = Annpg)(d”) = Anngp)(Ap(d)) 2 Annpg)(L(w) (A4(c))

= Annyg)(ha(ule)) = Anngg)((ule)’) = () )".
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Recall that (-), is an order-preserving map. Then by using Lemmas

5.3 and 3.3(7), from the (d*B)" D ((u(c))*B )" one obtains

dtB = p(d™B) = ((d"8)), = (((ule)™B)"), = p((ule)™?) = (ulc)*E.

It follows that u is a quasi r#-quantale morphism.

9. Quasi Rigid Quantale Morphisms

Let f: R —» S be a morphism of commutative rings. Then f is said to

be a quasi rigid ring morphism if for each finitely generated ideal J of S
there exists a finitely generated ideal I of R such that Anng(f*(I)) =
Anng(J).

Let A, B be two coherent frames. According to [4, 6], a frame
morphism u : A — B is said to be a rigid frame morphism if for each
d € K(B) there exists ¢ € K(A) such that (u(c))'B = d*B.

Let A, B be two coherent quantales and u: A — B a quantale

morphism. Then u is said to be a quasi rigid quantale morphism if for

each d € K(B) there exists ¢ € K(A) such that (u(c))™8 = d*B.

If f: R — S is a morphism of commutative rings, then [ is a quasi
rigid ring morphism if and only if f°* : Id(R) — Id(S) is a quasi rigid
quantale morphism.

Let us fix two semiprime coherent quantales A, B and a coherent

quantale morphism v : A — B.

Proposition 9.1. If u : A —» B is a quasi rigid quantale morphism,

then it is a quasi r-quantale morphism and a quasi r*-quantale morphism.
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Proof. Assume that ¢ € Min(B) and d € K(B). By hypothesis, there

exists ¢ € K(A) such that (u(c))™B = d*B. According to Proposition 3.10,

the following implications hold:
() d£q=dB <qg= (ulc)'B <qg= (ulc)? £g

b)d<q=dB £q= ul)? £q=(ul)? <q
Thus © is a quasi r-quantale morphism and a quasi rx-quantale
morphism.

O

Corollary 9.2. Assume that u: A — B is a quasi rigid quantale
morphism. Then T : Miny(B) — Miny(A) and T : Ming(B) —» Ming(A)
are homeomorphisms.

Proof. We apply Theorems 7.2 and 8.2.

O

Theorem 9.3. If u: A — B is a quasi r*-quantale morphism, then

the following assertions are equivalent:

(1) u : A - B isa quasi rigid quantale morphism;

(2) T maps basic open sets of Ming(B) to basic open sets of
Ming(A).

Proof. (1) = (2) A basic open set of Ming(B) has the form
Vg (d)ﬂ Min(B), where d € K(B). By the hypothesis that u is a quasi
rigid quantale morphism we have (u(c))*B = d*B, for some c € K(A).
In order to show that ' maps basic open sets of Ming(B) to basic open

sets of Ming(A) it suffices to prove that the equality I'(Vg(d) ﬂ Min(B)) =

V4 (c)(") Min(A) holds.



SOME CLASSES OF QUANTALE MORPHISMS 147

Assume that p € I'(Vg(d ﬂ Min(B)), hence there exists q € Min(B)
such that d <q and p=i(g). According to Proposition 3.10, the
following implications hold: d < q = d'B £ q = (u(c))iB £ q = ule)
Sg=>c2u@)=u@eVyld)=p=ilg) e Vy(c ﬂ Min(A). It follows that

d)(| Min(B)) € V4(c)[| Min(A)

In order to prove that VA(c)ﬂ Min(A) C T'(Vg(d ﬂMm we

assume that pe Vy (c)ﬂMin(A). By using Corollary 4.5, there exists
q € Min(B) such that p=1i(q)=T(g). By using Proposition 3.10, the
following implications hold: pe V (c) = c<p=i(q) = u(c)<q = (u(c)*B
£g=>diBtg=>d<qg=qe Vg(d) n Min(B). It follows that pe I'(Vg(d)
ﬂ Min (B)), so we get the desired inclusion.

(2) = (1) Assume that d € K(B). By using the hypothesis that T’
maps basic open sets of Ming(B) to basic open sets of Ming(A), there

exists c¢e K(A) such that T'(Vg(d ﬂMm A(c)ﬂMin(A). By
Lemma 6.1(1), we have I (V4 (c) (| Min(A)) = Vp(u(c)) () Min(B)

According to Proposition 8.1, from the hypothesis that u is a quasi
r+#-quantale morphism it follows that I' 1is bijective, therefore

(d)() Min(B) = T (V4 (e) (| Min(A)) = Vg (u(c)) (| Min(B)
Thus for any q € Min(B). the following equivalences hold: d*B < q
if d £q iff u(c) £ g iff (u(c)) 1B < ¢ (we used Proposition 3.10). It

follows that Vpg( (d+B) ﬂ Min(B) = Vg((ulc )LB) ﬂ Min(B). By applying

Proposition 2.5, we get
d'B = A (Vg(d'B)[ Min(B)) = A (Vp((ul(c)™8 ) () Min(B)) = (u(c))*,

therefore u is a quasi rigid quantale morphism.
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Let f: L — M be a morphism of bounded distributive lattices. Then
f 1s said to be a rigid lattice morphism if for any y € M there exists

x € R such that Anny;(f(x)) = Annys(y). It is clear that f is a rigid
lattice morphism if and only if f* : Id(L) —» Id(M) is a rigid frame
morphism.

Theorem 9.4. The following assertions are equivalent:

(1) u : A - B isa quasi rigid quantale morphism;

(2) L(u) : L(A) — L(B) is a rigid lattice morphism.

Proof. (1) = (2) Assume that ye L(B) so y =Apg(d) for some
d € K(B). According to the hypothesis that « is a quasi rigid quantale
morphism there exists ¢ € K(A) such that (u(c))'B = d‘B. By applying
Propositions 4.2 and 3.8, the following equalities hold:

Annpp)(L(u) (x)) = Anng,p)(L(u) (A4 (c))) = Anngp)(Ap(ulc)))
= Annzp)((w(e)’) = ((u(c))*B)" = (d*B)"

= Annpp)(d*) = Anngg)(Ap(d)) = Annyp)(y).
Thus L(u) is a rigid lattice morphism.

(2) = (1) Let d be a compact element of B, so there exists c € K(A)
such that Annpp)(L(u)(Aa(c)) = Annpp)(Ap(d)) (because L(u) is a
rigid lattice morphism). By using Proposition 3.8 and Lemma 3.3(5), we

get ((u(c)™B)" = Annp(p)(Ap(ulc))) = Annpp)(Ap(d)) = (dB)".
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According to Lemmas 5.3 and 3.3(7), the following equalities hold:

wle))™B = p((e) 8 ) = (@) B) ), = (dB)"), = p((d)"B)) = dB.

We conclude that u is a quasi rigid quantale morphism.
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10. Appendix

Let R C S be an extension of commutative rings. In ([5], p. 1805)
were defined the following types of ring extensions:

e« RC S is a rigid (resp., a quasi rigid) extension if for any y e S
there exists an element x € R (resp., a finitely generated ideal I of R)
such Anng(y) = Anng(x) (resp., Anng(y) = Anng(I1°¢));

e RCS 1is an r-extension (resp., a quasi r-extension) if for all

Q€ Min(S) and ye S - Q there exists an element x € R (resp., a
finitely generated ideal I of R) such that x ¢ @ and Anng(y) C Anng(x)

(resp., I ¢ @ and Anng(y) C Anng(I®));
e RC S is an r#-extension (resp., a quasi r#*-extension) if for all

Q € Min(S) and ye S - @ there exists an element x € R (resp., a
finitely generated ideal I of R) such that x € @ and Anng(y) 2 Anng(x)

(resp., I° C @ and Anng(y) 2 Anng(I°)).

Remark 10.1. For any ring extension R C S, the following
equivalences hold:

e R C S is quasi rigid iff for any finitely generated ideal J of S there
exists a finitely generated ideal I of R such that Anng(J) = Anng(I°);

e RC S is a quasi r-extension iff for each @ € Min(S) and for each
finitely generated ideal  of S such that J ¢ @ there exists a finitely
generated ideal I of R such that I° ¢ @ and Anng(J) C Anng(I°);

e RC S is aquasi r#-ring extension iff for each @ € Min(S) and for
each finitely generated ideal J of S such that J C @ there exists a finitely

generated ideal I of R such that I® C @ and Anng(J) 2 Anng(I°).
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The previous remark allows us to define the corresponding types of
ring morphisms, then to formulate the definition of quasi rigid, quasi

r- and quasi r#*-quantale morphisms (see Sections 7-9). We observe that
the notions of rigid, r- and r#*-quantale morphisms cannot be defined in

the framework of quantales.



