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1. Introduction and Main Results

The investigations of Fischer [5] into groups generated by
3-transpositions not only had an influence upon certain later work related
to the classification of the finite simple groups but also unearthed three

previously unknown sporadic groups, Figg, Fisg, and Fig,. The first two
of these are simple while Fig,, though not simple, has a simple subgroup
Fi5, of index 2. For more on these groups and 3-transposition groups in

general, see the book by Aschbacher [1].

Along with many of the other sporadic simple groups, Figg, Figg, and
Fi5, possess minimal parabolic geometries and maximal 2-local

geometries (see [9] and [10]). In the present paper we study the point-line
collinearity graph G of T', the maximal 2-local geometry for Fi5,. This

geometry has rank 4 and its associated diagram is
0 1 2 3

e ® o — 0 —[]

M24 Ss X L4(2) Spa(2)’ x L3(2) U4(3) -2
211 28+6 23+12 21+123

Many properties of I' are itemized in Section 2. We recall that the

vertices of G are Iy, the points of I' and two points are adjacent in G if

they are incident with a common line. In [11, 12, 13] and [14] complete
and detailed descriptions of the corresponding point-line collinearity

graphs for Figy and Figg are presented.

For x € Ty and i € N, A;(x) denotes the set of points of T, distance i
from x. Let G = Fig,. Now G acts flag transitively on ' and so, in
studying G, there is no loss in choosing and fixing a point a of I'. Here we
shall obtain properties of the first three discs of G around a (that is, of

A (a), Ay(a) and As(a)) as well as describing a certain fragment of
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A4(a). In a subsequent paper [16], a complete description of G is

obtained - however the work in [16] i1s exclusively computer based,
whereas this paper does not rely on any machine calculations. It is worth
remarking that the notation and conventions used here and in [16] are
compatible so as to allow a smooth transition between the two viewpoints.
Earlier in [17], the second author obtained results on the structure of the

first three discs of G. The arguments given here will differ to some extent

from those in [17] as we may now call upon results in [12, 13] and [14].

Further we are able to give more detail on adjacency within Ag(a).

We now present our main results - for notation we refer the reader to

Section 2.

Theorem 1. (i) A;(a) isa G,-orbit of size 1518,;

() Ag(a) is the union of three G,-orbits Aiz(a) =12 38) and
|As(a)| =1, 560, 504;

(i) As(a) is the union of ten G,-orbits Aig(a) (¢=1,...,10) and
|A(a)| = 1, 400, 874, 432; and

() Agla) N{x € Ty|Q, N Q, # 0} is the union of six G,-orbits Ai4(a)
(=1, ..., 6) and consists of 3, 992, 911, 872 points.
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Tables 1 and 2 list the sizes of the above mentioned G, -orbits Aij (a).

Table 1
Aij(a) Size of Aij (a)
Ay (a) 2.3.11.23 = 1518
A (a) 25.3.7.11.23 = 170, 016
A% (a) 28.3.7.11.23 = 1, 360, 128
A3 (a) 23.3.5.11.23 = 30, 360
A(a) 21211.23 = 1, 036, 288
A% (a) 210 32 5.11.23 = 11, 658, 240
A3 (a) 212.37.11.23 = 21, 762, 048
A% (a) 212 393 = 282, 624
A3(a) 215 32 7.11.23 = 522, 289, 152
A8 (a) 212.3.5.7.11.23 = 108, 810, 240
AL (a) 29.325.7.11.23 = 40, 803, 840
A8 (a) 26.5.7.11.23 = 566, 720
A%(a) 21332 5.7.11.23 = 652, 861, 440
A(a) 29.32.5.7.11.23 = 40, 803, 840
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Table 2
Aij(a) Size of Aij(a)
A () 216 32 5.11.23 = 746, 127, 360
A% (a) 215.3.11.23 = 24, 870, 912

A3 (a) 215.3.5.7.11.23 = 870, 481, 920

A (@) 219 32 7.93 = 759, 693, 312

£ (a) 218.3.11.23 = 198, 967, 296

28 (a) 218.3.7.11.23 = 1, 392, 771, 072

Theorem 2. Let x € Aj(a). Then G, ~ 210.2% : Ag (with GIE =

(Go ) pra ™ 24 . Ag, an octad stabilizer) has 4 orbits on I3(x) with point

distribution as follows:

Orbit Size  Point distribution
fx + a) 1 a2,
ag(x, x + a) 30 A 243
og(x, x +a) 448 A 203
oy (x, x +a) 280 Ay 24,

Theorem 3. Let x € Ay(a). Then G, ~ 27.2° : (3xS5) (with G.X =
StabG;x {A1, Ao}~ 25 : (3% S;5), where A; = Q,NQ, is a tetrad and

Ay is the unique sextet of Q, containing Ay). Also G, < G,x, where
X is the unique hyperplane incident with both a and x. Further, G, has

6 orbits on T (x) with point distribution as follows:
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Orbit Size  Point distribution
o, 42 (x, Ay, Ag) 5 Aq24%
o 2 (6 A, Ag) 10 8524
o g5 (% Ar, Ag) 320 A52A%
0y o1 (6, A, Ag) 240 85245
0y g1 (3, A1, Ag) 120 A 24%
0y 515 (@ A, Ag) 64 85243

Theorem 4. Let x € A4(a). Then Gox ~ 2094 . S, [{a, x}L| =1 and

Gy = Stab {A1, Ay}~ 2% 1 Sg, where Ay is the octad of Q. corresponding
X

to x +b (where b ={a, x}7) and Ay = Q3 N QN Q,, a duad contained

in Ay. The number of G, -orbits on I7(x) is 8 with point distribution as

follows:
Orbit Size  Point distribution

ag o(x, Ay, Ag) = {x + b} 1 A28

2 A3 A4

ag o(x, Ay, Ag) 16 AZALAY

oy o(x, Ay, Ag) 60 A 2A2

2 6,10

oy olx, Ay, Ag) 60 AZ 2L

0,0 (%, A1, Ag) 30 A% 24T,
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Theorem 5. Let x e Agz(a). Then Gy, ~ 2926 . (L3(2)x 3) and
Gy ~ 26 . (L3(2) x 3), the derived subgroup of StabG*x {A1}, where Ay is

a trio of Q,. Also G4, < G, where T is the unique plane incident with
both a and x. The number of G -orbits on Ij(x) is 3 with point

distribution as follows:

Orbit Size  Point distribution
g2 (2, Aq) 3 A 2R
ap(x, Ay) 84 A3 208
020, Ay) 672 A3 2410

Now we move onto Ag(a) the third disc of a; we caution that in the

following results the point distribution is incomplete.

Theorem 6. Let x € Ay(a). Then Gy ~ 22.L3(4): Sy and GI¥ =

StabG*x {A1} ~ L3(4) : S3, where Ay is a triad of Q,. The number of

G, -orbits on T3 (x) is 4, the point distribution of 3 of them are as follows:

Orbit Size  Point distribution
ag(x, Ap) 21 AL 24,
ag(x, A7) 168 A132A%

o4 (x, Ap) 360 A5 2AY

Theorem 7. Let x ¢ Azg(a). Then G, ~ 2423 . (L3(2)x2) and
Gy = StabG*x {A1, Ag} ~ 23 . (L3(2)x 2), where A, is an octad and Ay

is a duad of Q, and Ay N Ay = 0. The number of G, -orbits on Ij(x) is

11, the point distribution of 6 of them are as follows:
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Orbit Size  Point distribution
o, 2(x, Ay, Ag) 7 AL2A%
oo, 1(x, Ag, Ag) 16 AZ2A2
oy 9(x, Ay, Ag) 14 AZ2A%
g o(x, Ay, Ag) 56 A2oA3
oy 1(x, Ay, Ag) 112 AZ2A,
ag1(x, Ay, Ag) 224 AZ24A],

Theorem 8. Let x e Ay(a). Then G, ~2.2%:Sg and GIE =
StabG;x {A1, Ao} ~ 2% : Sg, where A is an octad and Ay is a duad of

Q, and Ay < Ay. The number of G, -orbits on Ty(x) is 8, the point

distribution of 5 of them are as follows:

Orbit Size  Point distribution
ag o(x, Ay, Ag) ={A1} 1 A3 AL
g 2(x, A1, Ag) 16 AL2A3
0oy, 2(x, Ar, Ag) 60 AZ2A3
oy 1(x, Ay, Ag) 160 A32A8
ag,1(x, Ag, Ag) 192 ABoat

Theorem 9. Let x € A4(a). Then Gy ~ 2.Myy : 2 and GJE =
StabG;x {A1} ~ Mgy : 2, where Ay is a duad of Q,. The number of

G, -orbits on I3 (x) is 3, the point distribution of 2 of them are as follows:
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Orbit Size  Point distribution
2 A3 A4
aQ(x’ Al) 77 A2A3A3
4 645
o (x, Ay) 352 AL2A°

Theorem 10. Let x e A53(a). Then Gy = Gpr = StabG*x {A1, Ag,

Agy ~ 2% : As, where Ay = Oy, Ay = {}, and A5 = {14}. The number of

G, -orbits on Tj(x) is 13, the point distribution of 9 of them are as

follows:
Orbit Size  Point distribution
ag11(x, Ag, Ag, Ag) = {0} 1 AL 23
g, 1,1(%, Ar, Ag, Asg) 16 AL,
o) ox, A, Ag, Ag) 40 A3 2A%
) o, A1, Az, Ag) 40 AZA5AS
0‘511,)0,1(99’ A1, Ag, Ag) 40 A3 2A3
(XEE,)O,l(x’ Ay, Ag, Ag) 40 AZA5AG
0y,1,1(%, Ay, Ag, Ag) 60 AL A3
g 1,00, A1, Ag, Ag) 96 208
g 0,1(x, A1, Ag, Ag) 96 205

Theorem 11. Let x € AS(a). Then G, ~[2%]:3.S, and GIE =
StabG;x{Al, Ag, Ag}~ 2% :3.8,, where Ay is an octad of Q,, Ay a
tetrad contained in Ay and Ag a l-element subset of Ag. The number of

G, -orbits on Ty(x) is 16, the point distribution of 7 of them are as

follows:
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Orbit Size  Point distribution
{Ar} 1 AL 248

0y 4,1(%, A1, Ag, Ag) 4 A2 28

oy 1,1(%, Ar, Ag, Ag) 16 ASAZAY

g 9.1(x, A1, Ag, Ag) 48 8243

oy, 31(%, Ay, Ag, Ag) 48 A8 24,

a9 1,1(%, A, Ag, Ag) 64 AS A3 AS

0y 9.1(%, Ay, Ag, Ag) 72 A8 24,

Theorem 12. (i) Let x € As(a). Then G, ~[2°].S, and GIE =
Stabx{A1, Ag, Az}~ [26].S,, where A = Oy, Ay = O, and As is the

partition of O; given by {e, 14}, {0, 8}, {3, 20}, {15, 18}. The point

distribution of 3 of the G, -orbits on T (x) are as follows:

Orbit Size  Point distribution
Og o, 94 (x, A1, Ag, Ag) 1 A122A?9,
Oy g ot @ Ars Ag, Ag) 1 2247,
%0, 04 (x, A1, Ag, A3) 1 A222A?9,

(i) For x A83(a), Gy ~ [21%].3.3% : 4 and Gr = StabG;x {Aq, Ag, As}

~ 26.3.3% . 4, where Ay =Sy, Ay ={x, 14, 0, 8, 3, 20, 15, 18,17, 4, 16, 10},
and A3 = Q,\Ag. The point distribution of 3 of the G, -orbits on I3(x)

are as follows:
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Orbit

0042’8’0(35, A1, Ag, A3g)

a42,0,8(x’ A]_; AZ, A3)

0042’4’4(36, A1, Ag, A3g)

(iii) For x e A}(a), Gyy = G2

63

Size  Point distribution
3 A3 248
3 A% 203
9 AL 2A8

= Stab e {A1, Ag, Ag, Ay}~ 22" 1 8y,
X

where Ay = O, Ay = O, Ag = O3, and A4 ={e, 14}. The point distribution

of the Ggy-orbit g o, 0.9(x, A1, Ag, Ag, Ay) is AZ2A3.

(iv) For x e A(a), Goy ~[2°].84 and Ggi = Stab..{A1, Ag, Ag}

~ [25].5’4, where A, is the tetrad {=, 0, 3, 15}, Ay is the duad {14, 8},

and Ag is the duad {20, 18}.

G, -orbits on I3 (x) are as follows:

Orbit

0y 9 2(x, A1, Ag, Ag)

0y 0,0(x, A1, Ag, Ag)

The point distributions of 2 of the

Size  Point distribution
3 o410

1 A3 2N
2 6410

4 A% 2N

Theorem 13. (i) For x € A (a), G,y ~ 2.L5(2).2, and GiX ~ L3(2).2.

(i) For x € Ai(a), Gy =

*X
Gax

(i) For x € A%(a), Gy =

n

*x
Gax

As.

~ 2632,

(iv) For x € Ay(a), Gy = GiX = Ly(11).

) For x € Ay(a), Gy = GIX =

(vi) For x € Ai(a), Gy =

A;.

Gy ~(3x Ag).2.
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Since, for te Qg, Gy = GL, for all x e Ai4(a) (t=1,..,6), the
point distributions given in Theorems 11-16 of [12] may be directly
translated to give the point distributions for G, -orbits on I7(x) of those
lines within I.

As mentioned earlier, in Section 2 we explain the notation we shall be
using. Additionally, in (2.1), we summarize the properties we shall
assume about I'. In (2.2) we give the definition of the G,-orbits A]L: ()
(for x € Iy). While Section 3 studies various properties of the point and

hyperplane residues that we shall need to call upon later. Then Section 4

introduces, for X a hyperplane, the involutions 7(X) in G. These play

an important part in many of our arguments, primarily because of

Lemma 4.4. In Lemma 4.7 we quickly describe the first disc A;(a). The
second disc Ay(a) is examined in Section 5 with Ag(a) and part of A4 (a)
being investigated in Sections 6 and 7.

We close this section by summarizing the collapsed adjacencies
established in Theorems 1-13.
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2. Notation and I

The maximal 2-local geometry I' for G = Fij, has rank 4 and we use
I (6=0,1, 2, 3) to denote the objects of type i in I; objects of type O

(respectively, 1, 2, 3) will be referred to as points (respectively, lines,

planes, hyperplanes). For x € I', the residue of x, I, is defined to be

{y € T|x * y}, where * is the symmetric incidence relation of I'. Also, for

x € I', we set

Q(x) = {g € G, | g fixes all objects in T} },
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and for H<G, we write H™ for HQ(x)/Q(x). If X cT and
ie€{0,1,2, 3}, then we set I;(X)={x e I |x*y for all ye X}. The
point-line collinearity graph G of I' has Iy as its vertex set and for
x,ye Iy, x and y are adjacent in G if they are collinear, that is if
I7(x, ¥) # 0. For x, y € [}y, put {x, Yt = A1 (x) N A (y). Also for x e T,
we define Zj(x) ={g e G|g fixes {x}UA;(x) pointwise} - note that
Z1(x) <G,y

We take as our starting point the following properties of T.

(2.1) 1)) G acts flag transitively on T.

(1) T is a string geometry.

(i) For (e Iy, |IH(¢)| =3 and if x, y e IH(¢) with x # y, then
I (x, y) = {4}

(iv) For x e Iy, G, ~ 21 - My, with Q(x) = 2!, the dual of the

Golay code module and G,* = My,. Moreover, I, is isomorphic to the

My, maximal 2-local geometry.

(v) For X e Ty, Gx ~ 21112.3.U,(3).2 with Q(X) ~ 2172.3, Z(Gx) =
Z(04(Q(X))) = 2 and G%X ~U4(3).2. Also, T'y 1is isomorphic to a
geometry for U,(3).2 which is a subgeometry of the unitary geometry for

Ug(2).

In (2.1) and elsewhere we follow the ubiquitous ATLAS [2] in
describing group structures - it is also a convenient source for information

about Fi5, and subgroups of My, and U,(3).2. In the situation of (2.1)
we shall frequently denote ¢ by x + y (to indicate we are viewing / in
I,) or y+x (to indicate we are viewing /¢ in Fy). See Section 3 for

further details on the residue geometry in (2.1) (v).
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Let x eIy and let ¢, m, X be, respectively, a line, plane and
hyperplane in I',. We remark that ¢ corresponds to an octad, © to a trio
and X to a sextet (see [9] and [4]). For a further discussion of I', and Iy,
see Section 3. Other details of these geometries may be found in [6] and
[17].

Before introducing an alternative way of viewing I' we note, in
passing, that || = 2, 503, 413, 946, 215 and that the permutation rank
of G on Iy is 120 [7].

Let 7 denote the set of transpositions in Figy. It is a fact that a

maximal set B of pairwise commuting transpositions has |B| = 24 and

Stabg(B) ~ 211 - My,. Such a set is called a base in [2] and G is

transitive on the set of bases. Since Fiy, has only one conjugacy class of

subgroups isomorphic to 2! . My, we may identify I, with the set of
bases in a way which is compatible with the G-action. For x € I, we use
Q, to denote the base identified with x. Now Q, carries a copy of the
Steiner system S(24, 8, 5) preserved by Stabg(Q, ). Indeed an octad of
Q, corresponds to a line in I, (such an octad is contained in precisely

three bases and incidence between points and lines corresponds to

containment of bases and octads). Therefore x, y € Iy are adjacent in G

if and only if Q, (1Q, is an octad of both Q, and Q,.

For t € T put [} = {x € Ty|t € Q,}. So the points in T} correspond
to all the bases which contain the fixed transposition ¢ Also put
G' = Cq(t). Then G' = Fiy; and T} is the set of points of the Figg
geometry scrutinized in [12], [13], [14] (see especially Section 1). Further,

if G' denotes the point-line collinearity graph of this F o3 geometry, then

we see that for x, y € l"(t), x and y are adjacent in G if and only if x and y
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are adjacent in G. This observation gives us access to a rich vein of
geometric information from [12, 13, 14]. So, in studying G, we may view
I' geometrically working within residues or regard I, as living in the

world of transpositions. In our arguments we adopt whichever viewpoint
is the most efficacious. We shall also frequently call upon data given in
[15] and accordingly will denote result (i.j) in [15] by O(@.j). We carry

along the notational conventions of [4]. So Sy and 7, denote the
standard sextet and standard trio and O;, Oy, O3 are the heavy blocks of

the MOG. Additionally we adapt the notation in [15] in the following

manner. Let x € Tjj. In I, the lines correspond to the octads of the Moy
maximal 2-local geometry so to indicate we are working in I', we write
o;(x, A;) instead of just a; (see O(2.1)), with a similar convention for the

other orbits itemized in [15].

(2.2) Let x be a pointin T

) Alg(x) ={y e Iy| there exists b e {x, y}t such that b+ ye Oy
(b, b+ x)}.

(i1) A22(x) ={y e I)| there exists b e {x, y} such that b+ye Oy
(b, b+ x)}.

(1i1) ASQ(JC) ={y e Iy| there exists be {x, y} such that b+ ye 0o
(b, b+ x)}.
@iv) Alg(x) ={y e I| there exists c € A12(x) N A;(y) such that ¢+ y e

0y 1150 Q4 N Q, Ser)}-

(v) N4(x) = {ye Iy| there exists ¢ € A3 (x) N A;(y) such that ¢+ y e

oy 2(c, ¢ + b, Dy ), where {b} = {x, cF 1
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(vi) A33(x) ={y e I| there exists c € Azz(x) N A;(y) such that ¢+ y e

g 9(c, ¢ + b, Dy ), where {b} = {x, c}L and for ¢ € D, ¢ is the unique

point in T§ N A% (x) N Aq (y)}.

(vi) Ai(x)={ye Ih| there exists ce A3 (x)N A (y) such

that

c+ye agalc, c+b, D), where {b} = {x, ¢} and for t e D,,, there are

77 points in T§ N A (x) N Ay ()}

(vii)) A}(x)={ye Ih| there exists ce Azz (x)NA{(y) such

c+ye agslc, c+b, D), where {b} = {x, .

(ix) A%(x) ={y eI, there exists ce Azz(x) NA;(y) such

c+ye ayq(c, c+b, Dgy), where {b} = {x, .

x) Ah(x)={ye Iy| there exists ce Ay (x)N AL (y) such

c+tyea, 4(c, Qe NQ, Sep)t-

0,24

(xi) A83(x) ={y eIy there exists ce A% (x) N Ay(y) such

c+yeoyle, Tyl

(xi1) A93(x) ={y eI, there exists ce Azz(x)ﬂ A{(y) such

c+ye gl c+b, D), where {b} = {x, bl

(xiid) A130 (x)={yeTy| there exists ce A% (x)NA{(y) such

c+ye oc422(c, T )}

(xiv) A14(x) ={ye Iy there exists de A13(x) NA;(y) such
d+yeo(d Tg)h

that

that

that

that

that

that

that
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(xv) A24 (x) ={yeTy| there exists de A%(x) NA;(y) such that
d+ Y€ (Xo’l(d, de’ Ddx)}

(xvi) Ai(x) ={y eIy there exists de A23(x) NA;(y) such that
d+yeay1(d Oge, Dgy)}-

(xvii) A4(x)={ye Ih| there exists de A33(x) NA;(y) such that

d+ye agi(d, d+b, Dgy), where {b} = A;(d) N A% (x)}.

(xvii)) A% (x) = {y e Iy| there exists de A4(x)N Ay(y) such that
d+ Y € al(d’ Ddx)}

xix) AS(x)={ye Ih| there exists de A% (x)NA;(y) such that
d+yeoyq(d, d+b, Dg,), where {b} = Ay (d) N A3 (x)}.

In (2.2) the letters O, D, S, 7 (with appropriate subscripts) stand

for, respectively, particular octads, duads, sextets and trios of certain
bases. Their exact description will emerge later, and will tie in with the
data given in [15].

Remark. In fact

M@= | n@nase).
XeT3(x)

See [17] for further details.
Let x € Iy and ¢t € Q. Set Aj(x)' = Aj(x) T} and for i =1, 2, let
Aiz(x)t = Ai2(x) NI§. Fori=1,..., 6, we set
Ay(x)' = My(x) NI,
and

L(x) = Ay (x) N TR
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Further we put Q(x)' = @(x) N G’. The above notation is set up so as
Aij (x)! corresponds to the Aij (x) as given in [12; (2.15)] for the point-line
collinearity graph gt

(2.3) Let x € I,.
W A@) =, o M), 25@) =, o A50) (=1.2) and A)(x) =

i t . .
UteQxAj(x) (i=1,...,6,j=34).

(ii) For each t € Q,, Q(x) = Q(x)".

(1ii) Aq(x), Alg(x), A22(x), Ai3(x) and Ai4(x) (=1, ..., 6) are all distinct

G, -orbits.

(iv)If t € Q, and y € T}, then [Gyy - chy] < 24,

Proof. Part (i) follows from (2.2) and (ii) holds because Q(x) centralizes
all transpositions t in Q,. Since G, acts transitively on the 24
transpositions in Q, and, by [12], Al(x)t, Alg(x)t, A%(x)t, Ai3(x)t, Ai4 (x)!
are all ch-orbits (of different sizes) we infer that (iii) holds. Because

|Q.| = 24 the G,y-orbit of ¢ can have size at most 24, whence we have

@iv). O
3. The Point and Hyperplane Residues

Recall that we shall employ the same notational conventions as in

[15] for the subscripts of a. Suppose that x e Iy, /e I(x) and
X e T3(x). By (2.1) we may identify ¢ with an octad of Q, and X with

a sextet of Q,. So, for example, 42 (x, X) denotes the set of octads

(lines) which cut the sextet X in 42, and oy(x, ¢) is the set of octads
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(lines) which intersect the octad ¢ in two elements. Also we define
Bo(x, X), By(x, X), B3(x, X) to be the set of sextets of Q, (not equal to X)

which have, respectively, exactly 0,1 and 3 octads which are also

incident with X. Additionally, we define the following subsets of I'3(x):
O (x, ) ={Y e T3(x)|( e 0c42(x, Y)},
do(x, £) ={Y e I3(x)|l € Oty (x, Y)},
d3(x, 1) ={Y e I3(x)| ¢ € 0c153(x, Y)}.
Lemma 3.1. Let x € [}, ¢ € I7(x) and X, € T3(x).
() The G,,-orbits on Ty(x) are {(}, aglx, 0), ag(x, £) and oy(x, 1),
where |og(x, £)] = 30, |ag(x, )| = 448, and |oy(x, £)| = 280.
(1) The G, -orbits on T's(x) are 8;(x, (), d9(x, () and 83(x, (), where
|81(x, )| = 35, |8y(x, £)| = 840, and |83(x, )| = 896.
Proof. See [3] or [4].

Lemma 3.2. Let x € Iy and X € I'3(x) (soin T, X may be identified
with a sextet in Q. ). Then the orbits of G,x on Ij(x) (the octads of Q, )
are oc42(x, X), 0c153(x, X), and Olo4 (x, X). Moreover |0c42 (x, X)| = 15,

|oc153(x, X)| = 384, and |oc24 (x, X)| = 360.

Proof. Since Gi% ~ 2% :3.S;, the stabilizer of the sextet X, this

follows from [3]. O

Lemma 3.3. For x € Iy and X € I'3(x), the G,x-orbits on I's(x) are
{X}, Bo(x, X), Bi(x, X), and Bs(x, X). Further |Bg(x, X)| = 1440,
|B1(x, X)| = 240, and |B3(x, X)| = 90.

Proof. See [3]. O
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Lemma 3.4. Let x € [y, and X, Y e I3(x).

(i) Suppose Y € Bs(x, X). Of the fifteen octads in Q, incident with X,

three are in o0 (x, Y) and twelve are in Oo4 (x, Y).

(i) Suppose Y € B;(x, X). Of the fifteen octads in Q, incident with X,

oneisin o2 (x,Y), sixarein a_4(x, Y) and eight are in 0c153(x, Y).

94
(iil) Suppose Y € Bq(x, X). Of the fifteen octads in Q, incident with X,

seven are in Oo4 (x, Y) and eight are in 0c153(x, Y).

Proof. Since G, is transitive on I'3(x) we may suppose X is the

standard sextet. Then, in view of Lemma 3.2, for parts (1) (i1) and (i11),

respectively we may take

X X — - * * X o — - — —
X X | = - * * o X | + + + +
Y= , Y= ,
o o + + O O o X * * * *
o o + + O O o X O O O O
and
X X X — * +
X - — - o O
Y =
o + * O * o
] #* + ° ] +

It is now straightforward to check the result. O
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Lemma 3.5. Let x € Ty, me I (x) and X e I3(x). If m ¢ I(X),
then there exists Y € Bg(x, X)U{X} such that m e 0c153(x, Y).

Proof. Since m ¢ [(X), m ¢ 0,0 (x, X). Hence, by Lemma 3.2,
m e 0c153(x, X)U 0c24(x, X). If me 0c153(x, X), then we let Y = X. So

now we assume that m e Oo4 (x, X). Let ¢; and ty be tetrads of X such

that [; Nm|=2 and |{, Nm| =0. Now choose a tetrad t3 such that
|t Nt =|t3 Ntg| = 2 and |t3 N m| = 1. Letting Y be the unique sextet

containing t3, we have Y € Bs(x, X) and m € a_;_(x, Y), so proving the

153
lemma. O

The balance of this section considers the hyperplane residue of I'. Set
H=U,(3).2( = G¥¥ where X e I'y). We consider H as a subgroup of
Ug(2), and let V' denote the 6-dimensional GF(4) unitary module. Now

there are 693 isotropic 1-subspaces of V (see [2]) and H has two orbits on
these 1-spaces, say, P and Q with |P| = 567 and |Q| = 126. Of the 6237

isotropic 2-subspaces of V, 2835 of them have three 1-subspaces in P and
two 1-subspaces in Q-denote this set by £. Among the 891 isotropic

3-subspaces, 567 contain exactly one 1l-subspace in Q; call this set R.
We define a geometry A = Ay UA; UAg where Ag =P, Ay =L and
A9 = R, where incidence is symmetrized inclusion. This geometry is an

example of a GAB (see [6]) and we have
Lemma 3.6. For X e I'5, I'y is isomorphic to A.
Our next result lists some properties of A we shall require later on.
Lemma 3.7. Let x € Ay.
() The H,-orbits on Ay are Dj(x), Di(x), D3(x) and D;lg(x), where

| Dy (x)| = 30, | Di(x)| = 120, | D3 (x)| = 96, and |D}(x)| = 320.
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(i1) The point-line collinearity graph of A is as follows

(iii) We have H, ~ 2*.Sg with Oy(H) = 2*.

(v) If g€ Oy(H,), g #+ 1, then g interchanges Ay(¢)/{x} for 8 lines

(¢ incident with x and fixes Ay () for the other 7 lines incident with x.

Proof. See either [6], [8] or Section 3 of [17].
4. Involutions

In this section, we explore the combinatorial relationship between G

and the residue geometries as it relates to the action of G on T.

Lemma 4.1. Let x € Ty and X € I3(x). Then

O Q)N QX) =27 and Qx) ¥ (=2%) <« Gf ~ 2*.Sg; and

(i) Z;(x) = 1.
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Proof. First we note that Q(x) € Q(X). For Q(x) < Q(X) gives, by
2.1)), Qx) < 05(Q(X)) = 2112, Since Q(x) is elementary abelian of
order 2'', this is impossible. So 1 # Q(x)*Xgl G;X = 2%Sg, using

Lemma 3.7(iii). Since the 2* is an irreducible Sg-module we must have

*

Q(x) X = 2% Hence Q(x) N Q(X) = 27 and part (i) holds.

Since Q(x) is an irreducible G,-module and Z;(x) < G,, either
Zi(x) =1 or Z;(x) = Q). If Z;(x) = Q(x), then Z;(x)' X = 05(G2 ) by
part (1). However, from Lemma 3.7(1v), every non-trivial element of

OZ(G;;}(() moves some point in I'y M A;(x) whereas Z;(x) fixes all points

in A;(x) by definition, a contradiction. Thus Z;(x) = 1. O

For X e I'3, we use 7(X) to denote the involution in Z(Gx ); recall
that |Z(Gx )| = 2 by (2.1)(v). Now let x € I)(X). In I, we may identify
X with a sextet (of Q, ) whose tetrads are 77, ..., Tg, and we have, for
each ie {1, ..., 6},

+(X) = H t.

teT;

(We note that 7(X) is a tetra-transposition in the language of [2; p207].)
Also observe, as Cq(T(X)) = Gy, for X, Y e I, 7(X) = 7(Y) if and only
if X =Y.

Let x € Tjy. In Q, consider a duad (that is, a 2-element subset), say
D = {t;, ts}. Then 3(D) = tt is referred to as a bi-transposition in [2].

Every involution in G 1is conjugate in G to either T(X) or 8(D).
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Lemma 4.2. Let x € T, X € I'3(x) and D be a duad of Q. Then
() 7(X), 8(D) € Q(x);
(i) Cg(r(X)) ~ 21123 U,(3).2, C(8(D)) ~ 2- Fyy : 2; and

(i) @(x)\{1} = 7(X)%* U 8(D)%* with| v(X)%* | =1771 and|3(D)% | = 276.

Proof. The definitions of 7(X), 8(D) and (2.1)(iv), (v) give part ().
For part (ii), see [2]. Part (iii) follows from the definition of T(X), 8(D)
and properties of the Golay co-code. O

Our next lemma concerns sextet lines whose definition we recall. For
x eIy, let Xy, X9, X5 € I3(x), if for all i, j,1<i < j<3 we have
X; € B3(x, X;), then {X;, Xy, X3} is called a sextet line of Q,.

Lemma 4.3. Suppose that x € Ty and {X;, X9, X3} is a sextet line of
.Q.x. Then T(Xl)T(Xz) = T(XS).

Proof. Since, for X e Iy,

for any tetrad T of X, the lemma follows immediately. O

Lemma 4.4. Let xeTy, leIlj(x) and XeT3(x). Then 7(X)

interchanges the points in Ty(¢)\{x} if and only if ( € a5, (x, X).

1%3
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Proof. Since G, is transitive on I's(x) we may in I, without loss of

generality, suppose X is the standard sextet. Now let Y be the sextet

X 0 — — — —
° X + + + +
o X * * * *k

° X ] ] 0 0

By Lemma 3.4(i1), of the 15 octads incident with Y, one is in

oc42(x, X), eight are in ocl53(x, X) and six are in Ol 4 (x, X). Since

T(X) e Z(Gyx), if 7(X) fixes I)(¢) (point-wise) for some /e o2 (x, X)

(respectively, o 153(36, X), Oo4 (x, X)), then, by Lemma 3.2 7(X) fixes I'y(/)

(point-wise)) for all 7 e o0 (x, X) (respectively, o 5. (x, X), Oo4 (x, X)).

153
Because G, is transitive on I3(x) and, by Lemma 4.1(11), Z;(x) =1,
T(X)*Y #1. So, by Lemmas 4.1(31) and 4.2(1), 1¢T(X)*Y € Q(x)*Y
= 05(G.Y). Then 7(X)Y (and (X)) fixes I(¢) (point-wise) for exactly
7 of the lines /(e Ij(x,Y) by Lemma 3.7(iv). Therefore 7(X)
interchanges the points in I})(/)\{x} only when / O 5, (x, X). O

Lemma 4.5. Let x €Iy and X,Y e Iy(x) with X #Y. Then
Y € Bs(x, X) if and only if 7(Y) e Q(X).

Proof. If Y e By(x, X)UP;(x, X), then there exists /e a 5 (x, Y)

153
by consulting the MOG in [4], and so, by Lemma 4.4, 7(Y) does not fix
[H(¢) point-wise. Therefore 7(Y)¢ Q(X). While if Y e Bs(x, X), then
G(x, X) c 0,0 (x, YU Oo4 (x, Y) and hence 7(Y) fixes Ij(/) point-wise
for all ¢ e I3(x, X) by Lemma 4.4. Since, by Lemmas 4.1(1) and 4.2(i),

+(¥)X € Q) = 0,(Gif), Lemma 3.7(iv) implies 7(¥)™X =1. So
7(Y) € Q(X) as desired. O
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Lemma 4.6. Let x, y, z be distinct points of I}y such that {x, v, z} is
a triangle in G. Then z € Ty(x + y) (or, in other words, {x, y, z} = Ty(¢)

for some ( € Iy).

Proof. We have that Q, 1 Q, and Q, (1Q, are octads in Q,. Let
te Q. NQ,. Then ¢ centralizes the transpositions in Q, 1 Q, and
Q. NQ, and so either Q, 1Q, =Q, 1 Q, or t € Q,. In either case we

get Q, NQ, =0, NQ, =0, NQ,. O
Lemma 4.7. (i) |A1(a)| =1518 = 2.3.11.23;
(i) Aq(a) is a G,-orbit; and

(iii) if x € Ay(a), then Gy ~2'0-2%: Ag (with G.F = G,F,,, an
octad stabilizer).

Proof. (i) Since |IH(/)\{a}| =2 for any ¢ e I(x), |A(a)| = 2T (a)]
= 1518.

(i) For ¢ e Ij(a) we can find X e I'3(a) such that /e 0c153(a, X).

Hence by Lemma 4.4, Q(a) is transitive on I,(¢)\{a}. Since G, is

transitive on I3 (a), (ii) holds.

(iii)) We have Gg <Gy, because x +a is the unique line in
[ (a, x) and [Gyyyq @ Gox ] < 2 as |Tg(x + a)\{x}| = 2. Hence as Q(a) is
transitive on |Iy(x + a)\{x} we obtain (iii). O
Combining Lemma 4.7 and O(2.1) with the definitions of A(a), A%(a),

and A‘Oé (a) given in (2.2) we obtain Theorem 2.
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Lemma 4.8. Let y € A;(x) where x € Ty. Then

@) |Qx) N Q)| = 2°%; and

@) for X € I3(x), 7(X) € Q(y), if and only if X € T3(y).

Proof. Since OQ(G;yy ) is an irreducible 4-dimensional Ag-module
over GF(2), Q(x);y =1 or Oy(Gyy )Y, Suppose Q(x);y =1 and so
Q(x)y =Qx)NQ(y). Let X eTlz(x) with x+ye Oo4 (x, X). Then

7(X) e Q(x), < Q(y). Therefore,
|Q(y)| = 1771 + 840 = 2611

by Lemma 3.1(ii). This contradicts |Q(y)| = 2! from (2.1)(iv). So
|Q(x);b | = 2% and then part (i) follows from Lemma 4.7(iii). For part (ii),
if X € I'3(y) then 1(X)e Q(y) by Lemma 4.2(i). Suppose that X & I'3(y)
and 1(X)e Q(y). Since x + y ¢ I7(X), we then have x + y Oo4 (x, X)
U 0c153(x, X). Suppose that x + y e Oo4 (x, X). Since G;;C is transitive on
the set of hyperplanes 8y(x, x + y) ={Y € I3(x)|x + y € Oo4 (x, Y)} by
Lemma 3.1(31) and 7(X)e Q(y) we have 7(Y)e Q(y) for all
Y € 85(x, x + y). Then

|Q(x) N Q(y)| > 35 + 840 = 875.

This contradicts part (i). By a similar argument, if x + y € o_5_(x, X) we

1%3
get
|Q(x) N Q(y)| > 35 + 896 = 933,

again giving a contradiction. This proves part (i1). O
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5. The Second Disc, Ay(a)
We begin by defining certain subsets of Ag(a) as follows.
Z;(a) ={x € Ay(a)|T3(a, x) # 0 = Ty(a, x)},
A3(a) = {x € Ag(a)|Ty(a, %) = 0},

13
Ay (a) = {x € Ay(a)|T5(a, x) # 0 # Iy(a, x)}.
An immediate consequence of these definitions is

Lemma 5.1. For 1< j<k<3, Zé(a)ﬂxké(a)zﬂ) and UiSZIZ;(a)zAZ(a).

Lemma 5.2. Suppose x € Ay(a) with X € T3(a, x). Then {a, x}t e IH(X).

Proof. Let b € (a, x)- and assume that b ¢ [)(X). Then a +b ¢ I} (X)

as I' 1is a string geometry. Using Lemma 3.5, we can find
Y € Bg(a, X)U{X} for which a+be (xl53(a, Y). By Lemma 4.5,

7(Y) € Q(x) which implies that (Y) e Q(a),. Since T(Y) does not fix b

by Lemma 4.4 we get a triangle {x, b, bT(Y)} which then forces a = x by
Lemma 4.6. From this contradiction we infer that b € I[)(X), so proving

the lemma. O

Lemma 5.3. For i =1, 2, 3, Zé(a) = Ay(a).

Proof. Let b e {a, x}*. Using MOG information in Qp, Lemma 5.2

implies that Zé(a) = A;(a) fori=1,2, 3. O

Lemma 5.4. Let x € A12(a). Then there is a unique hyperplane in

I3(a, x).
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Proof. Let X, Y e I'3(a, x) and b € {a, x}t. Then b e H(X)N (YY)
by Lemma 5.2. If X #Y, then b+x,b+ae [[(X)NT () and
[h(b+x,b+a)+ 0 by considering MOG information in I}j. Hence
X ¢ K;(x), whereas K;(x) = A;(x) by Lemma 5.3. Thus we conclude
X =Y and the lemma is proved. O

Let the unique hyperplane in Lemma 5.4 be denoted by X(a, x)
(respectively, X(x, a)) if we regard X(a, x)e I'3(a), (respectively
X(x, a) € T3(x)). Of course X(a, x) = X(x, a).

Lemma 5.5. Let x e A%(a). Then |a, x}L| =5 and, for each
be {a, x}i, the octad a+b in Q, contains a fixed tetrad of the sextet
X(a, x).

Proof. By Lemma 5.2, for every b e {a, x}*, b e I[H(X(a, x)) and so
a+be I;(X(a, x)). Working in the residue geometry of X(a, x) and
using Lemma 3.7(ii) we get [{a, x}i| = 5. Since Iy(a, x) = 0 by Lemma
5.3,in Q,, the five octads {a + b|b € {a, x}-} must intersect in the same

tetrad of the sextet X(a, x). O

Note that x € Ah(a) implies a € AL (x). We denote the fixed tetrad in
Q, (respectively, Q,) described in Lemma 5.5 by #(a, x) (respectively,
t(x, a)).
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Lemma 5.6. (i) |AY(a)| = 2°.3.7.11.23.
(i) Ay(a) is a G,-orbit.
(i) For x € Ay(a) and G,5 ~ 2% : (3x S5) is the stabilizer in G,* of
X(x, @) and t(x, a) and |Q(x),| = 27,
Proof. By Lemma 3.7(i), for any X e I'3(a), |TH(X)N A, (a)] =96 and
so by Lemma 5.4 we get |A12(a)| = 96.|T3(a)| = 2°.3.7.11.23, proving part (i).

For part (i), let be Aj(a) and x e Ah(a)NA;(b). Then in Qp,
b+ae oyb b+x). Since oy(b, b+x) is a G.o-orbit it is enough to

show that there exists g € G, with x® = x, where I)(b + x) = {b, x, x}.
In Qp, we can choose a sextet Y incident with the octad b + a such that

a+xe oc153(x, Y). Then by Lemma 4.4, 7(Y) e (Q(a) N Q(b))\G, and so

7(Y) is the required element of G .

For te Q,NQy NQ,, a, x are vertices of G' with x e A (a).
Hence Q(x), = Q(x)!, = 27 by Theorem 3 of [12]. Since, by parts (i) and

(i), | G4x | = 26.3%.5, Lemmas 5.4 and 5.5 yield part (iii).

We now turn to A22 (a).
Lemma 5.7. Let x € A22(a) and be {a, x}*. Then
() | A1 (0) N A% (a)| = 27.7 with Gy transitive on Ay (b) N A%(a); and

(i) [{a, 2} =1 or2.
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Proof. Since I'3(a, x) = 0 by Lemma 5.3, we have b + a € ay(b, b + x).
So by Lemma 3.1(), | A, () N A%(a)| = 2x 448 = 27.7. Let x" € Ty(b + x)
\{b, x}. We can choose Y € I'3(b + a) with b+ x 0 5, (b, Y). By Lemma

4.4, x™ =% and so G, is transitive on A;(b) N A%(a) because

ag(b, b+ x) is a Gy -orbit by Lemma 3.1(1).

Using (i), [2] and the fact that G, ~ [214].A8 by Lemma 4.7(iii) we
must have G, ~ [27].S5 or [2!9]. Ag. In either case G;Zx is contained

in the stabilizer in Q, of a duad & contained in the octad a + b. We now
show that for every c e {a, x}*, the octad a+c in Q, contains &.

Assume, for a contradiction that for some c € {a, x}i, a +c¢ does not
contain 8. Since I'3(a, x) = 0, we must have a + ¢ € ay(a, a +b). Using
MOG information, there are exactly 15 sextets in I'3(a, b) that each have

a tetrad containing 8. Let 7T denote this set of 15 sextets.

We can take Y}, Yy, Y3 € T forming a sextet line. Since 7(Y;)r(Yy) =
7(Y3) by Lemma 4.3 we must have 1(Y;)e G, for each i=1,2, 3.
Because G, is transitive on 7 it follows that 7(Y) e G, foreach Y e T

Since a + ¢ does not contain § we must have a +c € O 5 (Y) for some

YeT and then ™) £ x. Lemma 4.5 now implies that a =x, a
contradiction. Part (ii) follows because we cannot find three octads in Q,

intersecting pairwise in exactly 9. O
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Lemma 5.8. Let x € A3(a). Then
() A%(a) isa G, -orbit;

i) [{a, x}L| =1, |A22(a)| = 28371123 and G, is transitive on

A1 (b) N A3 (a), where {a, x}t = {b}); and

(i) G;ﬁg ~ 2% . Sy is the stabilizer in Q, of the octad x +b and the
duad Q, N Qp N Q,, where {a, )t = {o).

Proof. Part (i) follows from Lemma 5.7(1) and the fact that A;(a) is a

G, -orbit.

Suppose that |[{a, x}L| #1. Then {a, x}* ={b, ¢} with b#c by
Lemma 5.7(i)). Lemma 4.5 rules out d(b, ¢)=1. If ce AL(b)U A3(b)
(= Z%(b) U Zg(b)), then b, ¢ € I)(X) for some X e I'y whence, by Lemma 5.2,
a, x € T)(X). However Ij(a, x) =0, and therefore x e Azz(b). Hence

a+ce ag(a, a+b). From Theorem 4 of [12] Q(a), = 2% and so, as

Gopx ~ [29].85 or [2!9]. 4, Go ~ [24].Sg or [2°].A4. In particular

abx

28“(}*“ |. Clearly Ggpy = Gapee and so G.& =G.2 . Since a+ce

abx 1* abxc abx*

. . * .
leaves a dodecad of Q, invariant whence G 7  is

ay(a, a+b), G ¢ abxe

*
abxc
*a

ubre| vields a contradiction.

isomorphic to a subgroup of Miy. But 28‘|G

Thus, we conclude that |{a, x}L| =1, and consequently for b € {a, x}*

_[40)N A5 (@)][Ay(a))|

3 =283711.18.
Ha, x}7|

|A%(a)|

Part (iii), using Q(x), = 2%, follows readily. O
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Lemma 5.9. Let x € A32(a). Then there is a unique element A(a, x)
e Iy(a, x) and for every b € {a, x}t be [H(Ala, x)).

Proof. By definition, I'y(a, x) # 0. Let b € {a, x}t with b+ae 0o
(b, b+x) and let A(a, x) be the unique element of Iy (b+ a, b+ x).

Suppose b € {a, x}* with b ¢ Ih(Ala, x)). In Q, there are seven sextets
X;(i=1,..,7) in I3(b+a,b+x) and by Lemma 5.2 b e Ij(X;) for
each ¢=1,...,7. Therefore, in Qi there exists a trio
AeTly(b +a,b +x, X;) foreach i =1, ..., 7. Considering the situation

in Q, we must have A = A(q, x) and the lemma is proved. O

We follow our earlier notational convention and also denote the

unique plane in Lemma 5.9 by A(x, a) if we are viewing A(x, a) as a trio
in I[,.
Lemma 5.10. Let x € A3(a). Then |T5(a, x)| =7 and |{a, x}L| = 3.

Proof. By Lemma 5.2, for X € I'y, X € I'5(a, x), if and only if
X e T3(A(a, x)). The result now follows from Lemma 5.9 because in I'y

there are three points collinear with a and x and in I, |T3(A(a, x))| = 7.
O

Lemma 5.11. Let x € A?é(a). Then
() | A%(a)| = 2%.3.5.11.23;
(i1) A32(a) isa G,-orbit; and

(iii) G;ﬁg ~ 26 . (L3(2)x 3) is a subgroup of index 2 of the stabilizer in

Q. of the trio Alx, a) and |Q(x),| = 29,
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Proof. Since |{a, x}l| =3 by Lemma 5.10, |og(b, b+ a)| =30 (be
{a, x}*) and, by Lemma 4.7(), |A1(a)| = 2.3.11.23, we calculate that
| A% ()] = 23.3.5.11.23.

For part (i), let b e Aj(a) with A € Ty(a, b) and X € I3(A). Then
G;j)((,\ ~ 2% (S, x 2) and is transitive on the four points in A%(a)N A;(b)

NTy(A). Then G, is transitive on A%(a) because TI'y(a) and Aq(a) are
G, -orbits.

By Lemma 5.10 {a, x}* ={b;, by, bg}. Also, using Lemma 5.9,
G*a < G*a

ax = YaxA(a, x) -

26 . (L3(2)xS3). Let 1<i< j<3. Then a+b;, and

a +b; are disjoint octads as they are both incident with the trio A(a, x).
Choose a tetrad & of Q, which intersects a +b; in two elements and
a + b; in one element, and let Y denote the sextet of Q, with 8 a tetrad
of Y. Then a + b; Oo4 (a,Y) and a +b; € 0c153(a, Y). Hence, by Lemma
44, 1(Y)e Q(a)bi\Q(a)bj. Thus Q(a)bi # Q(a)bj for 1<i<j<3.
Further Q(a), < (a)bi 1<i<3), for Qa), £ Q(a)bi yields that
[Ha, N Iy(a + b;)| = 2 whereas no two points of {a, x}* are collinear.
So, as [Q(a) : Q(a)bi ]=2 and Q(a)bi # Q(a)bj for i # j, we have [Q(a) :
Q(a), ]2 22, Consequently using part (i) either G;ff ~ 26 (L3(2)x 3)
with | Q(a), | = 29 or G;ﬁg ~ 26 (L3(2)x S3) with |Qa),| = 28. Suppose
the latter holds. Let & be the element of order 3 in the S5 direct factor of
G;’g. Then, as & permutes the three octads {a +b;]i =1, 2, 3} and
Q(a)bi # Q(a)bj (i # j), & must act non-trivially on Q(a)/Q(a),. But
then A centralizes Q(a)/ Q(a),, where A is an element of G;ﬁg of order

7, a contradiction as |[Cg)(A)| = 22 Thus, as a e A% (x), we obtain

Gox ~ 28 : (L3(2)x 3) and |Q(x),| = 2°, so proving (ii). O
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Lemma 5.6 combined with (2.2) proves Theorem 3 except for the octad
orbits Oy o4 (x, A1, Ag), o 415 (x, A1, Ag), and 0 42 (x, A1, Ag). The

first two will be settled by Theorems 7 and 11 and the data in O(2.2),
while the last one follows from Theorem 12(ii). Theorem 4, apart from the

octad orbits o o(x, A, Ag) and oy o(x, Ay, Ag), follows from Lemma

5.8 and (2.2). The remaining two orbits are dealt with by Theorem 12(1),
(iv) and O(2.3). Finally Lemma 5.11 and (2.2) deliver Theorem 5.

6. Theorems 6-11 and 13

Lemma 6.1. Suppose that x € Ty and that Q, N Q, # 0. Let t € Q,

and let A denote the G,-orbit of x. Set k =|{s € Q,|x € I}|. Then
k|A| = 24/ AN TE).

Proof. Since A is a G,-orbit and G, acts transitively on Q, |A N Tj|

is the same for all se Q,. Furthermore, we also have that

[{s € Qq|y € I[§}| is the same for all y € A. Because Q, N Q, + 0 we

note that & # 0. Now counting in two ways the number of elements in

(s, ) € Q4 xAly € T5 }

yields, as | Q,| = 24, the lemma. O

For x € Ty and s e Q,, G; denotes the stabilizer of x in G° = Fiys.
So Gy ~ 211M23. Also recall that Q(x)° denotes the normal elementary

abelian subgroup of G¢ of order 2%,
Lemma 6.2. For x € Ty and s € Q,, Q(x)° = Q(x).

Proof. Since 2 Mys ~ G5 < G, ~ 21 M,,, the subgroup structure

of My, forces Q(x)° = Q(x). O
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Lemma 6.3. () If x € Alz(a), then |{s e Q,|x e I§}| = 4.
(i) If x € A3(a), then [{se€ Qlx e I§} =2.

Proof. Let x e Alz(a) and set k =|{s e Q,|x € Ij}|. Observe that,
for te Qg Ay (@) N T = Ay(a). Since G, 1is transitive on As(a),
Lemmas 5.6(11) and 6.1 imply that

k| A (a)| = 24|A%(a) |,
where ¢ is some fixed transposition in Q,. From Lemma 5.6(i) and Table

1 of [12], |Ay(a)| = 2°.3.7.11.23 and |AY(a)’ | = 2%.7.11.23, and therefore
k= 4.

A similar argument, using Lemma 5.8 instead of Lemma 5.6,

establishes part (i1). O
Lemma 6.4. For i =1, ..., 6, Aig(a) is a G,-orbit and, for te Q,,

Ay(a) N T = Ay(a).

Proof. Let xe Ay(a) and te {se Q,|xeI§}=9Q, NQ,. From
Lemma 5.6 and Theorem 3 of [12], |G| = 2'%.3.5 and |Gl | = 2!*.3.5.
So [G,y : Gy ]1=4 and hence, by Lemma 6.3(1), G,, is transitive on
{se Qu|x € T§}. Because G, is transitive on Ah(a) = AL(a)NTY, we

conclude that G, is transitive on Alg ().

The remaining sets Ai3(a) (=2, ...,6) are defined from A22 (a). Now
similar arguments may be employed for these sets as [Gg, : Gl ] = 2 for
x e Al(a) (where te {se Q.|x € I§}) and, by Lemma 6.3(ii) |{s € Q,|x

e I5} = 2. U
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Theorem 6.5. Let x € Aig(a).
@) If i =1, then Ggy ~ 22.L3(4) : Sy, Gy = Stabe. {Ar} ~ L3(4) : S,
. . 1 _ 912
where A; is a triad of Q, and |Az(a)| = 27°.11.23.

() If i =2, then Gy ~2'2%: (L3(2)x2), Gg¥ = Stab s, {A1, Ag}
~ 23 (L3(2)x 2), where Ay is an octad, Ay is a duad of Q, with
A NAg =0, and |A%(a)| = 2'°.3%.5.11.23.

(iii) If i = 3, then Gy, ~ 2.2% : Sg, G,F = Stabgee{A1, Az}~ 24 S,
where Ay is an octad, Ay is a duad of Q, with Ay C Ay, and |A%(a)| =
2!%.3.7.11.23.

(v) If i=4, then Gy ~2.Mgy : 2, G,F = Stabgy {1} = Myy 2,
where Ay is a duad of Q, and |A%(a)| = 2'%.3.23.

) If i=5 then 2':As~ Gy =Gg < Stabye.{Ar, Ag, Ag),
where Ay is an octad of Q,|Ag| =|As| =1 with Ay UA3 c Ay, and
|A%(a)| = 2%5.3%7.11.23.

i) If i = 6, then Gy ~[2°].3.8,, G, = Stab . {A1, Ag, Ag}~24.3.5,,
where A; is an octad of Q,,|As| =4,|A3] =1, A3 € Ay € Ay, and

|A8(a)| = 212.3.5.7.11.23.

Proof. (i) Let t € Q,. From Lemma 6.4, Aj(a) is a G,-orbit and
As(@)NTE = Ay(a). For x e As(a), let k =|{se Qu|x € [§}|. Using

Lemma 6.1, we obtain

k|A3(a)] = 24/ A5(a) |
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By the definition of A13(a), there exists y e Alz(a) such that y+x e

O3 315 (x, A1, Ag). Now consulting Theorem 3, we see that A} = Q, N Q,,

and hence |Q, N Q,| > 3. So k > 3. Therefore, as |A13(a)t| =2911.23 by

Table 1 of [12],

_ 24|A5(a)' | 24.29.11.23
B k B k

|85 (a)]

9
< 24.2 :.311.23 — 912119

Supposing that x € Ty. Then G, ~ 22.L3(4) : 2 by Theorem 5 of [12].

Since A(a) is a G,-orbit, |A13(a)| must divide [G, : GL,] = 2!%.3.11.23.
Bearing in mind the possible overgroups of Ly(4): 2 in My, = G,* and
Lemma 6.2, we get that [G,, : G, ]= 3. Thus |Aj(a)| = 2'%.11.23 with
k=3 and Gy ~ 22.L3(4): Sy with G.% = Stabgsy {AL} Ay being the

triad {t}U D(x, a). (With D(a, x) as in Theorem 5 of [12].) This
establishes (i).

Parts (i1)-(vi) may be proved in a similar fashion. For these cases we
may extract k = [{s € Q,|x € IJ}| (for x € Aig(x), i=2,..,6) from [12].
Recall that in the Figs geometry, a hyperplane is just a transposition
with points of this geometry being sets of 23 pairwise commuting
transpositions. For xe Aig(a)t,te Q,, where i€ {2, 3, 4}, a and x are
incident with a unique hyperplane of the Figs geometry (see Section 1 of
[12]) - so for ie {2, 3, 4}, k = 2. Whereas, for x € Ai3(a)t, ie {5, 6}, a
and x are not incident with a common hyperplane of the Figg geometry.

Thus k¥ =1 for i e {5, 6}. So knowing k we can make effective use of

Lemma 6.1. We observe that for x e Aig(a)ﬂl"(t) (te Q,) we have
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Gyx = Ghy for i = 3,5, 6. While [Gq, : G, ]1=2 for i = 2, 3, 4. In these
latter cases, we must also call on the services of Lemma 6.2 in order to
deduce that G, has shape, respectively, 2493 . (L3(2)%x 2), 2294 . Sg and
2.Myg : 2.

We are now in a position to verify Theorems 6-13. For Theorem 6,
Theorem 6.5(i) gives Gy, and G,* for x € Ay(a). We must discover the

point distribution of the G, line orbits o;(x, A;) (i =1, 2, 3), three of
the G;ﬁ-orbits on lines, see [15]. Let y € A;(x) be such that x + y e

oy (x, A;). Now we may further assume y is chosen so as x, y € I} for

some t € Q,. Then, by Theorem 5 of [12], x + y € ag(x, D(x, a)) (seen
within T}) with x + y having point distribution AY2AY. Since o (x, A1)
is a G, -orbit and AY(a)’ c AY(a), we conclude that lines in oy (x, A;)
have point distribution A32AY. Similarly, we see that ag(x, A;) has

point distribution A42A% and og(x, A;) has point distribution A%2A%.

The same kind of arguments work for A%(a), A33 (@), Ak(a), A53 (@) and

A% (@), so we omit the details. O

The same strategy as employed in this section will reveal G, and orbit
sizes for x € Alj(a), i =1, ..., 6. Note that in all these cases k = [{s € Qg4|x

e I[§}| =1 as a and x cannot be incident with a common hyperplane in
the Figg geometry, as the point-line collinearity graph of the Figg

geometry has diameter 3 (see Appendix 1 of [11]).
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7. Proof of Theorem 12

The orbits considered in Theorem 12 do not lie within a Figg residue

and so we cannot apply the same reasoning as in Section 6. Recall that for

any X e Iy, 'y is isomorphic to the geometry for U,(3).2 described in
[6].
We define

lg (@) ={x € T|T3(a, x) # 0 and d(a, x) = 3}.
Lemma 7.1. A (a) = AS (a).

Proof. If xe Ag (@) and X e I'(a, x), using information about the

geometry [y given in Lemma 3.7(ii), there exists ¢ € Ay(a) N A;(a) with

c+xe oyslc, T), where T € Ty(a, c). By (2.2) ce A‘O’z(a) and x € A83(a).
Conversely if x e A%(a) we must have Ty(a, x)# 0 by O(2.4) and

d(a, x) = 3 by Lemma 5.2. So x e Ag (@) as required. O
Lemma 7.2.If x A83(a), then |T3(a, x)| = 1.

Proof. Let x € A%(a) and assume that X, Y € I'3(a, x) with X # Y.
Using information about the U,(3).2 geometry described in Lemma 3.7(ii),
for every ¢ € I§(a, X), there exists b e [)(¢) with b e Ag(x) N As(a). If
Y ¢ B3(a, X), then thereissome b € Ag(x) () Ay(a) with a +b € oy55(a, Y)
by Lemma 3.4. Therefore Lemma 4.4 implies that T(Y) does not fix b. Since
7(Y) € Q(a),, ™Y ¢ Ih(a +b) N Ag(x). However, as Ty(a +b) < IH(X),
Lemma 3.7(ii) implies that a € A;(x), a contradiction. Hence Y € B3(a, X).
In T, there are three octads ¢ incident with X and Y and for one of

these, we can find y € Ty(¢) N Ay(a). Since X, Y € I'3(a, y) we now have

a contradiction to Lemma 5.4, and so X =Y as asserted. O
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Lemma 7.3. Let ¢; € A3(a) and ¢y € Ay(a) N Aq(c;). Then
() ¢y € A(a); and
@) if y € Tyle; + c9)\{ey, co}, then y e Ai(a).

Proof. (i) Suppose that ¢y € A12 (@)U A‘O’z (a), and argue for a contradiction.
Then, by definition of AL(a) and A%(a), there exists X e I';(a, ¢g). Since
¢ € Ad(a), [{a, cl}l| =1. Let {a, ¢} = {b}. If be I,(X), then, using

Lemma 5.2, ¢; € {b, 02}l cIH(X) and so X € Ig(a, cg), whereas
I3(a, cg) = 0. Thus b¢ [H(X) and as a consequence a+b ¢ I(X).
Hence a+b e ayi(a, X)U a;s5(a, X). Assume that a +b e ay(a, X).

Then 7(X) € Q(a), by Lemma 4.4. Since X ¢ I'3(b), 7(X) ¢ Q(b) by Lemma

4.8(ii). So T(X) € Q(a), \Q(b) and hence 1 # (X)” € Q(a)” = 0,(G,°).

Since b+ ¢; € ay(b, b+ a) we then infer that T(X)*b does not leave the
octad b + ¢; invariant. Hence 7(X) ¢ G, . However 7(X)e Q(cz) and so
we obtain a triangle {b, ¢;, clT(X)} with clT(X) e Iy(e; +¢9). Lemma 4.6

forces b = cg, a contradiction. Thus we have shown that a + b ¢ 044 (a, X)

and so a +b e 0c153(a, X). By Lemma 4.4, p7(X) + b. If clT(X) = ¢;, then

{b, b &) ¢} is a triangle, whence a = ¢; by Lemma 4.6. Thus ¢/ (X)

¥ C1.
Since clT(X) e Iyle; +¢9), this gives {b, clT(X)} c {bT(X), ¢ I which, as
p7X) ¢ A%(c;), contradicts Lemma 5.8(ii) (note that b = of X) would give

¢o € Ty(b+¢;) and then ¢y € A3(a)). With this contradiction we have

established part (3).
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(i1) Let {a, ci}l = {b;} for i =1, 2. Suppose (ii) is false and argue for a
contradiction. We first claim that d(b, cg) =2 = d(bg, ¢;). If, say,
d(by, cg) =1, then {b, ¢y, cg} is a triangle and so, as ¢, cg € Ag(a),
Lemma 4.6 yields that y = b; € A;(a). Thus d(b;, ¢y) =1 and, similarly,
d(by, c1) = 2. In particular, this gives b # by. Further, d(b;, by) = 2.
For d(b;, by) =1 implies by € [j(a + b;) by Lemma 4.6 and then {b;, co}

c {by, ¢;}*. This contradicts Lemma 5.8(ii) as by € A%(cy).

If b e Ab(by) U A%(by), then by part (i) (with b in place of a)
¢; ¢ A5(by). Therefore ¢; € Ay(by) U AS(by). Consequently a e AS(cy)
and by € Ah(c;) U A%(c;) which is contrary to part (i) (with ¢; in place of a).
Thus b ¢ Ah(by) U AS(by) and hence b; € A3(by). Similar arguments
show that ¢; € A3(by) and ¢y € A3(b;). By considering the elements of
I3(b, cg) as sextets in Qp and using Lemma 4.4 there exists
Y e I3(by, ¢) with 7(Y)e G,. Suppose that 7(Y)¢ G,,. Since 7(Y)

(X)

fixes the line ¢ +cy, Lemma 4.6 implies that b5’ # by and

7(Y) ¢ Q(a). Therefore 1 # ‘I’(Y)*a e 05(G Zl) This means that, in Q,,

a
the octads a + bg(Y)

,a+b and a+ by intersect pairwise in the same
duad. However, we see from the MOG [4] that this is impossible. Thus,

we have shown that 7(Y)e G,,. Since b € A%(cy), Y ¢ Ty(cy) and so
7(Y) ¢ Q(cy) by Lemma 4.8(1i). Then 1 # ”r(Y)*c2 € OQ(G:‘;CS1 ). Since

cg + by € aglcy, ¢y + 1), ~(Y)"2 does not fix cg + by. This contradicts

Lemma 5.8(i1) and hence gives part (ii), completing the proof of Lemma
7.3.
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Lemma 7.4. (i) A3(a) is a G,-orbit and |A%(a)| =265.7.11.23.

(ii) For x e AS(a), Gy ~ (21332 : 4 and G,5 ~25:33%:4 is
the stabilizer in G;x of the sextet X e I's(a, x) and the partition of Q,
into Y, ={=, 14, 0, 8, 3, 20, 15, 18,17, 4, 16, 10} and its complement

(where X is identified with the standard sextet in Q.. ).
(iii) |AL(a) N Ay (x)| = 6 and |AS(a) N A (x)] = 9.

(iv) Let x e A%(a) and {X} =T3(a, x). If {a, b, ¢, x} is a path of

length 3 in G, then b, ¢ € Ty(X). Moreover A%(a) N A(x) = 0.

Proof. Let x e A83(a). By Lemma 7.2, T3(a, x) = {X}. Observe that
I, (X) N A% (a) = Di(a) by Lemmas 7.1, and 3.7(ii). Since G, is transitive
on I3(a) and, by Lemma 3.7(1), Dé(a) is a G,x-orbit, we see that A83(a)

is a G, -orbit. Also, as |D%,(a)| = 320 by Lemma 3.7(i),
|45 (@)] = |T3(a)]| o (X) N A3 (a)|

=7.11.23.320 = 26.5.7.11.23.
So (1) holds.
Clearly we have Gy, < Gx and so G.5 < G.5x ~ 20384. Also, by

part (), |Gyl = 215 3%, We now look at Q(a),. Using Lemma 4.5, as

a, x € Ty(X), gives (1(Y)|Y € Bs(a, X)) < Q(a),. Hence, by Lemma 3.3,
|Qa),| > 27. Now select y e A4(a) N Ty(X) (= Di(a)) with ye Aq(x).
Suppose Q(a), £ Q(a),, and let g e Qa),\Q(),. Then y% #y and
y8 e Aj(x) N Ay (@) NTH(X). Let b e {a, y}* (and note that y e IH(X)).

Since g e Q(a), b® € Ty(a +0b). If b # b®, then Lemma 3.7(ii) forces
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a e Aj(x) whereas d(a,x)=3. Thus b=05b% and consequently
{a, y}* = {a, y¢}*. Looking in [H(X) we see this is impossible. Hence we
infer that Q(a), < (a)y. By Theorem 3, |Q(a)y| = 27 and therefore
|Qa),| = 27 Since ae A3(x), we also get |Q(x),| = 27 and so
|G| = 28.3%. Since G, contains a Sylow 3-subgroup of G,%x and the
only subgroup of Sg of order 322% are subgroups of 32 : 4 we see that

G;’g ~ 26 .3.32 . 4, which completes the proof of (ii).

Consulting Lemma 3.7(i1) we see |A12(a)ﬂA1(x)ﬂF0(X)| =6 and
|a3(a) N A () NTH(X)| = 9. If [AS(a) N A(x)] > 9, then for ye AY(a)

the lines in o495 (y, 7(a, y)) must be incident with at least one point in

A%(a). Let k =|A;(x) N A32 (a)|]. Using part (i), Lemma 5.11 and O(2.4) we
calculate that £ =36+9 or 72+ 9. Now, by O(2.11), there are no line
orbits (apart from o2 g(x, X) and a2 ,2(x, X)) of size < 72. Thus
we conclude that |A?§(a) NA(x)]=9. A similar argument, using
|A%(a)|, |A12(a)| and O(2.11) shows that |A12(a) N A1(x)| = 6 - note that
all the line orbits from y e Alz (a) have already been accounted for except

(x()’24 (y7 A17 A2)

Suppose (iv) is false, and argue for a contradiction. Then, by Lemma 5.2,
b, c¢ IH(X). By Lemma 3.5, there exists Y e Bs(a, X)U{X} with

a+be ag(a, Y). Set T=1(Y). By Lemma 4.5 7e @X) and so
a” =a and x7 = x. Also, from Lemma 4.4, b # b" € [j(a + b). Note that
b, b" € Ay(x) and that b and b" are in the same G, -orbit. Lemma 7.1

implies that a € A%(x). If b e Ah(x) U A%(x), then part (iii) (with a and x
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interchanged) yields that b € Ij(X). Thus b, b" € Azz(x) Using Lemma

7.3(i1) (with x in place of @) we infer that @ € A;(x), a contradiction. That

A22 (@) N Ay(x) = 0 follows from Lemma 3.7(ii). O
We now consider the set

A130 (a) = {x € Iy | there existsce A?é (@)NA;(x) such thatc +x € o 499 (¢, Ty )},
where 7, is the unique element of I'(a, c).
Lemma 7.5. AY (a) € As(a) and AY (a) N A83(a) =0 andso I'3(a, x) = 0.

Proof. Let x € A130 (@) and c e A‘Oé (@) N Aq(x) such that ¢ +x € o 02

(¢, Tpy)- If x € A83(a), then there exists X e I'3(a, x) and, by Lemma
7.4(@v), in Q,, the octad ¢ + x would intersect 7., in 42, a contradiction.

So A130(a) N A83(a) =0 and I3(a, x)=0. If x € Aj(a), then x € {q, cft

and so x € Ij(X) for each X € I'3(a, ¢), a contradiction. Suppose that

x € Ag(a). Then Lemma 7.3 gives that x e Alz(a) U A‘Oé (a). However this

contradicts I'3(a, x) = 0 again. Therefore x € Ag(a) by definition. O
We now turn to A73 (a). Recall from (2.2) that
Ab(a) = {x e Iy| there exists c € Ay (@) N A;(x) such that

c+ye 0c0724(c, Q. NQ,, Sea 1),

where Q. N Q, is the tetrad of Q, described in Lemma 5.5 and S, is

the sextet in Q, corresponding to the unique element of I3(a, c).
The next result shows the link between A%(a) and AY (a).

Lemma 7.6. For any x € Iy, x € A130 (@), ifand only if a A?a,(a).
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Proof. Let x € Algo(a) and let ¢ e A‘Oé(a) N Ay(x) with ¢ +x € a,2(c,

T.). If {a, ¢}t = {61, by, b3} we may suppose that b e Alz(x) and

ca
by, by € A3(a). In Qp , the octad b +c is incident with the sextet
X(by, x), where X(b;, x) is the unique element of I'3(b;, x) (see Lemma
5.4). Also (b +a)N(b; +¢) =0 as octads in Qp, because ce A‘Oé(a).
Therefore by +a € gy (by, X(by, x)) and | (b + a) Nt(by, x)| = 0, where T
is the tetrad contained in & +d for all de {b, x}t. Therefore
ae A73 (x) by definition.

Conversely assume a € A§(x) and let b e AL(x) N Ay(a) with b+a e
0g4(b, X), where X is the unique element of T3(b, x) and
|+ a)Ntbd, x)| =0 in Qp, where t(b, x) = Q, N Q,. Then there exists
d e {b, x}* such that b+x e (X) and b+d)N(B+a)=0 in Q.

Hence d e A?é(a) and now x € A130 (a) by definition. O

Lemma 7.7. Suppose that xi, xg9 € Ay(a) and x; € Aj(xy). Let
[o(x; +x9) = {x1, x9, x}. Then xq, x9 € Aiz(a) for the same i € {1, 2, 3}
and x € A(a).

Proof. If x; € A?é (a), the lemma follows from Lemma 7.3. So we may
assume x; € Al2 (@)U A‘Oé (a). The point distributions (see, for Alz (a), Lemmas
5.5, 7.4 and Section 6 and, for A%(a), Lemmas 5.10, 7.4, 7.5) of lines from

Alz(a)UA?’z(a) are all known with the exception of o 54 (x1, Ay, Ag)
when x; € Alz(a). (The problem here with o o4 (x1, A7, Ag) is that

A%(a) could equal one of the G, -orbits in Ag(a).) From Lemmas 7.5 and 7.6,
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we deduce that Aé(a) c As(a). In particular, for /e Qg 94 (x1, A1, Ag),

Ao(0)N Alz(a) ={x1} = Ag(¥) N Ag(a), so completing the proof of Lemma
7.7. Ul

Lemma 7.8. Let x Alzo(a) and c € A?’z(a) N A;(x).

(i) We have Ay(x)N A(a) = {a, cF with |A1 )N A (a)] =1, |A22(x)

ﬂAl |—2and|A2 ﬂAl )|=0

(i) If b e Ay(x) N Ar(a), then Ag(a)N Aq(x) = {b, x}t with |A12(a) N

()| = 0, | A% (@) N Ay (x)| = 4 and | AY(a) N Ay (x)| = 1.

Proof. In Q., for every b € {a, c}t, the octad ¢ + b is incident with

the trio 7., and since ¢ +x € 059 (c, T,,) We get |A2 )N {a, c}l| =1,

|A2 YN {a, c}l| =2, and |A3 )N {a, c}l| =0 from the definitions of
Aig(x) (i=1,2 3). Let {b} = A, (x) N {a, . In Q, the two octads b + a
and b + ¢ are incident with the trio 7., and so the octads are disjoint. Let
X be the unique element of I'3(b, x). Then b+ a € 04 (b, X). Therefore,
for every d € {b, x}L\{c}, the octads b+ a and b + d intersect in exactly
two elements of Q. So |A1 YN {b, x}L| =0, |A2 )N {b, x}l| =4, and
|3 (a) N {b, xF-] = 1.

To complete the proof by Lemma 7.8, it is enough to show that Ag(x)

NA;(a) = {a, c}t. Assume that by € Ag(x) N As(a) with b ¢ {a, . If
a+b € [1(X) for some X € I3(a,c), then a+b € [1(Y)U oy (a, Y)

for every Y € I3(a, ¢) and so 7(Y) Q(a)b1 by Lemmas 4.2(i) and 4.4. By

the definition of A130(a), we can find Y € T3(a, ¢) with ¢ +x € a;54(c, Y)
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and then 7(Y) ¢ G, by Lemma 4.4. So x, x™Y) ¢ Ag(by) N Ty(e + x) and
Lemma 7.7 gives c € A;(b;), contrary to the choice of &;. Therefore

a+b ¢ IT(X) for all X e I'3(a,¢) and so in Q,, the octad a+b

intersects the trio 7., in 422,

We now show that b € A%(x). Let X be the unique element of
I3(b, x). Assume b ¢ A22(x) for a contradiction. Then there exists
Y e I3(x, b). If X € B;(x, Y) for i =1, 0, then there exists d € {x, bl}J‘
with x + d € 0455(x, X). By Lemma 4.4, d™X) & d. Since b+a e ay4 (b, X),

(X)

using Lemma 4.4 again we have a"“’ = a. Using Lemma 7.7 with d and

dT(X), we get x € Aj(a). So we must have X € B3(x, Y). We can choose
de {b, x}* with x +de a,u(x,Y). So deIyh(Y). If de Ai(b) then

d¢ A22 (@) by Lemma 5.8(%1i). Then d = ¢ from the first part of the proof.

This contradicts the fact that b, ¢ {a, . Ifde Ag(by), then Lemma 7.7
implies that the point in Ty(a +b;)\{a, b;} lies in A;(d) and using

Lemma 7.7 again we get a € A{(x). So d e A83(b1) because T3(d, b;) + 0.

However Lemma 7.4(iv) now yields Ij3(a, x) # @ which contradicts

Lemma 7.5. Hence we have shown that b; e A% (x).

Let d be the unique point in {x, bl}l. We can choose Y e I3(a, )
such that ¢ +x € ay4(c, Y). Then 7(Y) fixes x by Lemma 4.4. Assume
de¢ As(a) and let ZeTy(a, d). If ZeI3(T,,) we could choose
Y; € I4(7,,) such that Y; € B;(a, Z) for i = 0 or 1 and b € {a, d}* with
a+b € ag54(a, Yy). So 7(Y;) does not fix b by Lemma 4.4 and then
Lemma 7.7 gives a € Ai(x), a contradiction. Therefore Z e I'3(7.,).
Applying a similar argument to the one used to show b; € A22 (x), we can

prove that d e A22 (a).
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Since b; ¢ {a, c}*, the octad a +b, in Q, is not incident with the
trio 7,,. Therefore, we can choose Y € I'3(a, ¢) with 7(Y)e G, and
by ¢ Ty(Y). If 7(Y) does not fix & Lemma 7.7 would imply that
ae Aj(x) and so T(Y)e Gp, - From Lemma 4.8(i), as b ¢ IH(Y),

7(Y) ¢ Q(b). Hence 1 # T(Y)" e 02(G:2 ) = 2% and because d e A%(a),
the octads (in Qp )b +a and b; +d intersect in two elements. As a

consequence T(Y) does not fix the line b; + d. In particular, d\Y) ¢4

and therefore, as d, d™™) ¢ o, x}i, we have now have |{b, x}i| >1
which contradicts Lemma 5.8(ii). This completes the proof of the lemma.

O
Lemma 7.9. (i) |AY (a)| = 2°.3%.5.7.11.23.
(i) G, is transitive on AY (a).

(i) For xe AX(a), Gy ~[2°1.8, and G,5 ~20:8, is the
stabilizer in G;x of the tetrad t(x, b) (where b is the unique element of
A(a)N Alz (x)) and a partition of x + c\t(x, b) into two pairs of elements.

Proof. Let x ¢ A130 (@) and c be the unique point in A‘Oé (@) N Ay (x)
(c exists by Lemma 7.8). Then |A130(a) NAq(c)] = 2|oyg2(c, Tpy)| = 2.672
by O(2.4). By the uniqueness of ¢ and Lemma 5.11(1), we have

|A (a)| = 2.672.|A5(a)| = 2°.3%5.7.11.23.

For part (ii), working in Q., there are four sextets X e I'3(a, ¢) such

that ¢ +x € as54(c, X) and so 7(X) ¢ G, by Lemma 4.4. Therefore G,

is transitive on Iy(c + x)\{c}. Now part (ii) follows because o;55(c, X) is a

Ge-orbit on I7(c) and A?é (a) is a G,-orbit of points by Lemma 5.11(ii).
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Turning to part (iii)) we have G, <G,.. Let be {a, cft N A, (x)
(b exists and is unique by Lemma 7.8(1)). By Lemma 7.8(i1) there exists
¢1, ¢ € {b, x}F N AL(a) with ¢; # ¢cy. We show that |Qa), | < 2° by first

proving that Q(a), < Q(a)ci for i =1, 2. Assume g € Q(a), \Q(a) ' for a

C,

contradiction. If 5% = b, then in Q, the octads b+ ¢; and b + ¢f contain
the same two elements of b+ a. However Lemma 5.5 implies that
t(b, x) < b+ ¢ which gives (b+a)N(b+c)# 0, contrary to Lemma 5.9.
So b% #b and we can use Lemma 7.7 to show that ae A{(x), a

contradiction. So Q(a), <Q(a), for i =1,2. Since (b+a)N (D +c¢;) =0

¢
in Qp, there are seven hyperplanes Y; € I'3(a, b) (i =1,...,7) with

T7(Y;) e G and the subgroup generated by the elements 7(Y;) has

cicy
order at least 2%, Further we can show that, up to relabelling Q(a)N Q)
= (1(Y )r(Yy)r(Y3)) < Q(a)clc2 (see Lemma 6.15 in [17] for details). Since

Q(a)clc2 # Q(a)c1 we have |Q(a). . |= 2* by Theorem 4. Therefore

€12

|Q(a):fc{2| =23 In Q,,, the octads ¢; +b and ¢; +x intersect in four

elements and the subgroup of OZ(G;CZ}) fixing ¢; +x is of order 22,

Therefore |Q(a)*c1 | < 22 and so |Qa),| < 23 as required.

C1CoX

By parts (i) and (ii), [Gge : Gar] = 26.3.7. Since | Q(a),| = 2° by Theorem
5 we must have | Q(a), | < 23 and so |Qa),| = 23 and [G;? : G;,‘Z] =3.7.

Using the ATLAS [2] and Theorem 5 we get G;‘? ~26:8,. This

completes the proof of the lemma. O

Lemmas 7.6 and 7.8 now imply
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Lemma 7.10. Let x € A?a,(a) and c e Alz(a) N Ai(x). Then

@) Ag(x)NA{(a)={a, c}l with |A1 )N A ()| =0, |A2 )N A (a)] =4

and | A (x) N Ay (a)] = 1.

() If be AS(x)NAL(a), then Ay(a)N Aq(x) = b, x}t with |A12(a)

NAE)| =1, [AS(e) N A (x)] = 2 and | A% (@) N Ay (x)| = O.
Lemma 7.11. (i) |A5(a)| = 2%.3%.5.7.11.23.
(ii) G, is transitive on A%(a).

(ili) For x € A4(a), Ggy ~ [2°1.8, and G,Y ~ 2° : S, is the stabilizer
in G;x of the octad x + d (where d is the unique element of A22 (@) N A(x)),
the trio T which is the unique element of T'3(b, x) for b e A (x) N Ay (a)
and a partition of the octad x + d into four 2-element sets.

Proof. Let x € A%(a) and ¢ e Ah(a)N Ay(x). Then |A3 a)N Ay(c)| is
twice the number of octads in Q. lying in a4 (c, X(c, a)) that have an
empty intersection with #(c, @). This number is 240. Therefore Lemmas

5.6 and 7.10 give

|AG| = 29.3%5.7.11.23.

Let x" e Ty(c+x)\{c, x}. Then by definition x" e A%(a). Since ¢ +x ¢
[1(X(c, @)), there exists Y e Bs(c, X(c, @)) with ¢ +x € 0ay54(c, Y). For

this Y we have ™) = & by Lemma 4.4. By O(2.2) and Lemma 5.5(ii1),
ng is transitive on the lines in ay4(c, X(c, a)) that have an empty
intersection with #(c, a) and so part (ii) follows from the transitivity of

G, on A22 (a) (see Lemma 5.6(i1)).
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For part (iii) we know that a e A130(x) by Lemma 7.6 and hence
Gy ~[2°1.S, by Lemma 7.9(ii). Let be Ay(x)NAj(a) and e, ey €
B, 2N A22 (@) with e; # eg. (Such points exist by Lemma 7.10.) Assume

Qa), « Q(a),

_andlet g € Q(a),\Q(a),,. If b¥ = b, then g* € 05(G,))

and so in Q,, the octads b+e; and b+ ef intersect b+ a in the same

two elements. However ef e {b, xf- and so (b+e)N(b+ ef) =0

because b e A3(x). Therefore b8 # b. Since bé e I'y(a +b), Lemma 7.7

implies that a € A;(x), a contradiction. Therefore Q(a), < Q(a)e1 and

similarly Q(a), < Q(a)ez. Using an argument similar to that in the proof

of Lemma 7.9(iii), we get |Q(a),| < 24,

Since ¢ is the unique point in AL (a) N A;(x), Gy < Gy By Lemma

*

5.6(iil) we have |Q(c),| = 27, Therefore Q(c) ¢ < OQ(G;?). Since ¢ + x €

a

g4 (¢, X(c, a)), there exists Y e B3(c, X(c, a)) such that ¢ + x € a;55(c, Y).

Then Lemma 4.4 implies that 7(Y)¢ G,. However 1(Y)e Q(c)NQ(X(c, a))

and 7(Y)¢ Q(a). Therefore |02(G;§| < 2% and so G;f; ~ 258, and

|Q(x),| = 2*. O
We end this section by examining the set

A(a) = {x e T, | there exists ¢ € A22 (@) N Aq(x) such that
c+x € 0golc, c+b, Dy ), where {b} = {a, .

Lemma 7.12. A3(a) N As(a) =0 for i =1, ..., 8 and i = 10.
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Proof. Since Q,NQ, =0 by definition, A%(a)ﬂAig(a) =0 for
i=1,...,6. By Lemma 7.4(iii), A93(a) N A83(a) = 0. By Lemmas 7.8 and
7.10 and O(2.3) if x € A73(a) U A130(a), then |[(c+x)N(c+b)|=0 or 4in
Q. for any c e A% (a) N Aq(x). Therefore A93(a) N Aig(a) =0 for i =7,10

as required. O

Lemma 7.13. Let x € A}(a). Then there exists a unique path of

length three between a and x in G.

Proof. Let ce A3(a)NA;(x) with ¢+x e agg(c, c+b, D), and
{8} = {a, ¢}*. Then be A22 (x) by definition. Assume that a, by, ¢1, x is
another path of length three in G. By Lemmas 7.8, 7.10, and 7.4 and
0(2.2) and O(2.4), we must have ¢; € A3(a) and b € A(x). It then
follows from Lemma 5.8(ii) that b; # b and ¢; # c. Therefore b, € Ay(b)
and we consider the three possible choices separately.

First assume that b € A?é(b). Notice that ¢; ¢ A;(b) U Ag(b) by
Lemma 7.7 and Lemma 5.8(1ii) and so ¢; € A3(b). Therefore ¢; € A83(b)
U A130 (b) by O(2.4). However Lemma 7.4(iii) implies that ¢; A130 (b). We
now have ce Alz(cl)ﬂ {5, bl}l by Lemma 7.8 and so ¢, ¢; € {x, bl}L,
contrary to Lemma 5.8(i1).

Next suppose that b € A, (b). Therefore ¢ e A5(b;)U A%(bl). Using
Lemma 7.4(i11) we must have ce A73(b1) This again leads to the
contradiction that ¢, ¢; € {x, by}

Therefore we must have b € A5(b). In Q,, c+xN D, =0 and

|c+xNec+b| =2. Using the MOG and Lemma 4.4, we can find a sextet
Y € I3(c, b) with 1(Y)e G,,. Since 7(Y)¢ Q(a) and a+ b € ay(a,
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a+b), 7(Y) does not fix a + b;. However by the above argument we must
have a+bf(Y)e ag(a,a+b)Noag(a,a+b) and (a+b)N(a+b)=(a+bd)
N (a+ blT (Y)) in Q,. As this cannot occur we again get a contradiction.

This completes the proof of the lemma. O

Lemma 7.14. (i) | A%(a)| = 2%.3%.5.7.11.23.
(i) G, is transitive on A(a).
(iii) For x € AY(a), Gop ~ [2°].8, and G5 ~ 2.8,.

Proof. Let x € A% (@) and let a, b, ¢, x be the unique path of length

three between ¢ and x in G.

(i) From 0O(2.4), A;(c)N Agg(a) = 2x240 = 2°.3.5. Using Lemmas

5.8(ii) and Lemma 7.13 we then have |A%(a)| = 213.3%.5.7.11.23.

(i) Since ¢ + x 0g o(c, ¢ + b, Dy,) and using Lemma 4.4, we can find
YeT3(b,c) with 7(Y) e G,\G,. Since 1(Y) fixes c+x,(Y) interchanges the
points in Ty(c+ x)\{c}. Because G, is transitive on A%(a) and

ag o(c, ¢ +b, Dey) isa Gy.-orbit, G, is transitive on A%(a).

(i) We have G, < Gg.. Since ¢ +x € agy(c, ¢ +b), then Q(a):; =1
and so Q(a), < Q(a)NQ(c). Using the MOG we see there exist Y, Ys,
Y; € T3(c +b) with Q(a) N Q(c) = < 7(Y7)(Y5)r(Y3) >. Further, if & is
the duad in Q, fixed by G:(‘i and ¢; is the tetrad in Y; containing
3 (i =1,2,3), then of the six elements in (¢ + a)\d in Q., three lie in
exactly two of the tetrads ¢; and three lie in none of the tetrads ¢;.

(For details, see Proposition 8.12 in [17] where A22(a) is denoted by

A% (a).) Since Q, N Q, = 0 we have that ¢ +x € a;54(c, ¥;) for precisely
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two or none of the sextets Y;, i =1, 2, 3. Therefore 7(Y;)r(Y3)r(Y3) € G,

by Lemma 4.4. Hence |Q(a),| = 2 and it follows that [G;;)C : G;(’f] = 2.3.5.

Since G;g ~2%Ss by Lemma 5.8(iii) we must have G,* ~2%S,, as

required.
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