THE POINT-LINE COLLINEARITY GRAPH OF THE *Fi*[']₂₄ MAXIMAL 2-LOCAL GEOMETRY – THE FIRST THREE DISCS

PETER ROWLEY and LOUISE WALKER

School of Mathematics University of Manchester Oxford Road Manchester M13 9JL UK e-mail: peter.j.rowley@manchester.ac.uk

Abstract

The disc structure of the point-line collinearity graph for the maximal 2-local geometry associated with the largest simple Fischer group is investigated. For an arbitrary vertex of this graph the first three discs are determined. Additionally a fragment of the fourth disc is uncovered.

Keywords and phrases: point-line collinearity graph, maximal 2-local geometry, Fischer group, disc structure.

Submitted by Jinshan Zhang.

Received February 13, 2021

© 2021 Scientific Advances Publishers

This work is licensed under the Creative Commons Attribution International License (CC BY 3.0).

http://creativecommons.org/licenses/by/3.0/deed.en_US

²⁰²⁰ Mathematics Subject Classification: 05E18, 20D08.

1. Introduction and Main Results

The investigations of Fischer [5] into groups generated by 3-transpositions not only had an influence upon certain later work related to the classification of the finite simple groups but also unearthed three previously unknown sporadic groups, Fi_{22} , Fi_{23} , and Fi_{24} . The first two of these are simple while Fi_{24} , though not simple, has a simple subgroup Fi'_{24} of index 2. For more on these groups and 3-transposition groups in general, see the book by Aschbacher [1].

Along with many of the other sporadic simple groups, Fi_{22} , Fi_{23} , and Fi'_{24} possess minimal parabolic geometries and maximal 2-local geometries (see [9] and [10]). In the present paper we study the point-line collinearity graph \mathcal{G} of Γ , the maximal 2-local geometry for Fi'_{24} . This geometry has rank 4 and its associated diagram is

Many properties of Γ are itemized in Section 2. We recall that the vertices of \mathcal{G} are Γ_0 , the points of Γ and two points are adjacent in \mathcal{G} if they are incident with a common line. In [11, 12, 13] and [14] complete and detailed descriptions of the corresponding point-line collinearity graphs for Fi_{22} and Fi_{23} are presented.

For $x \in \Gamma_0$ and $i \in \mathbb{N}$, $\Delta_i(x)$ denotes the set of points of Γ_0 distance *i* from *x*. Let $G = Fi'_{24}$. Now *G* acts flag transitively on Γ and so, in studying \mathcal{G} , there is no loss in choosing and fixing a point *a* of Γ . Here we shall obtain properties of the first three discs of \mathcal{G} around *a* (that is, of $\Delta_1(a), \Delta_2(a)$ and $\Delta_3(a)$) as well as describing a certain fragment of $\Delta_4(a)$. In a subsequent paper [16], a complete description of \mathcal{G} is obtained - however the work in [16] is exclusively computer based, whereas this paper does not rely on any machine calculations. It is worth remarking that the notation and conventions used here and in [16] are compatible so as to allow a smooth transition between the two viewpoints. Earlier in [17], the second author obtained results on the structure of the first three discs of \mathcal{G} . The arguments given here will differ to some extent from those in [17] as we may now call upon results in [12, 13] and [14]. Further we are able to give more detail on adjacency within $\Delta_3(a)$.

We now present our main results - for notation we refer the reader to Section 2.

Theorem 1. (i) $\Delta_1(a)$ is a G_a -orbit of size 1518;

(ii) $\Delta_2(a)$ is the union of three G_a -orbits $\Delta_2^i(a)$ (i = 1, 2, 3) and $|\Delta_2(a)| = 1,560,504;$

(iii) $\Delta_3(a)$ is the union of ten G_a -orbits $\Delta_3^i(a)$ (i = 1, ..., 10) and $|\Delta_3(a)| = 1, 400, 874, 432$; and

(iv) $\Delta_4(a) \cap \{x \in \Gamma_0 | \Omega_x \cap \Omega_a \neq \emptyset\}$ is the union of six G_a -orbits $\Delta_4^i(a)$ (*i* = 1, ..., 6) and consists of 3, 992, 911, 872 points. Tables 1 and 2 list the sizes of the above mentioned G_a -orbits $\Delta^i_j(a)$.

$\Delta^{i}_{j}(a)$	Size of $\Delta^i_j(a)$
$\Delta_1(a)$	2.3.11.23 = 1518
$\Delta_2^1(a)$	$2^{5}.3.7.11.23 = 170,016$
$\Delta_2^2(a)$	$2^8.3.7.11.23 = 1, 360, 128$
$\Delta_2^3(a)$	$2^3.3.5.11.23 = 30,360$
$\Delta_3^1(a)$	$2^{12}.11.23 = 1,036,288$
$\Delta_3^2(a)$	$2^{10}.3^2.5.11.23 = 11,658,240$
$\Delta_3^3(a)$	2^{12} .3.7.11.23 = 21, 762, 048
$\Delta_3^4(a)$	$2^{12}.3.23 = 282, 624$
$\Delta_3^5(a)$	$2^{15}.3^2.7.11.23 = 522, 289, 152$
$\Delta_3^6(a)$	2^{12} .3.5.7.11.23 = 108, 810, 240
$\Delta_3^7(a)$	$2^9.3^2.5.7.11.23 = 40, 803, 840$
$\Delta_3^8(a)$	$2^{6}.5.7.11.23 = 566, 720$
$\Delta_3^9(a)$	$2^{13}.3^2.5.7.11.23 = 652, 861, 440$
$\Delta_3^{10}(a)$	$2^9.3^2.5.7.11.23 = 40, 803, 840$

Table 1

$\Delta^{i}_{\ j}(a)$	Size of $\Delta^i_j(a)$
$\Delta_4^{l}(a)$	$2^{16}.3^2.5.11.23 = 746, 127, 360$
$\Delta_4^2(a)$	$2^{15}.3.11.23 = 24, 870, 912$
$\Delta_4^3(a)$	$2^{15} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 23 = 870, 481, 920$
$\Delta_4^4(a)$	$2^{19}.3^2.7.23 = 759, 693, 312$
$\Delta_4^5(a)$	$2^{18}.3.11.23 = 198, 967, 296$
$\Delta_4^6(a)$	2^{18} .3.7.11.23 = 1, 392, 771, 072

Table 2

Theorem 2. Let $x \in \Delta_1(a)$. Then $G_{ax} \sim 2^{10} \cdot 2^4 : A_8$ (with $G_{ax}^{*x} = (G_{ax}^{*x})_{x+a} \sim 2^4 : A_8$, an octad stabilizer) has 4 orbits on $\Gamma_1(x)$ with point distribution as follows:

Orbit	Size	$Point\ distribution$
$\{x + a\}$	1	$\{a\}2\Delta_1$
$\alpha_0(x,x+a)$	30	$\Delta_1 2 \Delta_2^3$
$\alpha_2(x, x+a)$	448	$\Delta_1 2 \Delta_2^2$
$\alpha_4(x,x+a)$	280	$\Delta_1 2 \Delta_2^1$

Theorem 3. Let $x \in \Delta_2^1(a)$. Then $G_{ax} \sim 2^7 \cdot 2^6 : (3 \times S_5)$ (with $G_{ax}^{*x} = Stab_{G_x^{*x}} \{\Lambda_1, \Lambda_2\} \sim 2^6 : (3 \times S_5)$, where $\Lambda_1 = \Omega_a \cap \Omega_x$ is a tetrad and Λ_2 is the unique sextet of Ω_x containing Λ_1). Also $G_{ax} \leq G_{aX}$, where X is the unique hyperplane incident with both a and x. Further, G_{ax} has 6 orbits on $\Gamma_1(x)$ with point distribution as follows:

Orbit	Size	Point distribution
$\alpha_{4,4^2}^{}(x,\Lambda_1,\Lambda_2)$	5	$\Delta_1 2 \Delta_2^1$
$\alpha_{0,4^2}(x,\Lambda_1,\Lambda_2)$	10	$\Delta_2^1 2 \Delta_3^8$
$\alpha_{1,31^5}(x, \Lambda_1, \Lambda_2)$	320	$\Delta_2^1 2 \Delta_3^6$
$\alpha_{2,2^4}(x,\Lambda_1,\Lambda_2)$	240	$\Delta_2^1 2 \Delta_3^2$
$\alpha_{0,2^4}(x,\Lambda_1,\Lambda_2)$	120	$\Delta_2^1 2 \Delta_3^7$
$\alpha_{3,31^5}(x, \Lambda_1, \Lambda_2)$	64	$\Delta_2^1 2 \Delta_3^1$

Theorem 4. Let $x \in \Delta_2^2(a)$. Then $G_{ax} \sim 2^5 \cdot 2^4 : S_6$, $|\{a, x\}^{\perp}| = 1$ and $G_{ax}^{*x} = Stab_{G_x^{*x}}\{\Lambda_1, \Lambda_2\} \sim 2^4 : S_6$, where Λ_1 is the octad of Ω_x corresponding to x + b (where $b = \{a, x\}^{\perp}$) and $\Lambda_2 = \Omega_2 \cap \Omega_b \cap \Omega_x$, a duad contained in Λ_1 . The number of G_{ax} -orbits on $\Gamma_1(x)$ is 8 with point distribution as follows:

Orbit	Size	Point distribution
$\alpha_{8,2}(x,\Lambda_1,\Lambda_2)=\{x+b\}$	1	$\Delta_1 2 \Delta_2^2$
$\alpha_{2,2}(x, \Lambda_1, \Lambda_2)$	16	$\Delta_2^2\Delta_3^3\Delta_3^4$
$\alpha_{4,2}(x, \Lambda_1, \Lambda_2)$	60	$\Delta_2^2 2 \Delta_3^2$
$\alpha_{4,1}(x, \Lambda_1, \Lambda_2)$	160	$\Delta_2^2 2 \Delta_3^6$
$\alpha_{2,1}(x, \Lambda_1, \Lambda_2)$	192	$\Delta_2^2 2 \Delta_3^5$
$\alpha_{4,0}(x, \Lambda_1, \Lambda_2)$	60	$\Delta_2^2 2 \Delta_3^{10}$
$\alpha_{2,0}(x, \Lambda_1, \Lambda_2)$	240	$\Delta_2^2 2 \Delta_3^9$
$\alpha_{0,0}(x, \Lambda_1, \Lambda_2)$	30	$\Delta_2^2 2 \Delta_3^7$

Theorem 5. Let $x \in \Delta_2^3(a)$. Then $G_{ax} \sim 2^9 \cdot 2^6 : (L_3(2) \times 3)$ and $G_{ax}^{*x} \sim 2^6 : (L_3(2) \times 3)$, the derived subgroup of $\operatorname{Stab}_{G_x^{*x}} \{\Lambda_1\}$, where Λ_1 is a trio of Ω_x . Also $G_{ax} \leq G_{a\pi}$, where π is the unique plane incident with both a and x. The number of G_{ax} -orbits on $\Gamma_1(x)$ is 3 with point distribution as follows:

Orbit	Size	Point distribution
$\alpha_{80^2}(x, \Lambda_1)$	3	$\Delta_1 2 \Delta_2^3$
$\alpha_{4^2}(x,\Lambda_1)$	84	$\Delta_2^3 2 \Delta_3^8$
$\alpha_{42^2}(x, \Lambda_1)$	672	$\Delta_2^3 2 \Delta_3^{10}$

Now we move onto $\Delta_3(a)$ the third disc of a; we caution that in the following results the point distribution is incomplete.

Theorem 6. Let $x \in \Delta_3^1(a)$. Then $G_{ax} \sim 2^2 L_3(4) : S_3$ and $G_{ax}^{*x} = Stab_{G_x^{*x}} \{\Lambda_1\} \sim L_3(4) : S_3$, where Λ_1 is a triad of Ω_x . The number of G_{ax} -orbits on $\Gamma_1(x)$ is 4, the point distribution of 3 of them are as follows:

Orbit	Size	Point distribution
$\alpha_3(x, \Lambda_1)$	21	$\Delta_2^1 2 \Delta_3^1$
$\alpha_2(x, \Lambda_1)$	168	$\Delta^{\!1}_3 2 \Delta^{\!3}_3$
$\alpha_1(x, \Lambda_1)$	360	$\Delta_3^1 2 \Delta_4^1$

Theorem 7. Let $x \in \Delta_3^2(a)$. Then $G_{ax} \sim 2^4 \cdot 2^3 : (L_3(2) \times 2)$ and $G_{ax}^{*x} = Stab_{G_x^{*x}} \{\Lambda_1, \Lambda_2\} \sim 2^3 : (L_3(2) \times 2)$, where Λ_1 is an octad and Λ_2 is a duad of Ω_x and $\Lambda_1 \cap \Lambda_2 = 0$. The number of G_{ax} -orbits on $\Gamma_1(x)$ is 11, the point distribution of 6 of them are as follows:

Orbit	Size	Point distribution
$\alpha_{0,2}(x, \Lambda_1, \Lambda_2)$	7	$\Delta_2^1 2 \Delta_3^2$
$\alpha_{0,1}(x, \Lambda_1, \Lambda_2)$	16	$\Delta_3^2 2 \Delta_4^2$
$\alpha_{4,2}(x, \Lambda_1, \Lambda_2)$	14	$\Delta_2^2 2 \Delta_3^2$
$\alpha_{2,2}(x, \Lambda_1, \Lambda_2)$	56	$\Delta_3^2 2 \Delta_3^3$
$\alpha_{4,1}(x, \Lambda_1, \Lambda_2)$	112	$\Delta_3^2 2 \Delta_4^3$
$\alpha_{2,1}(x, \Lambda_1, \Lambda_2)$	224	$\Delta_3^2 2 \Delta_4^1$

Theorem 8. Let $x \in \Delta_3^3(a)$. Then $G_{ax} \sim 2.2^4 : S_6$ and $G_{ax}^{*x} = Stab_{G_x^{*x}} \{\Lambda_1, \Lambda_2\} \sim 2^4 : S_6$, where Λ_1 is an octad and Λ_2 is a duad of Ω_x and $\Lambda_2 \subseteq \Lambda_1$. The number of G_{ax} -orbits on $\Gamma_1(x)$ is 8, the point distribution of 5 of them are as follows:

Orbit	Size	Point distribution
$\alpha_{8,2}(x,\Lambda_1,\Lambda_2)=\{\Lambda_1\}$	1	$\Delta_2^2\Delta_3^3\Delta_3^4$
$\alpha_{2,2}(x,\Lambda_1,\Lambda_2)$	16	$\Delta^1_3 2 \Delta^3_3$
$\alpha_{4,2}(x, \Lambda_1, \Lambda_2)$	60	$\Delta_3^2 2 \Delta_3^3$
$\alpha_{4,1}(x, \Lambda_1, \Lambda_2)$	160	$\Delta_3^3 2 \Delta_4^6$
$\alpha_{2,1}(x, \Lambda_1, \Lambda_2)$	192	$\Delta_3^3 2 \Delta_4^4$

Theorem 9. Let $x \in \Delta_3^4(a)$. Then $G_{ax} \sim 2.M_{22} : 2$ and $G_{ax}^{*x} = Stab_{G_x^{*x}} \{\Lambda_1\} \sim M_{22} : 2$, where Λ_1 is a duad of Ω_x . The number of G_{ax} -orbits on $\Gamma_1(x)$ is 3, the point distribution of 2 of them are as follows:

Orbit	Size	Point distribution
$\alpha_2(x, \Lambda_1)$	77	$\Delta_2^2\Delta_3^3\Delta_3^4$
$\alpha_1(x, \Lambda_1)$	352	$\Delta_3^4 2 \Delta_4^5$

Theorem 10. Let $x \in \Delta_3^5(a)$. Then $G_{ax} \cong G_{ax}^{*x} = Stab_{G_x^{*x}} \{\Lambda_1, \Lambda_2, \dots, \Lambda_n\}$

 Λ_3 ~ 2⁴ : A_5 , where $\Lambda_1 = O_1$, $\Lambda_2 = \{\infty\}$, and $\Lambda_3 = \{14\}$. The number of G_{ax} -orbits on $\Gamma_1(x)$ is 13, the point distribution of 9 of them are as follows:

Orbit	Size	Point distribution
$\alpha_{8,1,1}(x,\Lambda_1,\Lambda_2,\Lambda_3)=\{O_1\}$	1	$\Delta_2^2 2 \Delta_3^5$
$\alpha_{2,1,1}(x,\Lambda_1,\Lambda_2,\Lambda_3)$	16	$\Delta_3^5\Delta_4^4\Delta_4^5$
$\alpha^{(1)}_{4,1,0}(x,\Lambda_1,\Lambda_2,\Lambda_3)$	40	$\Delta_3^5 2 \Delta_4^3$
$\alpha^{(2)}_{4,1,0}(x,\Lambda_1,\Lambda_2,\Lambda_3)$	40	$\Delta_3^5\Delta_4^5\Delta_4^6$
$\alpha^{(1)}_{4,0,1}(x,\Lambda_1,\Lambda_2,\Lambda_3)$	40	$\Delta_3^5 2 \Delta_4^3$
$\alpha^{(2)}_{4,0,1}(x,\Lambda_1,\Lambda_2,\Lambda_3)$	40	$\Delta_3^5\Delta_4^5\Delta_4^6$
$\alpha_{4,1,1}(x, \Lambda_1, \Lambda_2, \Lambda_3)$	60	$\Delta_3^5\Delta_4^1\Delta_4^3$
$\alpha_{2,1,0}(x,\Lambda_1,\Lambda_2,\Lambda_3)$	96	$2\Delta_3^5\Delta_4^6$
$\alpha_{2,0,1}(x,\Lambda_1,\Lambda_2,\Lambda_3)$	96	$2\Delta_3^5\Delta_4^6$

Theorem 11. Let $x \in \Delta_3^6(a)$. Then $G_{ax} \sim [2^6]: 3.S_4$ and $G_{ax}^{*x} = Stab_{G_x^{*x}} \{\Lambda_1, \Lambda_2, \Lambda_3\} \sim 2^4: 3.S_4$, where Λ_1 is an octad of Ω_x, Λ_2 a tetrad contained in Λ_1 and Λ_3 a 1-element subset of Λ_2 . The number of G_{ax} -orbits on $\Gamma_1(x)$ is 16, the point distribution of 7 of them are as follows:

Orbit	Size	Point distribution
$\{\Lambda_1\}$	1	$\Delta_2^1 2 \Delta_3^6$
$\alpha_{4,4,1}(x,\Lambda_1,\Lambda_2,\Lambda_3)$	4	$\Delta_2^2 2 \Delta_3^6$
$\alpha_{4,1,1}(x, \Lambda_1, \Lambda_2, \Lambda_3)$	16	$\Delta_3^6\Delta_4^2\Delta_4^3$
$\alpha_{2,2,1}(x,\Lambda_1,\Lambda_2,\Lambda_3)$	48	$\Delta_3^6 2 \Delta_4^3$
$\alpha_{4,3,1}(x,\Lambda_1,\Lambda_2,\Lambda_3)$	48	$\Delta_3^6 2 \Delta_4^1$
$\alpha_{2,1,1}(x,\Lambda_1,\Lambda_2,\Lambda_3)$	64	$\Delta_3^6\Delta_4^5\Delta_4^6$
$\alpha_{4,2,1}(x,\Lambda_1,\Lambda_2,\Lambda_3)$	72	$\Delta_3^6 2 \Delta_4^1$

Theorem 12. (i) Let $x \in \Delta_3^7(a)$. Then $G_{ax} \sim [2^9].S_4$ and $G_{ax}^{*x} = Stab_{G_x^{*x}} \{\Lambda_1, \Lambda_2, \Lambda_3\} \sim [2^6].S_4$, where $\Lambda_1 = O_1, \Lambda_2 = O_2$, and Λ_3 is the partition of O_1 given by $\{\infty, 14\}, \{0, 8\}, \{3, 20\}, \{15, 18\}$. The point distribution of 3 of the G_{ax} -orbits on $\Gamma_1(x)$ are as follows:

Orbit	Size	Point distribution
$\boldsymbol{\alpha}_{8,0,2^4}(\boldsymbol{x},\boldsymbol{\Lambda}_1,\boldsymbol{\Lambda}_2,\boldsymbol{\Lambda}_3)$	1	$\Delta_2^1 2 \Delta_3^7$
$\boldsymbol{\alpha}_{0,8,0^4}(\boldsymbol{x},\boldsymbol{\Lambda}_1,\boldsymbol{\Lambda}_2,\boldsymbol{\Lambda}_3)$	1	$\Delta_2^2 2 \Delta_3^7$
$\alpha_{0,0,0^4}(x, \Lambda_1, \Lambda_2, \Lambda_3)$	1	$\Delta_2^2 2 \Delta_3^7$

(ii) For $x \in \Delta_3^8(a)$, $G_{ax} \sim [2^{13}] \cdot 3 \cdot 3^2 : 4$ and $G_{ax}^{*x} = Stab_{G_x^{*x}} \{\Lambda_1, \Lambda_2, \Lambda_3\}$

~ $2^{6}.3.3^{2}: 4$, where $\Lambda_{1} = S_{0}, \Lambda_{2} = \{\infty, 14, 0, 8, 3, 20, 15, 18, 17, 4, 16, 10\}$, and $\Lambda_{3} = \Omega_{x} \setminus \Lambda_{2}$. The point distribution of 3 of the G_{ax} -orbits on $\Gamma_{1}(x)$ are as follows:

Orbit	Size	Point distribution
$\alpha_{4^2,8,0}^{}(x,\Lambda_1,\Lambda_2,\Lambda_3)$	3	$\Delta_2^3 2 \Delta_3^8$
$\alpha_{4^2,0,8}^{}(x,\Lambda_1,\Lambda_2,\Lambda_3)$	3	$\Delta_2^3 2 \Delta_3^8$
$\alpha_{4^2,4,4}^{}(x,\Lambda_1,\Lambda_2,\Lambda_3)$	9	$\Delta_2^1 2 \Delta_3^8$

(iii) For $x \in \Delta_3^9(a)$, $G_{ax} \cong G_{ax}^{*x} = Stab_{G_x^{*x}} \{\Lambda_1, \Lambda_2, \Lambda_3, \Lambda_4\} \sim 2.2^4 : S_4$, where $\Lambda_1 = O_1$, $\Lambda_2 = O_2$, $\Lambda_3 = O_3$, and $\Lambda_4 = \{\infty, 14\}$. The point distribution of the G_{ax} -orbit $\alpha_{8,0,0,2}(x, \Lambda_1, \Lambda_2, \Lambda_3, \Lambda_4)$ is $\Delta_2^2 2 \Delta_3^9$.

(iv) For
$$x \in \Delta_3^{10}(a)$$
, $G_{ax} \sim [2^9] \cdot S_4$ and $G_{ax}^{*x} = Stab_{G_x^{*x}} \{\Lambda_1, \Lambda_2, \Lambda_3\}$

~ $[2^5].S_4$, where Λ_1 is the tetrad { ∞ , 0, 3, 15}, Λ_2 is the duad {14, 8}, and Λ_3 is the duad {20, 18}. The point distributions of 2 of the G_{ax} -orbits on $\Gamma_1(x)$ are as follows:

Orbit	Size	Point distribution
$\alpha_{4,2,2}(x, \Lambda_1, \Lambda_2, \Lambda_3)$	1	$\Delta_2^3 2 \Delta_3^{10}$
$\alpha_{4,0,0}(x, \Lambda_1, \Lambda_2, \Lambda_3)$	4	$\Delta_2^2 2 \Delta_3^{10}$

Theorem 13. (i) For $x \in \Delta_4^1(a)$, $G_{ax} \sim 2.L_3(2).2$, and $G_{ax}^{*x} \sim L_3(2).2$.

- (ii) For $x \in \Delta_4^2(a)$, $G_{ax} \cong G_{ax}^{*x} \cong A_8$.
- (iii) For $x \in \Delta_4^3(a)$, $G_{ax} \cong G_{ax}^{*x} \sim 2^6 \cdot 3^2$.
- (iv) For $x \in \Delta_4^4(a)$, $G_{ax} \cong G_{ax}^{*x} \cong L_2(11)$.
- (v) For $x \in \Delta_4^5(a)$, $G_{ax} \cong G_{ax}^{*x} \cong A_7$.
- (vi) For $x \in \Delta_4^6(a)$, $G_{ax} \cong G_{ax}^{*x} \sim (3 \times A_5).2$.

Since, for $t \in \Omega_a$, $G_{ax} = G_{ax}^t$ for all $x \in \Delta_4^i(a)$ (i = 1, ..., 6), the point distributions given in Theorems 11-16 of [12] may be directly translated to give the point distributions for G_{ax} -orbits on $\Gamma_1(x)$ of those lines within Γ_0^t .

As mentioned earlier, in Section 2 we explain the notation we shall be using. Additionally, in (2.1), we summarize the properties we shall assume about Γ . In (2.2) we give the definition of the G_a -orbits $\Delta_i^j(x)$ (for $x \in \Gamma_0$). While Section 3 studies various properties of the point and hyperplane residues that we shall need to call upon later. Then Section 4 introduces, for X a hyperplane, the involutions $\tau(X)$ in G. These play an important part in many of our arguments, primarily because of Lemma 4.4. In Lemma 4.7 we quickly describe the first disc $\Delta_1(a)$. The second disc $\Delta_2(a)$ is examined in Section 5 with $\Delta_3(a)$ and part of $\Delta_4(a)$ being investigated in Sections 6 and 7.

We close this section by summarizing the collapsed adjacencies established in Theorems 1-13.

2. Notation and Γ

The maximal 2-local geometry Γ for $G = F'_{24}$ has rank 4 and we use Γ_i (i = 0, 1, 2, 3) to denote the objects of type *i* in Γ ; objects of type 0 (respectively, 1, 2, 3) will be referred to as points (respectively, lines, planes, hyperplanes). For $x \in \Gamma$, the residue of x, Γ_x , is defined to be $\{y \in \Gamma \mid x * y\}$, where * is the symmetric incidence relation of Γ . Also, for $x \in \Gamma$, we set

$$Q(x) = \{g \in G_x \mid g \text{ fixes all objects in } \Gamma_x\},\$$

and for $H \leq G_x$ we write H^{*x} for HQ(x)/Q(x). If $\Sigma \subseteq \Gamma$ and $i \in \{0, 1, 2, 3\}$, then we set $\Gamma_i(\Sigma) = \{x \in \Gamma_i \mid x * y \text{ for all } y \in \Sigma\}$. The point-line collinearity graph \mathcal{G} of Γ has Γ_0 as its vertex set and for $x, y \in \Gamma_0, x$ and y are adjacent in \mathcal{G} if they are collinear, that is if $\Gamma_1(x, y) \neq \emptyset$. For $x, y \in \Gamma_0$, put $\{x, y\}^{\perp} = \Delta_1(x) \cap \Delta_1(y)$. Also for $x \in \Gamma_0$, we define $Z_1(x) = \{g \in G \mid g \text{ fixes } \{x\} \cup \Delta_1(x) \text{ pointwise}\}$ - note that $Z_1(x) \leq G_x$.

We take as our starting point the following properties of Γ .

(2.1) (i) G acts flag transitively on Γ .

(ii) Γ is a string geometry.

(iii) For $\ell \in \Gamma_1$, $|\Gamma_0(\ell)| = 3$ and if $x, y \in \Gamma_0(\ell)$ with $x \neq y$, then $\Gamma_1(x, y) = \{\ell\}$.

(iv) For $x \in \Gamma_0$, $G_x \sim 2^{11} \cdot M_{24}$ with $Q(x) \cong 2^{11}$, the dual of the Golay code module and $G_x^{*x} \cong M_{24}$. Moreover, Γ_x is isomorphic to the M_{24} maximal 2-local geometry.

(v) For $X \in \Gamma_3$, $G_X \sim 2^{1+12}_+.3.U_4(3).2$ with $Q(X) \sim 2^{1+12}_+.3$, $Z(G_X) = Z(O_2(Q(X))) \cong 2$ and $G_X^{*X} \sim U_4(3).2$. Also, Γ_X is isomorphic to a geometry for $U_4(3).2$ which is a subgeometry of the unitary geometry for $U_6(2)$.

In (2.1) and elsewhere we follow the ubiquitous ATLAS [2] in describing group structures - it is also a convenient source for information about Fi'_{24} and subgroups of M_{24} and $U_4(3).2$. In the situation of (2.1) we shall frequently denote ℓ by x + y (to indicate we are viewing ℓ in Γ_x) or y + x (to indicate we are viewing ℓ in Γ_y). See Section 3 for further details on the residue geometry in (2.1) (v). Let $x \in \Gamma_0$ and let ℓ, π, X be, respectively, a line, plane and hyperplane in Γ_x . We remark that ℓ corresponds to an octad, π to a trio and X to a sextet (see [9] and [4]). For a further discussion of Γ_x and Γ_X , see Section 3. Other details of these geometries may be found in [6] and [17].

Before introducing an alternative way of viewing Γ we note, in passing, that $|\Gamma_0| = 2,503,413,946,215$ and that the permutation rank of *G* on Γ_0 is 120 [7].

Let \mathcal{T} denote the set of transpositions in Fi_{24} . It is a fact that a maximal set B of pairwise commuting transpositions has |B| = 24 and $Stab_G(B) \sim 2^{11} \cdot M_{24}$. Such a set is called a base in [2] and G is transitive on the set of bases. Since Fi'_{24} has only one conjugacy class of subgroups isomorphic to $2^{11} \cdot M_{24}$ we may identify Γ_0 with the set of bases in a way which is compatible with the G-action. For $x \in \Gamma_0$ we use Ω_x to denote the base identified with x. Now Ω_x carries a copy of the Steiner system S(24, 8, 5) preserved by $Stab_G(\Omega_x)$. Indeed an octad of Ω_x corresponds to a line in Γ_x (such an octad is contained in precisely three bases and incidence between points and lines corresponds to containment of bases and octads). Therefore $x, y \in \Gamma_0$ are adjacent in \mathcal{G} if and only if $\Omega_x \cap \Omega_y$ is an octad of both Ω_x and Ω_y .

For $t \in \mathcal{T}$ put $\Gamma_0^t = \{x \in \Gamma_0 | t \in \Omega_x\}$. So the points in Γ_0^t correspond to all the bases which contain the fixed transposition t. Also put $G^t = C_G(t)$. Then $G^t \cong Fi_{23}$ and Γ_0^t is the set of points of the Fi_{23} geometry scrutinized in [12], [13], [14] (see especially Section 1). Further, if \mathcal{G}^t denotes the point-line collinearity graph of this Fi_{23} geometry, then we see that for $x, y \in \Gamma_0^t, x$ and y are adjacent in \mathcal{G}^t if and only if x and y are adjacent in \mathcal{G} . This observation gives us access to a rich vein of geometric information from [12, 13, 14]. So, in studying \mathcal{G} , we may view Γ geometrically working within residues or regard Γ_0 as living in the world of transpositions. In our arguments we adopt whichever viewpoint is the most efficacious. We shall also frequently call upon data given in [15] and accordingly will denote result (i.j) in [15] by $\mathbf{O}(i.j)$. We carry along the notational conventions of [4]. So \mathcal{S}_0 and \mathcal{T}_0 denote the standard sextet and standard trio and O_1 , O_2 , O_3 are the heavy blocks of the MOG. Additionally we adapt the notation in [15] in the following manner. Let $x \in \Gamma_0$. In Γ_x the lines correspond to the octads of the M_{24} maximal 2-local geometry so to indicate we are working in Γ_x we write $\alpha_i(x, \Lambda_1)$ instead of just α_i (see $\mathbf{O}(2.1)$), with a similar convention for the other orbits itemized in [15].

(2.2) Let x be a point in Γ .

(i) $\Delta_2^1(x) = \{y \in \Gamma_0 | \text{ there exists } b \in \{x, y\}^{\perp} \text{ such that } b + y \in \alpha_4$ (b, b + x)}.

(ii) $\Delta_2^2(x) = \{y \in \Gamma_0 | \text{ there exists } b \in \{x, y\}^{\perp} \text{ such that } b + y \in \alpha_2$ (b, b + x)}.

(iii) $\Delta_2^3(x) = \{y \in \Gamma_0 | \text{ there exists } b \in \{x, y\}^{\perp} \text{ such that } b + y \in \alpha_0$ (b, b + x)}.

(iv) $\Delta_3^1(x) = \{ y \in \Gamma_0 | \text{ there exists } c \in \Delta_2^1(x) \cap \Delta_1(y) \text{ such that } c + y \in \alpha_{3,31^5}(c, \Omega_x \cap \Omega_c, \mathcal{S}_{cx}) \}.$

(v) $\Delta_3^2(x) = \{y \in \Gamma_0 | \text{ there exists } c \in \Delta_2^2(x) \cap \Delta_1(y) \text{ such that } c + y \in \alpha_{4,2}(c, c + b, \mathcal{D}_{cx}), \text{ where } \{b\} = \{x, c\}^{\perp}\}.$

(vi) $\Delta_3^3(x) = \{y \in \Gamma_0 | \text{ there exists } c \in \Delta_2^2(x) \cap \Delta_1(y) \text{ such that } c + y \in \alpha_{2,2}(c, c + b, \mathcal{D}_{cx}), \text{ where } \{b\} = \{x, c\}^{\perp} \text{ and for } t \in \mathcal{D}_{cx}, c \text{ is the unique point in } \Gamma_0^t \cap \Delta_2^2(x) \cap \Delta_1(y)\}.$

(vii) $\Delta_3^4(x) = \{y \in \Gamma_0 | \text{ there exists } c \in \Delta_2^2(x) \cap \Delta_1(y) \text{ such that}$ $c + y \in \alpha_{2,2}(c, c + b, \mathcal{D}_{cx}), \text{ where } \{b\} = \{x, c\}^{\perp} \text{ and for } t \in \mathcal{D}_{cx}, \text{ there are}$ 77 points in $\Gamma_0^t \cap \Delta_2^2(x) \cap \Delta_1(y)\}.$

(viii) $\Delta_3^5(x) = \{y \in \Gamma_0 | \text{ there exists } c \in \Delta_2^2(x) \cap \Delta_1(y) \text{ such that } c + y \in \alpha_{2,1}(c, c + b, \mathcal{D}_{cx}), \text{ where } \{b\} = \{x, c\}^{\perp}\}.$

(ix) $\Delta_3^6(x) = \{y \in \Gamma_0 | \text{ there exists } c \in \Delta_2^2(x) \cap \Delta_1(y) \text{ such that}$ $c + y \in \alpha_{4,1}(c, c + b, \mathcal{D}_{cx}), \text{ where } \{b\} = \{x, c\}^{\perp}\}.$

(x) $\Delta_3^7(x) = \{y \in \Gamma_0 | \text{ there exists } c \in \Delta_2^1(x) \cap \Delta_1(y) \text{ such that } c + y \in \alpha_{0,2^4}(c, \Omega_x \cap \Omega_c, \mathcal{S}_{cx})\}.$

(xi) $\Delta_3^8(x) = \{y \in \Gamma_0 | \text{ there exists } c \in \Delta_2^3(x) \cap \Delta_1(y) \text{ such that } c + y \in \alpha_4(c, \mathcal{T}_{cx})\}.$

(xii) $\Delta_3^9(x) = \{y \in \Gamma_0 | \text{ there exists } c \in \Delta_2^2(x) \cap \Delta_1(y) \text{ such that}$ $c + y \in \alpha_{2,0}(c, c + b, \mathcal{D}_{cx}), \text{ where } \{b\} = \{x, c\}^{\perp}\}.$

(xiii) $\Delta_3^{10}(x) = \{y \in \Gamma_0 | \text{ there exists } c \in \Delta_2^3(x) \cap \Delta_1(y) \text{ such that } c + y \in \alpha_{42^2}(c, \mathcal{T}_{cx})\}.$

(xiv) $\Delta_4^1(x) = \{y \in \Gamma_0 | \text{ there exists } d \in \Delta_3^1(x) \cap \Delta_1(y) \text{ such that } d + y \in \alpha_1(d, \mathcal{T}_{dx}) \}.$

 $\begin{array}{ll} (\mathrm{xv}) \quad \Delta_4^2(x) = \{y \in \Gamma_0 | \quad \text{there exists} \quad d \in \Delta_3^2(x) \cap \Delta_1(y) \quad \text{such that} \\ d + y \in \alpha_{0,1}(d, \, \mathcal{O}_{dx}, \, \mathcal{D}_{dx}) \}. \end{array}$

(xvi) $\Delta_4^3(x) = \{y \in \Gamma_0 | \text{ there exists } d \in \Delta_3^2(x) \cap \Delta_1(y) \text{ such that} d + y \in \alpha_{4,1}(d, \mathcal{O}_{dx}, \mathcal{D}_{dx})\}.$

(xvii) $\Delta_4^4(x) = \{y \in \Gamma_0 | \text{ there exists } d \in \Delta_3^3(x) \cap \Delta_1(y) \text{ such that}$ $d + y \in \alpha_{2,1}(d, d + b, \mathcal{D}_{dx}), \text{ where } \{b\} = \Delta_1(d) \cap \Delta_2^2(x)\}.$

(xviii) $\Delta_4^5(x) = \{y \in \Gamma_0 | \text{ there exists } d \in \Delta_3^4(x) \cap \Delta_1(y) \text{ such that } d + y \in \alpha_1(d, \mathcal{D}_{dx}) \}.$

(xix) $\Delta_4^6(x) = \{y \in \Gamma_0 | \text{ there exists } d \in \Delta_3^3(x) \cap \Delta_1(y) \text{ such that}$ $d + y \in \alpha_{4,1}(d, d + b, \mathcal{D}_{dx}), \text{ where } \{b\} = \Delta_1(d) \cap \Delta_2^2(x)\}.$

In (2.2) the letters \mathcal{O} , \mathcal{D} , \mathcal{S} , \mathcal{T} (with appropriate subscripts) stand for, respectively, particular octads, duads, sextets and trios of certain bases. Their exact description will emerge later, and will tie in with the data given in [15].

Remark. In fact

$$\Delta_3^8(x) = \bigcup_{X \in \Gamma_3(x)} \Gamma_0(X) \cap \Delta_3(x).$$

See [17] for further details.

Let $x \in \Gamma_0$ and $t \in \Omega_x$. Set $\Delta_1(x)^t = \Delta_1(x) \cap \Gamma_0^t$ and for i = 1, 2, let $\Delta_2^i(x)^t = \Delta_2^i(x) \cap \Gamma_0^t$. For i = 1, ..., 6, we set

$$\Delta_3^i(x)^t = \Delta_3^i(x) \cap \Gamma_0^t,$$

and

$$\Delta_4^i(x)^t = \Delta_4^i(x) \cap \Gamma_0^t.$$

Further we put $Q(x)^t = Q(x) \cap G^t$. The above notation is set up so as $\Delta^i_j(x)^t$ corresponds to the $\Delta^i_j(x)$ as given in [12; (2.15)] for the point-line collinearity graph \mathcal{G}^t .

(2.3) Let $x \in \Gamma_0$.

(i)
$$\Delta_1(x) = \bigcup_{t \in \Omega_x} \Delta_1(x)^t, \ \Delta_2^i(x) = \bigcup_{t \in \Omega_x} \Delta_2^i(x)^t \ (i = 1, 2) \text{ and } \Delta_j^i(x) = \bigcup_{t \in \Omega_x} \Delta_j^i(x)^t \ (i = 1, ..., 6, j = 3, 4).$$

(ii) For each $t \in \Omega_x$, $Q(x) = Q(x)^t$.

(iii) $\Delta_1(x)$, $\Delta_2^1(x)$, $\Delta_2^2(x)$, $\Delta_3^i(x)$ and $\Delta_4^i(x)$ (i = 1, ..., 6) are all distinct G_x -orbits.

(iv) If $t \in \Omega_x$ and $y \in \Gamma_0^t$, then $[G_{xy} : G_{xy}^t] \le 24$.

Proof. Part (i) follows from (2.2) and (ii) holds because Q(x) centralizes all transpositions t in Ω_x . Since G_x acts transitively on the 24 transpositions in Ω_x and, by [12], $\Delta_1(x)^t$, $\Delta_2^1(x)^t$, $\Delta_2^2(x)^t$, $\Delta_3^i(x)^t$, $\Delta_4^i(x)^t$ are all G_x^t -orbits (of different sizes) we infer that (iii) holds. Because $|\Omega_x| = 24$ the G_{xy} -orbit of t can have size at most 24, whence we have (iv).

3. The Point and Hyperplane Residues

Recall that we shall employ the same notational conventions as in [15] for the subscripts of α . Suppose that $x \in \Gamma_0$, $\ell \in \Gamma_1(x)$ and $X \in \Gamma_3(x)$. By (2.1) we may identify ℓ with an octad of Ω_x and X with a sextet of Ω_x . So, for example, $\alpha_{4^2}(x, X)$ denotes the set of octads (lines) which cut the sextet X in 4^2 , and $\alpha_2(x, \ell)$ is the set of octads (lines) which intersect the octad ℓ in two elements. Also we define $\beta_0(x, X)$, $\beta_1(x, X)$, $\beta_3(x, X)$ to be the set of sextets of Ω_x (not equal to X) which have, respectively, exactly 0, 1 and 3 octads which are also incident with X. Additionally, we define the following subsets of $\Gamma_3(x)$:

$$\begin{split} \delta_{1}(x, \ \ell) &= \{ Y \in \Gamma_{3}(x) | \ \ell \in \alpha_{4^{2}}(x, \ Y) \}, \\ \delta_{2}(x, \ \ell) &= \{ Y \in \Gamma_{3}(x) | \ \ell \in \alpha_{2^{4}}(x, \ Y) \}, \\ \delta_{3}(x, \ \ell) &= \{ Y \in \Gamma_{3}(x) | \ \ell \in \alpha_{1^{5}3}(x, \ Y) \}. \end{split}$$

Lemma 3.1. Let $x \in \Gamma_0$, $\ell \in \Gamma_1(x)$ and $X \in \Gamma_3(x)$.

(i) The $G_{x\ell}$ -orbits on $\Gamma_1(x)$ are $\{\ell\}$, $\alpha_0(x, \ell)$, $\alpha_2(x, \ell)$ and $\alpha_4(x, \ell)$, where $|\alpha_0(x, \ell)| = 30$, $|\alpha_2(x, \ell)| = 448$, and $|\alpha_4(x, \ell)| = 280$.

(ii) The $G_{x\ell}$ -orbits on $\Gamma_3(x)$ are $\delta_1(x, \ell)$, $\delta_2(x, \ell)$ and $\delta_3(x, \ell)$, where $|\delta_1(x, \ell)| = 35$, $|\delta_2(x, \ell)| = 840$, and $|\delta_3(x, \ell)| = 896$.

Proof. See [3] or [4].

Lemma 3.2. Let $x \in \Gamma_0$ and $X \in \Gamma_3(x)$ (so in Γ_x , X may be identified with a sextet in Ω_x). Then the orbits of G_{xX} on $\Gamma_1(x)$ (the octads of Ω_x) are $\alpha_{4^2}(x, X), \alpha_{1^{5_3}}(x, X)$, and $\alpha_{2^4}(x, X)$. Moreover $|\alpha_{4^2}(x, X)| = 15$, $|\alpha_{1^{5_3}}(x, X)| = 384$, and $|\alpha_{2^4}(x, X)| = 360$.

Proof. Since $G_{xX}^{*x} \sim 2^6 : 3.S_6$, the stabilizer of the sextet X, this follows from [3].

Lemma 3.3. For $x \in \Gamma_0$ and $X \in \Gamma_3(x)$, the G_{xX} -orbits on $\Gamma_3(x)$ are $\{X\}, \beta_0(x, X), \beta_1(x, X), and \beta_3(x, X).$ Further $|\beta_0(x, X)| = 1440, |\beta_1(x, X)| = 240, and |\beta_3(x, X)| = 90.$

Proof. See [3].

Lemma 3.4. Let $x \in \Gamma_0$, and $X, Y \in \Gamma_3(x)$.

(i) Suppose $Y \in \beta_3(x, X)$. Of the fifteen octads in Ω_x incident with X, three are in $\alpha_{4^2}(x, Y)$ and twelve are in $\alpha_{2^4}(x, Y)$.

(ii) Suppose $Y \in \beta_1(x, X)$. Of the fifteen octads in Ω_x incident with X, one is in $\alpha_{4^2}(x, Y)$, six are in $\alpha_{2^4}(x, Y)$ and eight are in $\alpha_{1^{5_3}}(x, Y)$.

(iii) Suppose $Y \in \beta_0(x, X)$. Of the fifteen octads in Ω_x incident with X, seven are in $\alpha_{2^4}(x, Y)$ and eight are in $\alpha_{1^5_3}(x, Y)$.

Proof. Since G_x is transitive on $\Gamma_3(x)$ we may suppose X is the standard sextet. Then, in view of Lemma 3.2, for parts (i) (ii) and (iii), respectively we may take

	×	×	-	_	*	*		×	0	-	_	-	-
V	×	×	-	-	*	*	V _	o	×	+	+	+	+
1 =	0	0	+	+			, 1 =	0	×	*	*	*	*
	0	0	+	+				0	×				

and

	×	×	×	-	*	+	
V _	×	-	_	-	o		
<i>I</i> =	o	+	*		*	0	.
		*	+	0		+	

It is now straightforward to check the result.

Lemma 3.5. Let $x \in \Gamma_0$, $m \in \Gamma_1(x)$ and $X \in \Gamma_3(x)$. If $m \notin \Gamma_1(X)$, then there exists $Y \in \beta_3(x, X) \cup \{X\}$ such that $m \in \alpha_{15_3}(x, Y)$.

Proof. Since $m \notin \Gamma_1(X)$, $m \notin \alpha_{4^2}(x, X)$. Hence, by Lemma 3.2, $m \in \alpha_{1^{5_3}}(x, X) \cup \alpha_{2^4}(x, X)$. If $m \in \alpha_{1^{5_3}}(x, X)$, then we let Y = X. So now we assume that $m \in \alpha_{2^4}(x, X)$. Let t_1 and t_2 be tetrads of X such that $|t_1 \cap m| = 2$ and $|t_2 \cap m| = 0$. Now choose a tetrad t_3 such that $|t_3 \cap t_1| = |t_3 \cap t_2| = 2$ and $|t_3 \cap m| = 1$. Letting Y be the unique sextet containing t_3 , we have $Y \in \beta_3(x, X)$ and $m \in \alpha_{1^{5_3}}(x, Y)$, so proving the lemma. \Box

The balance of this section considers the hyperplane residue of Γ . Set $H = U_4(3).2 (\cong G_X^{*X})$ where $X \in \Gamma_3$. We consider H as a subgroup of $U_6(2)$, and let V denote the 6-dimensional GF(4) unitary module. Now there are 693 isotropic 1-subspaces of V (see [2]) and H has two orbits on these 1-spaces, say, \mathcal{P} and \mathcal{Q} with $|\mathcal{P}| = 567$ and $|\mathcal{Q}| = 126$. Of the 6237 isotropic 2-subspaces of V, 2835 of them have three 1-subspaces in \mathcal{P} and two 1-subspaces in \mathcal{Q} -denote this set by \mathcal{L} . Among the 891 isotropic 3-subspaces, 567 contain exactly one 1-subspace in \mathcal{Q} ; call this set \mathcal{R} . We define a geometry $\Lambda = \Lambda_0 \cup \Lambda_1 \cup \Lambda_2$ where $\Lambda_0 = \mathcal{P}, \Lambda_1 = \mathcal{L}$ and $\Lambda_2 = \mathcal{R}$, where incidence is symmetrized inclusion. This geometry is an example of a GAB (see [6]) and we have

Lemma 3.6. For $X \in \Gamma_3$, Γ_X is isomorphic to Λ .

Our next result lists some properties of Λ we shall require later on.

Lemma 3.7. Let $x \in \Lambda_0$.

(i) The H_x -orbits on Λ_0 are $D_1(x)$, $D_2^1(x)$, $D_2^2(x)$ and $D_3^1(x)$, where $|D_1(x)| = 30$, $|D_2^1(x)| = 120$, $|D_2^2(x)| = 96$, and $|D_3^1(x)| = 320$.

(ii) The point-line collinearity graph of Λ is as follows

(iii) We have $H_x \sim 2^4 S_6$ with $O_2(H) \cong 2^4$.

(iv) If $g \in O_2(H_x)$, $g \neq 1$, then g interchanges $\Lambda_0(\ell) / \{x\}$ for 8 lines ℓ incident with x and fixes $\Lambda_0(\ell)$ for the other 7 lines incident with x.

Proof. See either [6], [8] or Section 3 of [17].

4. Involutions

In this section, we explore the combinatorial relationship between G and the residue geometries as it relates to the action of G on Γ .

Lemma 4.1. Let $x \in \Gamma_0$ and $X \in \Gamma_3(x)$. Then

(i) $Q(x) \cap Q(X) \cong 2^7$ and $Q(x)^{*X} (\cong 2^4) \trianglelefteq G_{xX}^{*X} \sim 2^4 . S_6$; and

(ii) $Z_1(x) = 1$.

Proof. First we note that $Q(x) \leq Q(X)$. For $Q(x) \leq Q(X)$ gives, by (2.1)(v), $Q(x) \leq O_2(Q(X)) \cong 2^{1+12}_+$. Since Q(x) is elementary abelian of order 2^{11} , this is impossible. So $1 \neq Q(x)^{*X} \leq G^{*X}_{xX} \cong 2^4 S_6$, using Lemma 3.7(iii). Since the 2^4 is an irreducible S_6 -module we must have $Q(x)^{*X} \cong 2^4$. Hence $Q(x) \cap Q(X) \cong 2^7$ and part (i) holds.

Since Q(x) is an irreducible G_x -module and $Z_1(x) \leq G_x$, either $Z_1(x) = 1$ or $Z_1(x) = Q(x)$. If $Z_1(x) = Q(x)$, then $Z_1(x)^{*X} = O_2(G_{xX}^{*X})$ by part (i). However, from Lemma 3.7(iv), every non-trivial element of $O_2(G_{xX}^{*X})$ moves some point in $\Gamma_X \cap \Delta_1(x)$ whereas $Z_1(x)$ fixes all points in $\Delta_1(x)$ by definition, a contradiction. Thus $Z_1(x) = 1$.

For $X \in \Gamma_3$, we use $\tau(X)$ to denote the involution in $Z(G_X)$; recall that $|Z(G_X)| = 2$ by (2.1)(v). Now let $x \in \Gamma_0(X)$. In Γ_x we may identify X with a sextet (of Ω_x) whose tetrads are T_1, \ldots, T_6 , and we have, for each $i \in \{1, \ldots, 6\}$,

$$\tau(X) = \prod_{t \in T_i} t.$$

(We note that $\tau(X)$ is a tetra-transposition in the language of [2; p207].) Also observe, as $C_G(\tau(X)) = G_X$, for $X, Y \in \Gamma_3, \tau(X) = \tau(Y)$ if and only if X = Y.

Let $x \in \Gamma_0$. In Ω_x consider a duad (that is, a 2-element subset), say $D = \{t_1, t_2\}$. Then $\delta(D) = t_1 t_2$ is referred to as a bi-transposition in [2]. Every involution in G is conjugate in G to either $\tau(X)$ or $\delta(D)$.

Lemma 4.2. Let $x \in \Gamma_0$, $X \in \Gamma_3(x)$ and D be a duad of Ω_x . Then

(i)
$$\tau(X), \ \delta(D) \in Q(x);$$

(ii) $C_G(\tau(X)) \sim 2^{1+12}_+.3 \cdot U_4(3).2, \ C_G(\delta(D)) \sim 2 \cdot F_{22} : 2; \ and$
(iii) $Q(x) \setminus \{1\} = \tau(X)^{G_x} \cup \delta(D)^{G_x} \ with | \tau(X)^{G_x} | = 1771 \ and | \delta(D)^{G_x} | = 276.$

Proof. The definitions of $\tau(X)$, $\delta(D)$ and (2.1)(iv), (v) give part (i). For part (ii), see [2]. Part (iii) follows from the definition of $\tau(X)$, $\delta(D)$ and properties of the Golay co-code.

Our next lemma concerns sextet lines whose definition we recall. For $x \in \Gamma_0$, let $X_1, X_2, X_3 \in \Gamma_3(x)$, if for all $i, j, 1 \le i < j \le 3$, we have $X_i \in \beta_3(x, X_j)$, then $\{X_1, X_2, X_3\}$ is called a sextet line of Ω_x .

Lemma 4.3. Suppose that $x \in \Gamma_0$ and $\{X_1, X_2, X_3\}$ is a sextet line of Ω_x . Then $\tau(X_1)\tau(X_2) = \tau(X_3)$.

Proof. Since, for $X \in \Gamma_3$,

$$\tau(X) = \prod_{t \in T} t,$$

for any tetrad *T* of *X*, the lemma follows immediately.

Lemma 4.4. Let $x \in \Gamma_0$, $\ell \in \Gamma_1(x)$ and $X \in \Gamma_3(x)$. Then $\tau(X)$ interchanges the points in $\Gamma_0(\ell) \setminus \{x\}$ if and only if $\ell \in \alpha_{153}(x, X)$.

Proof. Since G_x is transitive on $\Gamma_3(x)$ we may in Γ_x , without loss of generality, suppose X is the standard sextet. Now let Y be the sextet

×	o	_	_	-	_
0	×	+	+	+	+
0	×	*	*	*	*
0	×				

By Lemma 3.4(ii), of the 15 octads incident with Y, one is in $\alpha_{4^2}(x, X)$, eight are in $\alpha_{1^{5_3}}(x, X)$ and six are in $\alpha_{2^4}(x, X)$. Since $\tau(X) \in Z(G_{xX})$, if $\tau(X)$ fixes $\Gamma_0(\ell)$ (point-wise) for some $\ell \in \alpha_{4^2}(x, X)$ (respectively, $\alpha_{1^{5_3}}(x, X)$, $\alpha_{2^4}(x, X)$), then, by Lemma 3.2 $\tau(X)$ fixes $\Gamma_0(\ell)$ (point-wise)) for all $\ell \in \alpha_{4^2}(x, X)$ (respectively, $\alpha_{1^{5_3}}(x, X)$, $\alpha_{2^4}(x, X)$). Because G_x is transitive on $\Gamma_3(x)$ and, by Lemma 4.1(ii), $Z_1(x) = 1$, $\tau(X)^{*Y} \neq 1$. So, by Lemmas 4.1(i) and 4.2(i), $1 \neq \tau(X)^{*Y} \in Q(x)^{*Y} = O_2(G_{xY}^{*Y})$. Then $\tau(X)^{*Y}$ (and $\tau(X)$) fixes $\Gamma_0(\ell)$ (point-wise) for exactly 7 of the lines $\ell \in \Gamma_1(x, Y)$ by Lemma 3.7(iv). Therefore $\tau(X)$ interchanges the points in $\Gamma_0(\ell) \setminus \{x\}$ only when $\ell \in \alpha_{1^{5_3}}(x, X)$.

Lemma 4.5. Let $x \in \Gamma_0$ and $X, Y \in \Gamma_3(x)$ with $X \neq Y$. Then $Y \in \beta_3(x, X)$ if and only if $\tau(Y) \in Q(X)$.

Proof. If $Y \in \beta_0(x, X) \cup \beta_1(x, X)$, then there exists $\ell \in \alpha_{1^{5_3}}(x, Y)$ by consulting the MOG in [4], and so, by Lemma 4.4, $\tau(Y)$ does not fix $\Gamma_0(\ell)$ point-wise. Therefore $\tau(Y) \notin Q(X)$. While if $Y \in \beta_3(x, X)$, then $\Gamma_1(x, X) \subseteq \alpha_{4^2}(x, Y) \cup \alpha_{2^4}(x, Y)$ and hence $\tau(Y)$ fixes $\Gamma_0(\ell)$ point-wise for all $\ell \in \Gamma_1(x, X)$ by Lemma 4.4. Since, by Lemmas 4.1(i) and 4.2(i), $\tau(Y)^{*X} \in Q(x)^{*X} = O_2(G_{xX}^{*X})$, Lemma 3.7(iv) implies $\tau(Y)^{*X} = 1$. So $\tau(Y) \in Q(X)$ as desired. **Lemma 4.6.** Let x, y, z be distinct points of Γ_0 such that $\{x, y, z\}$ is a triangle in \mathcal{G} . Then $z \in \Gamma_0(x + y)$ (or, in other words, $\{x, y, z\} = \Gamma_0(\ell)$ for some $\ell \in \Gamma_1$).

Proof. We have that $\Omega_x \cap \Omega_y$ and $\Omega_z \cap \Omega_y$ are octads in Ω_y . Let $t \in \Omega_x \cap \Omega_z$. Then t centralizes the transpositions in $\Omega_x \cap \Omega_y$ and $\Omega_z \cap \Omega_y$ and so either $\Omega_x \cap \Omega_y = \Omega_z \cap \Omega_y$ or $t \in \Omega_y$. In either case we get $\Omega_x \cap \Omega_y = \Omega_y \cap \Omega_z = \Omega_x \cap \Omega_z$.

Lemma 4.7. (i) $|\Delta_1(a)| = 1518 = 2.3.11.23;$

(ii) $\Delta_1(a)$ is a G_a -orbit; and

(iii) if $x \in \Delta_1(a)$, then $G_{ax} \sim 2^{10} \cdot 2^4 : A_8$ (with $G_{ax}^{*x} = G_{xx+a}^{*x}$, an octad stabilizer).

Proof. (i) Since $|\Gamma_0(\ell) \setminus \{a\}| = 2$ for any $\ell \in \Gamma_1(x)$, $|\Delta_1(a)| = 2|\Gamma_1(a)| = 1518$.

(ii) For $\ell \in \Gamma_1(a)$ we can find $X \in \Gamma_3(a)$ such that $\ell \in \alpha_{1^{5_3}}(a, X)$. Hence by Lemma 4.4, Q(a) is transitive on $\Gamma_0(\ell) \setminus \{a\}$. Since G_a is transitive on $\Gamma_1(a)$, (ii) holds.

(iii) We have $G_{ax} \leq G_{xx+a}$ because x + a is the unique line in $\Gamma_1(a, x)$ and $[G_{xx+a} : G_{ax}] \leq 2$ as $|\Gamma_0(x+a) \setminus \{x\}| = 2$. Hence as Q(a) is transitive on $|\Gamma_0(x+a) \setminus \{x\}$ we obtain (iii).

Combining Lemma 4.7 and $\mathbf{O}(2.1)$ with the definitions of $\Delta_2^1(a)$, $\Delta_2^2(a)$, and $\Delta_2^3(a)$ given in (2.2) we obtain Theorem 2.

Lemma 4.8. Let $y \in \Delta_1(x)$ where $x \in \Gamma_0$. Then

- (i) $|Q(x) \cap Q(y)| = 2^6$; and
- (ii) for $X \in \Gamma_3(x)$, $\tau(X) \in Q(y)$, if and only if $X \in \Gamma_3(y)$.

Proof. Since $O_2(G_{xy}^{*y})$ is an irreducible 4-dimensional A_8 -module over GF(2), $Q(x)_y^{*y} = 1$ or $O_2(G_{xy})^{*y}$. Suppose $Q(x)_y^{*y} = 1$ and so $Q(x)_y = Q(x) \cap Q(y)$. Let $X \in \Gamma_3(x)$ with $x + y \in \alpha_{2^4}(x, X)$. Then $\tau(X) \in Q(x)_y \subseteq Q(y)$. Therefore,

$$|Q(y)| \ge 1771 + 840 = 2611$$

by Lemma 3.1(ii). This contradicts $|Q(y)| = 2^{11}$ from (2.1)(iv). So $|Q(x)_y^{*b}| = 2^4$ and then part (i) follows from Lemma 4.7(iii). For part (ii), if $X \in \Gamma_3(y)$ then $\tau(X) \in Q(y)$ by Lemma 4.2(i). Suppose that $X \notin \Gamma_3(y)$ and $\tau(X) \in Q(y)$. Since $x + y \notin \Gamma_1(X)$, we then have $x + y \in \alpha_{2^4}(x, X)$ $\bigcup \alpha_{1^{5_3}}(x, X)$. Suppose that $x + y \in \alpha_{2^4}(x, X)$. Since G_{xy}^{*x} is transitive on the set of hyperplanes $\delta_2(x, x + y) = \{Y \in \Gamma_3(x) | x + y \in \alpha_{2^4}(x, Y)\}$ by Lemma 3.1(ii) and $\tau(X) \in Q(y)$ we have $\tau(Y) \in Q(y)$ for all $Y \in \delta_2(x, x + y)$. Then

$$|Q(x) \cap Q(y)| \ge 35 + 840 = 875.$$

This contradicts part (i). By a similar argument, if $x + y \in \alpha_{1^{5}3}(x, X)$ we get

$$|Q(x) \cap Q(y)| \ge 35 + 896 = 933,$$

again giving a contradiction. This proves part (ii).

80

5. The Second Disc, $\Delta_2(a)$

We begin by defining certain subsets of $\Delta_2(a)$ as follows.

$$\begin{split} \widetilde{\Delta}_2^1(a) &= \{ x \in \Delta_2(a) | \Gamma_3(a, x) \neq \emptyset = \Gamma_2(a, x) \}, \\ \widetilde{\Delta}_2^2(a) &= \{ x \in \Delta_2(a) | \Gamma_3(a, x) = \emptyset \}, \\ \widetilde{\Delta}_2^3(a) &= \{ x \in \Delta_2(a) | \Gamma_3(a, x) \neq \emptyset \neq \Gamma_2(a, x) \}. \end{split}$$

An immediate consequence of these definitions is

Lemma 5.1. For $1 \le j < k \le 3$, $\widetilde{\Delta}_2^j(a) \cap \widetilde{\Delta}_2^k(a) = \emptyset$ and $\bigcup_{i=1}^3 \widetilde{\Delta}_2^i(a) = \Delta_2(a)$.

Lemma 5.2. Suppose $x \in \Delta_2(a)$ with $X \in \Gamma_3(a, x)$. Then $\{a, x\}^{\perp} \subseteq \Gamma_0(X)$.

Proof. Let $b \in (a, x)^{\perp}$ and assume that $b \notin \Gamma_0(X)$. Then $a + b \notin \Gamma_1(X)$ as Γ is a string geometry. Using Lemma 3.5, we can find $Y \in \beta_3(a, X) \cup \{X\}$ for which $a + b \in \alpha_{1^{5_3}}(a, Y)$. By Lemma 4.5, $\tau(Y) \in Q(x)$ which implies that $\tau(Y) \in Q(a)_x$. Since $\tau(Y)$ does not fix bby Lemma 4.4 we get a triangle $\{x, b, b^{\tau(Y)}\}$ which then forces a = x by Lemma 4.6. From this contradiction we infer that $b \in \Gamma_0(X)$, so proving the lemma.

Lemma 5.3. For $i = 1, 2, 3, \tilde{\Delta}_{2}^{i}(a) = \Delta_{2}^{i}(a)$.

Proof. Let $b \in \{a, x\}^{\perp}$. Using MOG information in Ω_b , Lemma 5.2 implies that $\widetilde{\Delta}_2^i(a) = \Delta_2^i(a)$ for i = 1, 2, 3.

Lemma 5.4. Let $x \in \Delta_2^1(a)$. Then there is a unique hyperplane in $\Gamma_3(a, x)$.

Proof. Let $X, Y \in \Gamma_3(a, x)$ and $b \in \{a, x\}^{\perp}$. Then $b \in \Gamma_0(X) \cap \Gamma_0(Y)$ by Lemma 5.2. If $X \neq Y$, then $b + x, b + a \in \Gamma_0(X) \cap \Gamma_0(Y)$ and $\Gamma_2(b + x, b + a) \neq \emptyset$ by considering MOG information in Γ_b . Hence $x \notin \widetilde{\Delta}_2^1(x)$, whereas $\widetilde{\Delta}_2^1(x) = \Delta_2^1(x)$ by Lemma 5.3. Thus we conclude X = Y and the lemma is proved.

Let the unique hyperplane in Lemma 5.4 be denoted by X(a, x)(respectively, X(x, a)) if we regard $X(a, x) \in \Gamma_3(a)$, (respectively $X(x, a) \in \Gamma_3(x)$). Of course X(a, x) = X(x, a).

Lemma 5.5. Let $x \in \Delta_2^1(a)$. Then $|\{a, x\}^{\perp}| = 5$ and, for each $b \in \{a, x\}^{\perp}$, the octad a + b in Ω_a contains a fixed tetrad of the sextet X(a, x).

Proof. By Lemma 5.2, for every $b \in \{a, x\}^{\perp}$, $b \in \Gamma_0(X(a, x))$ and so $a + b \in \Gamma_1(X(a, x))$. Working in the residue geometry of X(a, x) and using Lemma 3.7(ii) we get $|\{a, x\}^{\perp}| = 5$. Since $\Gamma_2(a, x) = \emptyset$ by Lemma 5.3, in Ω_a , the five octads $\{a + b | b \in \{a, x\}^{\perp}\}$ must intersect in the same tetrad of the sextet X(a, x).

Note that $x \in \Delta_2^1(a)$ implies $a \in \Delta_2^1(x)$. We denote the fixed tetrad in Ω_a (respectively, Ω_x) described in Lemma 5.5 by t(a, x) (respectively, t(x, a)).

Lemma 5.6. (i) $|\Delta_2^1(a)| = 2^5 \cdot 3 \cdot 7 \cdot 11 \cdot 23$.

(ii)
$$\Delta_2^{l}(a)$$
 is a G_a -orbit.

(iii) For $x \in \Delta_2^1(a)$ and $G_{ax}^{*x} \sim 2^6$: $(3 \times S_5)$ is the stabilizer in G_x^{*x} of X(x, a) and t(x, a) and $|Q(x)_a| = 2^7$.

Proof. By Lemma 3.7(i), for any $X \in \Gamma_3(a)$, $|\Gamma_0(X) \cap \Delta_2^1(a)| = 96$ and so by Lemma 5.4 we get $|\Delta_2^1(a)| = 96$. $|\Gamma_3(a)| = 2^5 \cdot 3 \cdot 7 \cdot 11 \cdot 23$, proving part (i).

For part (ii), let $b \in \Delta_1(a)$ and $x \in \Delta_2^1(a) \cap \Delta_1(b)$. Then in Ω_b , $b + a \in \alpha_4(b, b + x)$. Since $\alpha_4(b, b + x)$ is a G_{ab}^{*b} -orbit it is enough to show that there exists $g \in G_{ab}$ with $x^g = x'$, where $\Gamma_0(b + x) = \{b, x, x'\}$. In Ω_b , we can choose a sextet Y incident with the octad b + a such that $a + x \in \alpha_{1^{5_3}}(x, Y)$. Then by Lemma 4.4, $\tau(Y) \in (Q(a) \cap Q(b)) \setminus G_x$ and so $\tau(Y)$ is the required element of G_{ab} .

For $t \in \Omega_a \cap \Omega_b \cap \Omega_x$, a, x are vertices of \mathcal{G}^t with $x \in \Delta_2^1(a)^t$. Hence $Q(x)_a = Q(x)_a^t \cong 2^7$ by Theorem 3 of [12]. Since, by parts (i) and (ii), $|G_{ax}| = 2^{16} \cdot 3^2 \cdot 5$, Lemmas 5.4 and 5.5 yield part (iii).

We now turn to $\Delta_2^2(a)$.

Lemma 5.7. Let $x \in \Delta_2^2(a)$ and $b \in \{a, x\}^{\perp}$. Then (i) $|\Delta_1(b) \cap \Delta_2^2(a)| = 2^7.7$ with G_{ab} transitive on $\Delta_1(b) \cap \Delta_2^2(a)$; and (ii) $|\{a, x\}^{\perp}| = 1$ or 2. **Proof.** Since $\Gamma_3(a, x) = \emptyset$ by Lemma 5.3, we have $b + a \in \alpha_2(b, b + x)$. So by Lemma 3.1(i), $|\Delta_1(b) \cap \Delta_2^2(a)| = 2 \times 448 = 2^7.7$. Let $x' \in \Gamma_0(b + x) \setminus \{b, x\}$. We can choose $Y \in \Gamma_3(b + a)$ with $b + x \in \alpha_{1^{5_3}}(b, Y)$. By Lemma 4.4, $x^{\tau(Y)} = x'$ and so G_{ab} is transitive on $\Delta_1(b) \cap \Delta_2^2(a)$ because $\alpha_2(b, b + x)$ is a G_{ab} -orbit by Lemma 3.1(i).

Using (i), [2] and the fact that $G_{ab} \sim [2^{14}] \cdot A_8$ by Lemma 4.7(iii) we must have $G_{abx} \sim [2^9] \cdot S_6$ or $[2^{10}] \cdot A_6$. In either case G_{abx}^{*a} is contained in the stabilizer in Ω_a of a duad δ contained in the octad a + b. We now show that for every $c \in \{a, x\}^{\perp}$, the octad a + c in Ω_a contains δ . Assume, for a contradiction that for some $c \in \{a, x\}^{\perp}$, a + c does not contain δ . Since $\Gamma_3(a, x) = \emptyset$, we must have $a + c \in \alpha_2(a, a + b)$. Using MOG information, there are exactly 15 sextets in $\Gamma_3(a, b)$ that each have a tetrad containing δ . Let T denote this set of 15 sextets.

We can take $Y_1, Y_2, Y_3 \in T$ forming a sextet line. Since $\tau(Y_1)\tau(Y_2) = \tau(Y_3)$ by Lemma 4.3 we must have $\tau(Y_i) \in G_x$ for each i = 1, 2, 3. Because G_{abx} is transitive on T it follows that $\tau(Y) \in G_x$ for each $Y \in T$ Since a + c does not contain δ we must have $a + c \in \alpha_{1^{53}}(Y)$ for some $Y \in T$ and then $x^{\tau(Y)} \neq x$. Lemma 4.5 now implies that a = x, a contradiction. Part (ii) follows because we cannot find three octads in Ω_a , intersecting pairwise in exactly δ . **Lemma 5.8.** Let $x \in \Delta_2^2(a)$. Then

(i)
$$\Delta_2^2(a)$$
 is a G_a -orbit;

(ii) $|\{a, x\}^{\perp}| = 1, |\Delta_2^2(a)| = 2^8.3.7.11.23$ and G_{ab} is transitive on $\Delta_1(b) \cap \Delta_2^2(a)$, where $\{a, x\}^{\perp} = \{b\}$; and

(iii) $G_{ax}^{*x} \sim 2^4 : S_6$ is the stabilizer in Ω_x of the octad x + b and the duad $\Omega_a \cap \Omega_b \cap \Omega_x$, where $\{a, x\}^{\perp} = \{b\}$.

Proof. Part (i) follows from Lemma 5.7(i) and the fact that $\Delta_1(a)$ is a G_a -orbit.

Suppose that $|\{a, x\}^{\perp}| \neq 1$. Then $\{a, x\}^{\perp} = \{b, c\}$ with $b \neq c$ by Lemma 5.7(ii). Lemma 4.5 rules out d(b, c) = 1. If $c \in \Delta_2^1(b) \cup \Delta_2^3(b)$ $(= \widetilde{\Delta}_2^1(b) \cup \widetilde{\Delta}_2^3(b))$, then $b, c \in \Gamma_0(X)$ for some $X \in \Gamma_3$ whence, by Lemma 5.2, $a, x \in \Gamma_0(X)$. However $\Gamma_3(a, x) = \emptyset$, and therefore $x \in \Delta_2^2(b)$. Hence $a + c \in \alpha_2(a, a + b)$. From Theorem 4 of [12] $Q(a)_x \cong 2^5$ and so, as $G_{abx} \sim [2^9].S_6$ or $[2^{10}].A_6, G_{abx}^{*a} \sim [2^4].S_6$ or $[2^5].A_6$. In particular $2^8 ||G_{abx}^{*a}|$. Clearly $G_{abx} = G_{abxc}$ and so $G_{abxc}^{*a} = G_{abx}^{*a}$. Since $a + c \in \alpha_2(a, a + b), G_{abxc}^{*a}$ leaves a dodecad of Ω_a invariant whence G_{abxc}^{*a} is isomorphic to a subgroup of M_{12} . But $2^8 ||G_{abxc}^{*a}|$ yields a contradiction. Thus, we conclude that $|\{a, x\}^{\perp}| = 1$, and consequently for $b \in \{a, x\}^{\perp}$

$$|\Delta_2^2(a)| = \frac{|\Delta_1(b) \cap \Delta_2^2(a)| |\Delta_1(a)|}{|\{a, x\}^{\perp}|} = 2^8.3.7.11.13.$$

Part (iii), using $Q(x)_a \cong 2^5$, follows readily.

Lemma 5.9. Let $x \in \Delta_2^3(a)$. Then there is a unique element $\Lambda(a, x) \in \Gamma_2(a, x)$ and for every $b \in \{a, x\}^{\perp}$, $b \in \Gamma_0(\Lambda(a, x))$.

Proof. By definition, $\Gamma_2(a, x) \neq \emptyset$. Let $b \in \{a, x\}^{\perp}$ with $b + a \in \alpha_0$ (b, b + x) and let $\Lambda(a, x)$ be the unique element of $\Gamma_2(b + a, b + x)$. Suppose $b' \in \{a, x\}^{\perp}$ with $b' \notin \Gamma_0(\Lambda(a, x))$. In Ω_b there are seven sextets $X_i(i = 1, ..., 7)$ in $\Gamma_3(b + a, b + x)$ and by Lemma 5.2 $b' \in \Gamma_0(X_i)$ for each i = 1, ..., 7. Therefore, in $\Omega_{b'}$ there exists a trio $\Lambda \in \Gamma_2(b' + a, b' + x, X_i)$ for each i = 1, ..., 7. Considering the situation in Ω_a we must have $\Lambda = \Lambda(a, x)$ and the lemma is proved.

We follow our earlier notational convention and also denote the unique plane in Lemma 5.9 by $\Lambda(x, a)$ if we are viewing $\Lambda(x, a)$ as a trio in Γ_x .

Lemma 5.10. Let $x \in \Delta_2^3(a)$. Then $|\Gamma_3(a, x)| = 7$ and $|\{a, x\}^{\perp}| = 3$.

Proof. By Lemma 5.2, for $X \in \Gamma_3$, $X \in \Gamma_3(a, x)$, if and only if $X \in \Gamma_3(\Lambda(a, x))$. The result now follows from Lemma 5.9 because in Γ_X there are three points collinear with a and x and in Γ_a , $|\Gamma_3(\Lambda(a, x))| = 7$.

Lemma 5.11. Let $x \in \Lambda^3_2(a)$. Then

- (i) $|\Delta_2^3(a)| = 2^3.3.5.11.23;$
- (ii) $\Delta_2^3(a)$ is a G_a -orbit; and

(iii) $G_{ax}^{*x} \sim 2^6$: $(L_3(2) \times 3)$ is a subgroup of index 2 of the stabilizer in Ω_x of the trio $\Lambda(x, a)$ and $|Q(x)_a| = 2^9$.

Proof. Since $|\{a, x\}^{\perp}| = 3$ by Lemma 5.10, $|\alpha_0(b, b + a)| = 30$ ($b \in \{a, x\}^{\perp}$) and, by Lemma 4.7(i), $|\Delta_1(a)| = 2.3.11.23$, we calculate that $|\Delta_2^3(a)| = 2^3.3.5.11.23$.

For part (ii), let $b \in \Delta_1(a)$ with $\Lambda \in \Gamma_2(a, b)$ and $X \in \Gamma_3(\Lambda)$. Then $G_{aX\Lambda}^{*X} \sim 2^4$. $(S_4 \times 2)$ and is transitive on the four points in $\Delta_2^3(a) \cap \Delta_1(b) \cap \Gamma_0(\Lambda)$. Then G_a is transitive on $\Delta_2^3(a)$ because $\Gamma_2(a)$ and $\Delta_1(a)$ are G_a -orbits.

By Lemma 5.10 $\{a, x\}^{\perp} = \{b_1, b_2, b_3\}$. Also, using Lemma 5.9, $G_{ax}^{*a} \leq G_{ax\Lambda(a, x)}^{*a} \sim 2^6 : (L_3(2) \times S_3). \text{ Let } 1 \leq i < j \leq 3. \text{ Then } a + b_i \text{ and}$ $a + b_i$ are disjoint octads as they are both incident with the trio $\Lambda(a, x)$. Choose a tetrad δ of Ω_a which intersects $a + b_i$ in two elements and $a + b_i$ in one element, and let Y denote the sextet of Ω_a with δ a tetrad of Y. Then $a + b_i \in \alpha_{2^4}(a, Y)$ and $a + b_j \in \alpha_{1^{5_3}}(a, Y)$. Hence, by Lemma 4.4, $\tau(Y) \in Q(a)_{b_i} \setminus Q(a)_{b_i}$. Thus $Q(a)_{b_i} \neq Q(a)_{b_i}$ for $1 \le i < j \le 3$. Further $Q(a)_x \leq Q(a)_{b_i}$ $(1 \leq i \leq 3)$, for $Q(a)_x \leq Q(a)_{b_i}$ yields that $|\{a, x\}^{\perp} \cap \Gamma_0(a+b_i)| = 2$ whereas no two points of $\{a, x\}^{\perp}$ are collinear. So, as $[Q(a): Q(a)_{b_i}] = 2$ and $Q(a)_{b_i} \neq Q(a)_{b_i}$ for $i \neq j$, we have [Q(a): $Q(a)_x] \ge 2^2$. Consequently using part (i) either $G_{ax}^{*a} \sim 2^6 : (L_3(2) \times 3)$ with $|Q(a)_x| = 2^9$ or $G_{ax}^{*x} \sim 2^6 : (L_3(2) \times S_3)$ with $|Q(a)_x| = 2^8$. Suppose the latter holds. Let ξ be the element of order 3 in the S_3 direct factor of $G_{ax}^{*_{x}}$. Then, as ξ permutes the three octads $\{a+b_{i}|i=1, 2, 3\}$ and $Q(a)_{b_i} \neq Q(a)_{b_i}$ $(i \neq j), \xi$ must act non-trivially on $Q(a) / Q(a)_x$. But then λ centralizes $Q(a) / Q(a)_x$, where λ is an element of G_{ax}^{*x} of order 7, a contradiction as $|C_{Q(a)}(\lambda)| = 2^2$. Thus, as $a \in \Delta_2^3(x)$, we obtain $G_{ax}^{*x} \sim 2^6$: $(L_3(2) \times 3)$ and $|Q(x)_a| = 2^9$, so proving (iii). Lemma 5.6 combined with (2.2) proves Theorem 3 except for the octad orbits $\alpha_{2,2^4}(x, \Lambda_1, \Lambda_2), \alpha_{1,31^5}(x, \Lambda_1, \Lambda_2)$, and $\alpha_{0,4^2}(x, \Lambda_1, \Lambda_2)$. The first two will be settled by Theorems 7 and 11 and the data in **O**(2.2), while the last one follows from Theorem 12(ii). Theorem 4, apart from the octad orbits $\alpha_{0,0}(x, \Lambda_1, \Lambda_2)$ and $\alpha_{4,0}(x, \Lambda_1, \Lambda_2)$, follows from Lemma 5.8 and (2.2). The remaining two orbits are dealt with by Theorem 12(i), (iv) and **O**(2.3). Finally Lemma 5.11 and (2.2) deliver Theorem 5.

6. Theorems 6-11 and 13

Lemma 6.1. Suppose that $x \in \Gamma_0$ and that $\Omega_a \cap \Omega_x \neq \emptyset$. Let $t \in \Omega_a$ and let Δ denote the G_a -orbit of x. Set $k = |\{s \in \Omega_a | x \in \Gamma_0^s\}|$. Then

$$k|\Delta| = 24|\Delta \cap \Gamma_0^t|.$$

Proof. Since Δ is a G_a -orbit and G_a acts transitively on Ω_a , $|\Delta \cap \Gamma_0^s|$ is the same for all $s \in \Omega_a$. Furthermore, we also have that $|\{s \in \Omega_a | y \in \Gamma_0^s\}|$ is the same for all $y \in \Delta$. Because $\Omega_a \cap \Omega_x \neq \emptyset$ we note that $k \neq 0$. Now counting in two ways the number of elements in

$$\left|\{(s, y) \in \Omega_a \times \Delta \left| y \in \Gamma_0^s \right\}\right|$$

yields, as $|\Omega_a| = 24$, the lemma.

For $x \in \Gamma_0$ and $s \in \Omega_x$, G_x^s denotes the stabilizer of x in $G^s \cong Fi_{23}$. So $G_x^s \sim 2^{11} M_{23}$. Also recall that $Q(x)^s$ denotes the normal elementary abelian subgroup of G_x^s of order 2^{11} .

Lemma 6.2. For $x \in \Gamma_0$ and $s \in \Omega_x$, $Q(x)^s = Q(x)$.

Proof. Since $2^{11}M_{23} \sim G_x^s \leq G_x \sim 2^{11}M_{24}$, the subgroup structure of M_{24} forces $Q(x)^s = Q(x)$.

Lemma 6.3. (i) If $x \in \Delta_2^1(a)$, then $|\{s \in \Omega_a | x \in \Gamma_0^s\}| = 4$.

(ii) If
$$x \in \Delta_2^2(a)$$
, then $|\{s \in \Omega_a | x \in \Gamma_0^s\}| = 2$.

Proof. Let $x \in \Delta_2^1(a)$ and set $k = |\{s \in \Omega_a | x \in \Gamma_0^s\}|$. Observe that, for $t \in \Omega_a$, $\Delta_2^1(a) \cap \Gamma_0^t = \Delta_2^1(a)^t$. Since G_a is transitive on $\Delta_2^1(a)$, Lemmas 5.6(ii) and 6.1 imply that

$$k|\Delta_2^1(a)| = 24|\Delta_2^1(a)^t|,$$

where t is some fixed transposition in Ω_a . From Lemma 5.6(i) and Table 1 of [12], $|\Delta_2^1(a)| = 2^5 \cdot 3 \cdot 7 \cdot 11 \cdot 23$ and $|\Delta_2^1(a)^t| = 2^4 \cdot 7 \cdot 11 \cdot 23$, and therefore k = 4.

A similar argument, using Lemma 5.8 instead of Lemma 5.6, establishes part (ii). $\hfill \Box$

Lemma 6.4. For i = 1, ..., 6, $\Delta_3^i(a)$ is a G_a -orbit and, for $t \in \Omega_a$, $\Delta_3^i(a) \cap \Gamma_0^t = \Delta_3^i(a)^t$.

Proof. Let $x \in \Delta_2^1(a)$ and $t \in \{s \in \Omega_a | x \in \Gamma_0^s\} = \Omega_a \cap \Omega_x$. From Lemma 5.6 and Theorem 3 of [12], $|G_{ax}| = 2^{16}.3.5$ and $|G_{ax}^t| = 2^{14}.3.5$. So $[G_{ax} : G_{ax}^t] = 4$ and hence, by Lemma 6.3(i), G_{ax} is transitive on $\{s \in \Omega_a | x \in \Gamma_0^s\}$. Because G_{ax}^t is transitive on $\Delta_3^1(a)^t = \Delta_3^1(a) \cap \Gamma_0^t$, we conclude that G_a is transitive on $\Delta_3^1(a)$.

The remaining sets $\Delta_3^i(a)$ (i = 2, ..., 6) are defined from $\Delta_2^2(a)$. Now similar arguments may be employed for these sets as $[G_{ax} : G_{ax}^t] = 2$ for $x \in \Delta_2^2(a)$ (where $t \in \{s \in \Omega_a | x \in \Gamma_0^s\}$) and, by Lemma 6.3(ii) $|\{s \in \Omega_a | x \in \Gamma_0^s\}| = 2$. **Theorem 6.5.** Let $x \in \Delta_3^{l}(a)$.

(i) If
$$i = 1$$
, then $G_{ax} \sim 2^2 L_3(4) : S_3, G_{ax}^{*x} = Stab_{G_x^{*x}} \{\Lambda_1\} \sim L_3(4) : S_3$,

where Λ_1 is a triad of Ω_x and $|\Delta_3^1(a)| = 2^{12}.11.23$.

(ii) If i = 2, then $G_{ax} \sim 2^4 \cdot 2^3 : (L_3(2) \times 2), G_{ax}^{*x} = Stab_{G_x^{*x}} \{\Lambda_1, \Lambda_2\}$ ~ $2^3 : (L_3(2) \times 2)$, where Λ_1 is an octad, Λ_2 is a duad of Ω_x with $\Lambda_1 \cap \Lambda_2 = \emptyset$, and $|\Delta_3^2(a)| = 2^{10} \cdot 3^2 \cdot 5 \cdot 11 \cdot 23$.

(iii) If i = 3, then $G_{ax} \sim 2.2^4 : S_6$, $G_{ax}^{*x} = Stab_{G_x^{*x}} \{\Lambda_1, \Lambda_2\} \sim 2^4 : S_6$, where Λ_1 is an octad, Λ_2 is a duad of Ω_x with $\Lambda_2 \subseteq \Lambda_1$, and $|\Delta_3^3(a)| = 2^{12}.3.7.11.23$.

(iv) If i = 4, then $G_{ax} \sim 2.M_{22} : 2$, $G_{ax}^{*x} = Stab_{G_x^{*x}} \{\Lambda_1\} \cong M_{22} : 2$, where Λ_1 is a dual of Ω_x and $|\Delta_3^4(a)| = 2^{12}.3.23$.

(v) If i = 5, then $2^4 : A_5 \sim G_{ax} \cong G_{ax}^{*x} \leq Stab_{G_x^{*x}} \{\Lambda_1, \Lambda_2, \Lambda_3\}$, where Λ_1 is an octad of $\Omega_x, |\Lambda_2| = |\Lambda_3| = 1$ with $\Lambda_2 \cup \Lambda_3 \subseteq \Lambda_1$, and $|\Lambda_3^5(a)| = 2^{15} \cdot 3^2 \cdot 7 \cdot 11 \cdot 23$.

(vi) If i = 6, then $G_{ax} \sim [2^6] . 3.S_4$, $G_{ax}^{*x} = Stab_{G_x^{*x}} \{\Lambda_1, \Lambda_2, \Lambda_3\} \sim 2^4 . 3.S_4$, where Λ_1 is an octad of Ω_x , $|\Lambda_2| = 4$, $|\Lambda_3| = 1$, $\Lambda_3 \subseteq \Lambda_2 \subseteq \Lambda_1$, and $|\Delta_3^6(a)| = 2^{12} . 3.5.7.11.23$.

Proof. (i) Let $t \in \Omega_a$. From Lemma 6.4, $\Delta_3^1(a)$ is a G_a -orbit and $\Delta_3^1(a) \cap \Gamma_0^t = \Delta_3^1(a)^t$. For $x \in \Delta_3^1(a)$, let $k = |\{s \in \Omega_a | x \in \Gamma_0^s\}|$. Using Lemma 6.1, we obtain

$$k|\Delta_3^1(a)| = 24|\Delta_3^1(a)^t|.$$

By the definition of $\Delta_3^1(a)$, there exists $y \in \Delta_2^1(a)$ such that $y + x \in \alpha_{3,31^5}(x, \Lambda_1, \Lambda_2)$. Now consulting Theorem 3, we see that $\Lambda_1 = \Omega_a \cap \Omega_y$, and hence $|\Omega_a \cap \Omega_x| \ge 3$. So $k \ge 3$. Therefore, as $|\Delta_3^1(a)^t| = 2^9.11.23$ by Table 1 of [12],

$$\begin{aligned} |\Delta_3^{1}(a)| &= \frac{24|\Delta_3^{1}(a)^{t}|}{k} = \frac{24.2^{9}.11.23}{k} \\ &\leq \frac{24.2^{9}.11.23}{3} = 2^{12}.11.2. \end{aligned}$$

Supposing that $x \in \Gamma_0^t$. Then $G_{ax} \sim 2^2 L_3(4) : 2$ by Theorem 5 of [12]. Since $\Delta_3^1(a)$ is a G_a -orbit, $|\Delta_3^1(a)|$ must divide $[G_a : G_{ax}^t] = 2^{12} \cdot 3 \cdot 11 \cdot 23$. Bearing in mind the possible overgroups of $L_3(4) : 2$ in $M_{24} \cong G_x^{*x}$ and Lemma 6.2, we get that $[G_{ax} : G_{ax}^t] = 3$. Thus $|\Delta_3^1(a)| = 2^{12} \cdot 11 \cdot 23$ with k = 3 and $G_{ax} \sim 2^2 \cdot L_3(4) : S_3$ with $G_{ax}^{*x} = Stab_{G_x^{*x}} \{\Lambda_1\}, \Lambda_1$ being the triad $\{t\} \cup D(x, a)$. (With D(a, x) as in Theorem 5 of [12].) This establishes (i).

Parts (ii)-(vi) may be proved in a similar fashion. For these cases we may extract $k = |\{s \in \Omega_a | x \in \Gamma_0^s\}|$ (for $x \in \Delta_3^i(x), i = 2, ..., 6$) from [12]. Recall that in the Fi_{23} geometry, a hyperplane is just a transposition with points of this geometry being sets of 23 pairwise commuting transpositions. For $x \in \Delta_3^i(a)^t, t \in \Omega_a$, where $i \in \{2, 3, 4\}$, a and x are incident with a unique hyperplane of the Fi_{23} geometry (see Section 1 of [12]) - so for $i \in \{2, 3, 4\}, k = 2$. Whereas, for $x \in \Delta_3^i(a)^t, i \in \{5, 6\}, a$ and x are not incident with a common hyperplane of the Fi_{23} geometry. Thus k = 1 for $i \in \{5, 6\}$. So knowing k we can make effective use of Lemma 6.1. We observe that for $x \in \Delta_3^i(a) \cap \Gamma_0^t$ $(t \in \Omega_a)$ we have $G_{ax} = G_{ax}^t$ for i = 3, 5, 6. While $[G_{ax} : G_{ax}^t] = 2$ for i = 2, 3, 4. In these latter cases, we must also call on the services of Lemma 6.2 in order to deduce that G_{ax} has shape, respectively, $2^4 \cdot 2^3 : (L_3(2) \times 2), 2^2 \cdot 2^4 : S_6$ and $2 \cdot M_{22} : 2$.

We are now in a position to verify Theorems 6-13. For Theorem 6, Theorem 6.5(i) gives G_{ax} and G_{ax}^{*x} for $x \in \Delta_3^1(a)$. We must discover the point distribution of the G_{ax} line orbits $\alpha_i(x, \Lambda_1)$ (i = 1, 2, 3), three of the G_{ax}^{*x} -orbits on lines, see [15]. Let $y \in \Delta_1(x)$ be such that $x + y \in$ $\alpha_1(x, \Lambda_1)$. Now we may further assume y is chosen so as $x, y \in \Gamma_0^t$ for some $t \in \Omega_a$. Then, by Theorem 5 of [12], $x + y \in \alpha_0(x, D(x, a))$ (seen within Γ_0^t) with x + y having point distribution $\Delta_3^{1t} 2\Delta_4^{1t}$. Since $\alpha_1(x, \Lambda_1)$ is a G_{ax} -orbit and $\Delta_4^1(a)^t \subseteq \Delta_4^1(a)$, we conclude that lines in $\alpha_1(x, \Lambda_1)$ have point distribution $\Delta_3^1 2\Delta_4^3$ and $\alpha_3(x, \Lambda_1)$ has point distribution $\Delta_4^1 2\Delta_3^1$.

The same kind of arguments work for $\Delta_3^2(a)$, $\Delta_3^3(a)$, $\Delta_3^4(a)$, $\Delta_3^5(a)$ and $\Delta_3^6(a)$, so we omit the details.

The same strategy as employed in this section will reveal G_{ax} and orbit sizes for $x \in \Delta_4^i(a)$, i = 1, ..., 6. Note that in all these cases $k = |\{s \in \Omega_a | x \in \Gamma_0^s\}| = 1$ as a and x cannot be incident with a common hyperplane in the Fi_{23} geometry, as the point-line collinearity graph of the Fi_{22} geometry has diameter 3 (see Appendix 1 of [11]).

7. Proof of Theorem 12

The orbits considered in Theorem 12 do not lie within a Fi_{23} residue and so we cannot apply the same reasoning as in Section 6. Recall that for any $X \in \Gamma_3$, Γ_X is isomorphic to the geometry for $U_4(3).2$ described in [6].

We define

$$\Delta_{3}^{\bar{8}}(a) = \{ x \in \Gamma_{0} | \Gamma_{3}(a, x) \neq \emptyset \text{ and } d(a, x) = 3 \}.$$

Lemma 7.1. $\Delta_3^8(a) = \widetilde{\Delta_3^8}(a)$.

Proof. If $x \in \widetilde{\Delta_3^8}(a)$ and $X \in \Gamma(a, x)$, using information about the geometry Γ_X given in Lemma 3.7(ii), there exists $c \in \Delta_2(a) \cap \Delta_1(a)$ with $c + x \in \alpha_{4^2}(c, \mathcal{T})$, where $\mathcal{T} \in \Gamma_2(a, c)$. By (2.2) $c \in \Delta_2^3(a)$ and $x \in \Delta_3^8(a)$. Conversely if $x \in \Delta_3^8(a)$ we must have $\Gamma_3(a, x) \neq \emptyset$ by $\mathbf{O}(2.4)$ and d(a, x) = 3 by Lemma 5.2. So $x \in \widetilde{\Delta_3^8}(a)$ as required.

Lemma 7.2. If $x \in \Delta_3^8(a)$, then $|\Gamma_3(a, x)| = 1$.

Proof. Let $x \in \Delta_3^8(a)$ and assume that $X, Y \in \Gamma_3(a, x)$ with $X \neq Y$. Using information about the $U_4(3).2$ geometry described in Lemma 3.7(ii), for every $\ell \in \Gamma_1(a, X)$, there exists $b \in \Gamma_0(\ell)$ with $b \in \Delta_2(x) \cap \Delta_1(a)$. If $Y \notin \beta_3(a, X)$, then there is some $b \in \Delta_2(x) \cap \Delta_1(a)$ with $a + b \in \alpha_1 \epsilon_3(a, Y)$ by Lemma 3.4. Therefore Lemma 4.4 implies that $\tau(Y)$ does not fix b. Since $\tau(Y) \in Q(a)_x, b^{\tau(Y)} \in \Gamma_0(a + b) \cap \Delta_2(x)$. However, as $\Gamma_0(a + b) \subseteq \Gamma_0(X)$, Lemma 3.7(ii) implies that $a \in \Delta_1(x)$, a contradiction. Hence $Y \in \beta_3(a, X)$. In Γ_a , there are three octads ℓ incident with X and Y and for one of these, we can find $y \in \Gamma_0(\ell) \cap \Delta_2^1(a)$. Since $X, Y \in \Gamma_3(a, y)$ we now have a contradiction to Lemma 5.4, and so X = Y as asserted. **Lemma 7.3.** Let $c_1 \in \Delta_2^2(a)$ and $c_2 \in \Delta_2(a) \cap \Delta_1(c_1)$. Then

- (i) $c_2 \in \Delta_2^2(a)$; and
- (ii) if $y \in \Gamma_0(c_1 + c_2) \setminus \{c_1, c_2\}$, then $y \in \Delta_1(a)$.

Proof. (i) Suppose that $c_2 \in \Delta_2^1(a) \cup \Delta_2^3(a)$, and argue for a contradiction. Then, by definition of $\Delta_2^1(a)$ and $\Delta_2^3(a)$, there exists $X \in \Gamma_3(a, c_2)$. Since $c_1 \in \Delta_2^2(a), |\{a, c_1\}^{\perp}| = 1$. Let $\{a, c_1\}^{\perp} = \{b\}$. If $b \in \Gamma_0(X)$, then, using Lemma 5.2, $c_1 \in \{b, c_2\}^{\perp} \subseteq \Gamma_0(X)$ and so $X \in \Gamma_3(a, c_2)$, whereas $\Gamma_3(a, c_2) = \emptyset$. Thus $b \notin \Gamma_0(X)$ and as a consequence $a + b \notin \Gamma_1(X)$. Hence $a + b \in \alpha_{2^4}(a, X) \cup \alpha_{1^{5_3}}(a, X)$. Assume that $a + b \in \alpha_{2^4}(a, X)$. Then $\tau(X) \in Q(a)_b$ by Lemma 4.4. Since $X \notin \Gamma_3(b)$, $\tau(X) \notin Q(b)$ by Lemma 4.8(ii). So $\tau(X) \in Q(a)_b \setminus Q(b)$ and hence $1 \neq \tau(X)^{*b} \in Q(a)^{*b} = O_2(G_{ba}^{*b})$. Since $b + c_1 \in \alpha_2(b, b + a)$ we then infer that $\tau(X)^{*b}$ does not leave the octad $b + c_1$ invariant. Hence $\tau(X) \notin G_{c_1}$. However $\tau(X) \in Q(c_2)$ and so we obtain a triangle $\{b, c_1, c_1^{\tau(X)}\}$ with $c_1^{\tau(X)} \in \Gamma_0(c_1 + c_2)$. Lemma 4.6 forces $b = c_2$, a contradiction. Thus we have shown that $a + b \notin \alpha_{2^4}(a, X)$ and so $a + b \in \alpha_{1^{5}3}(a, X)$. By Lemma 4.4, $b^{\uparrow(X)} \neq b$. If $c_{1}^{\uparrow(X)} = c_{1}$, then $\{b, b^{\top(X)}, c_1\}$ is a triangle, whence $a = c_1$ by Lemma 4.6. Thus $c_1^{\top(X)} \neq c_1$. Since $c_1^{\tau(X)} \in \Gamma_0(c_1 + c_2)$, this gives $\{b, c_1^{\tau(X)}\} \subseteq \{b^{\tau(X)}, c_1\}^{\perp}$ which, as $b^{\tau(X)} \in \Delta_2^2(c_1)$, contradicts Lemma 5.8(ii) (note that $b = c_1^{\tau(X)}$ would give $c_2 \in \Gamma_0(b+c_1)$ and then $c_2 \in \Delta_2^2(a)$). With this contradiction we have established part (i).

(ii) Let $\{a, c_i\}^{\perp} = \{b_i\}$ for i = 1, 2. Suppose (ii) is false and argue for a contradiction. We first claim that $d(b_1, c_2) = 2 = d(b_2, c_1)$. If, say, $d(b_1, c_2) = 1$, then $\{b_1, c_1, c_2\}$ is a triangle and so, as $c_1, c_2 \in \Delta_2(a)$, Lemma 4.6 yields that $y = b_1 \in \Delta_1(a)$. Thus $d(b_1, c_2) = 1$ and, similarly, $d(b_2, c_1) = 2$. In particular, this gives $b_1 \neq b_2$. Further, $d(b_1, b_2) = 2$. For $d(b_1, b_2) = 1$ implies $b_2 \in \Gamma_0(a + b_1)$ by Lemma 4.6 and then $\{b_1, c_2\} \subseteq \{b_2, c_1\}^{\perp}$. This contradicts Lemma 5.8(ii) as $b_2 \in \Delta_2^2(c_1)$.

If $b_1 \in \Delta^1_2(b_2) \cup \Delta^3_2(b_2)$, then by part (i) (with b_1 in place of a) $c_1 \notin \Delta_2^2(b_2)$. Therefore $c_1 \in \Delta_2^1(b_2) \cup \Delta_2^3(b_2)$. Consequently $a \in \Delta_2^2(c_1)$ and $b_2 \in \Delta_2^1(c_1) \cup \Delta_2^3(c_1)$ which is contrary to part (i) (with c_1 in place of a). Thus $b_1 \notin \Delta_2^1(b_2) \cup \Delta_2^3(b_2)$ and hence $b_1 \in \Delta_2^2(b_2)$. Similar arguments show that $c_1 \in \Delta_2^2(b_2)$ and $c_2 \in \Delta_2^2(b_1)$. By considering the elements of $\Gamma_3(b_1,\,c_2)$ as sextets in Ω_{b_1} and using Lemma 4.4 there exists $Y \in \Gamma_3(b_1, c_1)$ with $\tau(Y) \in G_a$. Suppose that $\tau(Y) \notin G_{c_2}$. Since $\tau(Y)$ fixes the line $c_1 + c_2$, Lemma 4.6 implies that $b_2^{\top(X)} \neq b_2$ and $\tau(Y) \notin Q(a)$. Therefore $1 \neq \tau(Y)^{*a} \in O_2(G_{ab_1}^{*a})$. This means that, in Ω_a , the octads $a + b_2^{\tau(Y)}$, $a + b_1$ and $a + b_2$ intersect pairwise in the same duad. However, we see from the MOG [4] that this is impossible. Thus, we have shown that $\tau(Y) \in G_{c_2}$. Since $b_1 \in \Delta^2_2(c_2)$, $Y \notin \Gamma_3(c_2)$ and so $\tau(Y) \notin Q(c_2)$ by Lemma 4.8(ii). Then $1 \neq \tau(Y)^{*c_2} \in O_2(G_{c_2c_1}^{*c_2})$. Since $c_2 + b_2 \in \alpha_2(c_2, c_2 + c_1), \ \tau(Y)^{*c_2}$ does not fix $c_2 + b_2$. This contradicts Lemma 5.8(ii) and hence gives part (ii), completing the proof of Lemma 7.3.

Lemma 7.4. (i) $\Delta_3^8(a)$ is a G_a -orbit and $|\Delta_3^8(a)| = 2^6.5.7.11.23$.

(ii) For $x \in \Delta_3^8(a)$, $G_{ax} \sim [2^{13}] \cdot 3 \cdot 3^2 : 4$ and $G_{ax}^{*x} \sim 2^6 : 3 \cdot 3^2 : 4$ is the stabilizer in G_x^{*x} of the sextet $X \in \Gamma_3(a, x)$ and the partition of Ω_x into $\Sigma = \{\infty, 14, 0, 8, 3, 20, 15, 18, 17, 4, 16, 10\}$ and its complement (where X is identified with the standard sextet in Ω_x).

(iii) $|\Delta_2^1(a) \cap \Delta_1(x)| = 6$ and $|\Delta_2^3(a) \cap \Delta_1(x)| = 9$.

(iv) Let $x \in \Delta_3^8(a)$ and $\{X\} = \Gamma_3(a, x)$. If $\{a, b, c, x\}$ is a path of length 3 in \mathcal{G} , then $b, c \in \Gamma_0(X)$. Moreover $\Delta_2^2(a) \cap \Delta_1(x) = \emptyset$.

Proof. Let $x \in \Delta_3^8(a)$. By Lemma 7.2, $\Gamma_3(a, x) = \{X\}$. Observe that $\Gamma_0(X) \cap \Delta_3^8(a) = D_3^1(a)$ by Lemmas 7.1, and 3.7(ii). Since G_a is transitive on $\Gamma_3(a)$ and, by Lemma 3.7(i), $D_3^1(a)$ is a G_{aX} -orbit, we see that $\Delta_3^8(a)$ is a G_a -orbit. Also, as $|D_3^1(a)| = 320$ by Lemma 3.7(i),

$$|\Delta_3^8(a)| = |\Gamma_3(a)||\Gamma_0(X) \cap \Delta_3^8(a)|$$

= 7.11.23.320 = 2⁶.5.7.11.23

So (i) holds.

Clearly we have $G_{ax} \leq G_{axX}$ and so $G_{ax}^{*x} \leq G_{axX}^{*x} \sim 2^6 3S_6$. Also, by part (i), $|G_{ax}| = 2^{15} \cdot 3^3$. We now look at $Q(a)_x$. Using Lemma 4.5, as $a, x \in \Gamma_0(X)$, gives $\langle \tau(Y) | Y \in \beta_3(a, X) \rangle \leq Q(a)_x$. Hence, by Lemma 3.3, $|Q(a)_x| \geq 2^7$. Now select $y \in \Delta_2^1(a) \cap \Gamma_0(X)$ (= $D_2^2(a)$) with $y \in \Delta_1(x)$. Suppose $Q(a)_x \leq Q(a)_y$, and let $g \in Q(a)_x \setminus Q(a)_y$. Then $y^g \neq y$ and $y^g \in \Delta_1(x) \cap \Delta_2^1(a) \cap \Gamma_0(X)$. Let $b \in \{a, y\}^\perp$ (and note that $y \in \Gamma_0(X)$). Since $g \in Q(a), b^g \in \Gamma_0(a + b)$. If $b \neq b^g$, then Lemma 3.7(ii) forces $a \in \Delta_1(x)$ whereas d(a, x) = 3. Thus $b = b^g$ and consequently $\{a, y\}^{\perp} = \{a, y^g\}^{\perp}$. Looking in $\Gamma_0(X)$ we see this is impossible. Hence we infer that $Q(a)_x \leq Q(a)_y$. By Theorem 3, $|Q(a)'_y| = 2^7$ and therefore $|Q(a)_x| = 2^7$. Since $a \in \Delta_3^8(x)$, we also get $|Q(x)_a| = 2^7$, and so $|G_{ax}^{*x}| = 2^8.3^3$. Since G_{ax}^{*x} contains a Sylow 3-subgroup of G_{axX}^{*x} and the only subgroup of S_6 of order $3^2 2^{\alpha}$ are subgroups of 3^2 : 4 we see that $G_{ax}^{*x} \sim 2^6: 3.3^2: 4$, which completes the proof of (ii).

Consulting Lemma 3.7(ii) we see $|\Delta_2^1(a) \cap \Delta_1(x) \cap \Gamma_0(X)| = 6$ and $|\Delta_2^3(a) \cap \Delta_1(x) \cap \Gamma_0(X)| = 9$. If $|\Delta_2^3(a) \cap \Delta_1(x)| > 9$, then for $y \in \Delta_2^3(a)$ the lines in $\alpha_{42^2}(y, \mathcal{T}(a, y))$ must be incident with at least one point in $\Delta_3^8(a)$. Let $k = |\Delta_1(x) \cap \Delta_2^3(a)|$. Using part (i), Lemma 5.11 and $\mathbf{O}(2.4)$ we calculate that k = 36 + 9 or 72 + 9. Now, by $\mathbf{O}(2.11)$, there are no line orbits (apart from $\alpha_{4^2,8}(x, X)$ and $\alpha_{4^2,4^2}(x, X)$) of size ≤ 72 . Thus we conclude that $|\Delta_2^3(a) \cap \Delta_1(x)| = 9$. A similar argument, using $|\Delta_3^8(a)|, |\Delta_2^1(a)|$ and $\mathbf{O}(2.11)$ shows that $|\Delta_2^1(a) \cap \Delta_1(x)| = 6$ - note that all the line orbits from $y \in \Delta_2^1(a)$ have already been accounted for except $\alpha_{0,24}(y, \Lambda_1, \Lambda_2)$.

Suppose (iv) is false, and argue for a contradiction. Then, by Lemma 5.2, $b, c \notin \Gamma_0(X)$. By Lemma 3.5, there exists $Y \in \beta_3(a, X) \cup \{X\}$ with $a + b \in \alpha_{1^{5_3}}(a, Y)$. Set $\tau = \tau(Y)$. By Lemma 4.5 $\tau \in Q(X)$ and so $a^{\tau} = a$ and $x^{\tau} = x$. Also, from Lemma 4.4, $b \neq b^{\tau} \in \Gamma_0(a + b)$. Note that $b, b^{\tau} \in \Delta_2(x)$ and that b and b^{τ} are in the same G_x -orbit. Lemma 7.1 implies that $a \in \Delta_3^8(x)$. If $b \in \Delta_2^1(x) \cup \Delta_2^3(x)$, then part (iii) (with a and x interchanged) yields that $b \in \Gamma_0(X)$. Thus $b, b^{\top} \in \Delta_2^2(x)$. Using Lemma 7.3(ii) (with x in place of a) we infer that $a \in \Delta_1(x)$, a contradiction. That $\Delta_2^2(a) \cap \Delta_1(x) = \emptyset$ follows from Lemma 3.7(ii).

We now consider the set

$$\Delta_3^{10}(a) = \{x \in \Gamma_0 \mid \text{there exists } c \in \Delta_2^3(a) \cap \Delta_1(x) \text{ such that } c + x \in \alpha_{42^2}(c, \mathcal{T}_{ca})\},\$$

where T_{ca} is the unique element of $\Gamma_2(a, c)$.

Lemma 7.5. $\Delta_3^{10}(a) \subseteq \Delta_3(a)$ and $\Delta_3^{10}(a) \cap \Delta_3^8(a) = \emptyset$ and so $\Gamma_3(a, x) = \emptyset$.

Proof. Let $x \in \Delta_3^{10}(a)$ and $c \in \Delta_2^3(a) \cap \Delta_1(x)$ such that $c + x \in \alpha_{42^2}$ (c, \mathcal{T}_{ca}). If $x \in \Delta_3^8(a)$, then there exists $X \in \Gamma_3(a, x)$ and, by Lemma 7.4(iv), in Ω_c , the octad c + x would intersect \mathcal{T}_{ca} in 4^2 , a contradiction. So $\Delta_3^{10}(a) \cap \Delta_3^8(a) = \emptyset$ and $\Gamma_3(a, x) = \emptyset$. If $x \in \Delta_1(a)$, then $x \in \{a, c\}^{\perp}$ and so $x \in \Gamma_0(X)$ for each $X \in \Gamma_3(a, c)$, a contradiction. Suppose that $x \in \Delta_2(a)$. Then Lemma 7.3 gives that $x \in \Delta_2^1(a) \cup \Delta_2^3(a)$. However this contradicts $\Gamma_3(a, x) = \emptyset$ again. Therefore $x \in \Delta_3(a)$ by definition.

We now turn to $\Delta_3^7(a)$. Recall from (2.2) that

 $\Delta_3^7(a) = \{x \in \Gamma_0 \mid \text{ there exists } c \in \Delta_2^1(a) \cap \Delta_1(x) \text{ such that}$

$$c + y \in \alpha_{0,2^4}(c, \Omega_c \cap \Omega_a, \mathcal{S}_{ca}\}),$$

where $\Omega_c \cap \Omega_a$ is the tetrad of Ω_a described in Lemma 5.5 and S_{ca} is the sextet in Ω_a corresponding to the unique element of $\Gamma_3(a, c)$.

The next result shows the link between $\Delta_3^7(a)$ and $\Delta_3^{10}(a)$.

Lemma 7.6. For any $x \in \Gamma_0$, $x \in \Delta_3^{10}(a)$, if and only if $a \in \Delta_3^7(a)$.

Proof. Let $x \in \Delta_3^{10}(a)$ and let $c \in \Delta_2^3(a) \cap \Delta_1(x)$ with $c + x \in \alpha_{4^2}(c, \mathcal{T}_{ca})$. If $\{a, c\}^{\perp} = \{b_1, b_2, b_3\}$ we may suppose that $b_1 \in \Delta_2^1(x)$ and $b_2, b_3 \in \Delta_2^2(a)$. In Ω_{b_1} , the octad $b_1 + c$ is incident with the sextet $X(b_1, x)$, where $X(b_1, x)$ is the unique element of $\Gamma_3(b_1, x)$ (see Lemma 5.4). Also $(b_1 + a) \cap (b_1 + c) = \emptyset$ as octads in Ω_{b_1} because $c \in \Delta_2^3(a)$. Therefore $b_1 + a \in \alpha_{2^4}(b_1, X(b_1, x))$ and $|(b_1 + a) \cap t(b_1, x)| = 0$, where T is the tetrad contained in $b_1 + d$ for all $d \in \{b_1, x\}^{\perp}$. Therefore $a \in \Delta_3^7(x)$ by definition.

Conversely assume $a \in \Delta_3^7(x)$ and let $b \in \Delta_2^1(x) \cap \Delta_1(a)$ with $b + a \in \alpha_{2^4}(b, X)$, where X is the unique element of $\Gamma_3(b, x)$ and $|(b + a) \cap t(b, x)| = 0$ in Ω_b , where $t(b, x) = \Omega_b \cap \Omega_x$. Then there exists $d \in \{b, x\}^{\perp}$ such that $b + x \in \Gamma_1(X)$ and $(b + d) \cap (b + a) = \emptyset$ in Ω_b . Hence $d \in \Delta_2^3(a)$ and now $x \in \Delta_3^{10}(a)$ by definition.

Lemma 7.7. Suppose that $x_1, x_2 \in \Delta_2(a)$ and $x_1 \in \Delta_1(x_2)$. Let $\Gamma_0(x_1 + x_2) = \{x_1, x_2, x\}$. Then $x_1, x_2 \in \Delta_2^i(a)$ for the same $i \in \{1, 2, 3\}$ and $x \in \Delta_1(a)$.

Proof. If $x_1 \in \Delta_2^3(a)$, the lemma follows from Lemma 7.3. So we may assume $x_1 \in \Delta_2^1(a) \cup \Delta_2^3(a)$. The point distributions (see, for $\Delta_2^1(a)$, Lemmas 5.5, 7.4 and Section 6 and, for $\Delta_2^3(a)$, Lemmas 5.10, 7.4, 7.5) of lines from $\Delta_2^1(a) \cup \Delta_2^3(a)$ are all known with the exception of $\alpha_{0,24}(x_1, \Lambda_1, \Lambda_2)$ when $x_1 \in \Delta_2^1(a)$. (The problem here with $\alpha_{0,24}(x_1, \Lambda_1, \Lambda_2)$ is that $\Delta_3^7(a)$ could equal one of the G_a -orbits in $\Delta_2(a)$.) From Lemmas 7.5 and 7.6, we deduce that $\Delta_3^7(a) \subseteq \Delta_3(a)$. In particular, for $\ell \in \alpha_{0,2^4}(x_1, \Lambda_1, \Lambda_2)$, $\Lambda_0(\ell) \cap \Delta_2^1(a) = \{x_1\} = \Lambda_0(\ell) \cap \Delta_2(a)$, so completing the proof of Lemma 7.7.

Lemma 7.8. Let $x \in \Delta_2^{10}(a)$ and $c \in \Delta_2^3(a) \cap \Delta_1(x)$.

(i) We have $\Delta_2(x) \cap \Delta_1(a) = \{a, c\}^{\perp}$ with $|\Delta_2^1(x) \cap \Delta_1(a)| = 1, |\Delta_2^2(x) \cap \Delta_1(a)| = 2$ and $|\Delta_2^3(x) \cap \Delta_1(a)| = 0.$

(ii) If $b \in \Delta_2^1(x) \cap \Delta_1(a)$, then $\Delta_2(a) \cap \Delta_1(x) = \{b, x\}^{\perp}$ with $|\Delta_2^1(a) \cap \Delta_1(x)| = 0$, $|\Delta_2^2(a) \cap \Delta_1(x)| = 4$ and $|\Delta_2^3(a) \cap \Delta_1(x)| = 1$.

Proof. In Ω_c , for every $b \in \{a, c\}^{\perp}$, the octad c + b is incident with the trio \mathcal{T}_{ca} and since $c + x \in \alpha_{42^2}(c, \mathcal{T}_{ca})$ we get $|\Delta_2^1(x) \cap \{a, c\}^{\perp}| = 1$, $|\Delta_2^2(x) \cap \{a, c\}^{\perp}| = 2$, and $|\Delta_2^3(x) \cap \{a, c\}^{\perp}| = 0$ from the definitions of $\Delta_2^i(x)$ (i = 1, 2, 3). Let $\{b\} = \Delta_2^1(x) \cap \{a, c\}^{\perp}$. In Ω_b , the two octads b + aand b + c are incident with the trio \mathcal{T}_{ca} and so the octads are disjoint. Let X be the unique element of $\Gamma_3(b, x)$. Then $b + a \in \alpha_{2^4}(b, X)$. Therefore, for every $d \in \{b, x\}^{\perp} \setminus \{c\}$, the octads b + a and b + d intersect in exactly two elements of Ω_b . So $|\Delta_2^1(a) \cap \{b, x\}^{\perp}| = 0$, $|\Delta_2^2(x) \cap \{b, x\}^{\perp}| = 4$, and $|\Delta_2^3(a) \cap \{b, x\}^{\perp}| = 1$.

To complete the proof by Lemma 7.8, it is enough to show that $\Delta_2(x)$ $\cap \Delta_1(a) = \{a, c\}^{\perp}$. Assume that $b_1 \in \Delta_2(x) \cap \Delta_1(a)$ with $b_1 \notin \{a, c\}^{\perp}$. If $a + b_1 \in \Gamma_1(X)$ for some $X \in \Gamma_3(a, c)$, then $a + b_1 \in \Gamma_1(Y) \cup \alpha_{2^4}(a, Y)$ for every $Y \in \Gamma_3(a, c)$ and so $\tau(Y) \in Q(a)_{b_1}$ by Lemmas 4.2(i) and 4.4. By the definition of $\Delta_3^{10}(a)$, we can find $Y \in \Gamma_3(a, c)$ with $c + x \in \alpha_{1^53}(c, Y)$ and then $\tau(Y) \notin G_x$ by Lemma 4.4. So $x, x^{\tau(Y)} \in \Delta_2(b_1) \cap \Gamma_0(c+x)$ and Lemma 7.7 gives $c \in \Delta_1(b_1)$, contrary to the choice of b_1 . Therefore $a + b_1 \notin \Gamma_1(X)$ for all $X \in \Gamma_3(a, c)$ and so in Ω_a , the octad $a + b_1$ intersects the trio \mathcal{T}_{ca} in 42^2 .

We now show that $b_1 \in \Delta_2^2(x)$. Let X be the unique element of $\Gamma_3(b, x)$. Assume $b_1 \notin \Delta_2^2(x)$ for a contradiction. Then there exists $Y \in \Gamma_3(x, b_1)$. If $X \in \beta_i(x, Y)$ for i = 1, 0, then there exists $d \in \{x, b_1\}^{\perp}$ with $x + d \in \alpha_{1} \delta_3(x, X)$. By Lemma 4.4, $d^{\tau(X)} \neq d$. Since $b + a \in \alpha_{2^4}(b, X)$, using Lemma 4.4 again we have $a^{\tau(X)} = a$. Using Lemma 7.7 with d and $d^{\tau(X)}$, we get $x \in \Delta_1(a)$. So we must have $X \in \beta_3(x, Y)$. We can choose $d \in \{b, x\}^{\perp}$ with $x + d \in \alpha_{4^2}(x, Y)$. So $d \in \Gamma_0(Y)$. If $d \in \Delta_1(b_1)$ then $d \notin \Delta_2^2(a)$ by Lemma 5.8(ii). Then d = c from the first part of the proof. This contradicts the fact that $b_1 \notin \{a, c\}^{\perp}$. If $d \in \Delta_2(b_1)$, then Lemma 7.7 implies that the point in $\Gamma_0(a + b_1) \setminus \{a, b_1\}$ lies in $\Delta_1(d)$ and using Lemma 7.7 again we get $a \in \Delta_1(x)$. So $d \in \Delta_3^8(b_1)$ because $\Gamma_3(d, b_1) \neq \emptyset$. However Lemma 7.4(iv) now yields $\Gamma_3(a, x) \neq \emptyset$ which contradicts Lemma 7.5. Hence we have shown that $b_1 \in \Delta_2(x)$.

Let d be the unique point in $\{x, b_1\}^{\perp}$. We can choose $Y \in \Gamma_3(a, c)$ such that $c + x \in \alpha_{2^4}(c, Y)$. Then $\tau(Y)$ fixes x by Lemma 4.4. Assume $d \notin \Delta_2^2(a)$ and let $Z \in \Gamma_3(a, d)$. If $Z \notin \Gamma_3(\mathcal{T}_{ca})$ we could choose $Y_1 \in \Gamma_3(\mathcal{T}_{ca})$ such that $Y_1 \in \beta_i(a, Z)$ for i = 0 or 1 and $b' \in \{a, d\}^{\perp}$ with $a + b' \in \alpha_{1^53}(a, Y_1)$. So $\tau(Y_1)$ does not fix b' by Lemma 4.4 and then Lemma 7.7 gives $a \in \Delta_1(x)$, a contradiction. Therefore $Z \in \Gamma_3(\mathcal{T}_{ca})$. Applying a similar argument to the one used to show $b_1 \in \Delta_2^2(x)$, we can prove that $d \in \Delta_2^2(a)$. Since $b_1 \notin \{a, c\}^{\perp}$, the octad $a + b_1$ in Ω_a is not incident with the trio \mathcal{T}_{ca} . Therefore, we can choose $Y \in \Gamma_3(a, c)$ with $\tau(Y) \in G_x$ and $b_1 \notin \Gamma_0(Y)$. If $\tau(Y)$ does not fix b_1 Lemma 7.7 would imply that $a \in \Delta_1(x)$ and so $\tau(Y) \in G_{b_1}$. From Lemma 4.8(ii), as $b_1 \notin \Gamma_0(Y)$, $\tau(Y) \notin Q(b_1)$. Hence $1 \neq \tau(Y)^{*b_1} \in O_2(G_{ab_1}^{*b_1}) \cong 2^4$ and because $d \in \Delta_2^2(a)$, the octads (in Ω_{b_1}) $b_1 + a$ and $b_1 + d$ intersect in two elements. As a consequence $\tau(Y)$ does not fix the line $b_1 + d$. In particular, $d^{\tau(Y)} \neq d$ and therefore, as $d, d^{\tau(Y)} \in \{b_1, x\}^{\perp}$, we have now have $|\{b_1, x\}^{\perp}| > 1$ which contradicts Lemma 5.8(ii). This completes the proof of the lemma.

Lemma 7.9. (i) $|\Delta_3^{10}(a)| = 2^9.3^2.5.7.11.23.$

(ii) G_a is transitive on $\Delta_3^{10}(a)$.

(iii) For $x \in \Delta_3^{10}(a)$, $G_{ax} \sim [2^9].S_4$ and $G_{ax}^{*x} \sim 2^6 : S_4$ is the stabilizer in G_x^{*x} of the tetrad t(x, b) (where b is the unique element of $\Delta_1(a) \cap \Delta_2^1(x)$) and a partition of $x + c \setminus t(x, b)$ into two pairs of elements.

Proof. Let $x \in \Delta_3^{10}(a)$ and c be the unique point in $\Delta_2^3(a) \cap \Delta_1(x)$ (c exists by Lemma 7.8). Then $|\Delta_3^{10}(a) \cap \Delta_1(c)| = 2 |\alpha_{42^2}(c, \mathcal{T}_{ca})| = 2.672$ by $\mathbf{O}(2.4)$. By the uniqueness of c and Lemma 5.11(i), we have

$$|\Delta_3^{10}(a)| = 2.672 |\Delta_2^3(a)| = 2^9 \cdot 3^2 \cdot 5 \cdot 7 \cdot 11 \cdot 23.$$

For part (ii), working in Ω_c , there are four sextets $X \in \Gamma_3(a, c)$ such that $c + x \in \alpha_{1^{5_3}}(c, X)$ and so $\tau(X) \notin G_x$ by Lemma 4.4. Therefore G_{ac} is transitive on $\Gamma_0(c + x) \setminus \{c\}$. Now part (ii) follows because $\alpha_{1^{5_3}}(c, X)$ is a G_{ac} -orbit on $\Gamma_1(c)$ and $\Delta_2^3(a)$ is a G_a -orbit of points by Lemma 5.11(ii).

103

Turning to part (iii) we have $G_{ax} \leq G_{ac}$. Let $b \in \{a, c\}^{\perp} \cap \Delta_2^1(x)$ (b exists and is unique by Lemma 7.8(i)). By Lemma 7.8(ii) there exists $c_1, c_2 \in \{b, x\}^{\perp} \cap \Delta_2^2(a)$ with $c_1 \neq c_2$. We show that $|Q(a)_x| \leq 2^3$ by first proving that $Q(a)_x \leq Q(a)_{c_i}$ for i = 1, 2. Assume $g \in Q(a)_x \setminus Q(a)_{c_i}$ for a contradiction. If $b^g = b$, then in Ω_b the octades $b + c_1$ and $b + c_1^g$ contain the same two elements of b + a. However Lemma 5.5 implies that $t(b, x) \subseteq b + c$ which gives $(b + a) \cap (b + c) \neq \emptyset$, contrary to Lemma 5.9. So $b^g \neq b$ and we can use Lemma 7.7 to show that $a \in \Delta_1(x)$, a contradiction. So $Q(a)_x \leq Q(a)_{c_i}$ for i = 1, 2. Since $(b + a) \cap (b + c_i) = \emptyset$ in Ω_b , there are seven hyperplanes $Y_i \in \Gamma_3(a, b)$ (i = 1, ..., 7) with $\tau(Y_i) \in G_{c_1c_2}$ and the subgroup generated by the elements $\tau(Y_i)$ has order at least 2^4 . Further we can show that, up to relabelling $Q(a) \cap Q(c_1)$ = $\langle \tau(Y_1)\tau(Y_2)\tau(Y_3)\rangle \leqslant Q(a)_{c_1c_2}$ (see Lemma 6.15 in [17] for details). Since $Q(a)_{c_1c_2} \neq Q(a)_{c_1}$ we have $|Q(a)_{c_1c_2}| = 2^4$ by Theorem 4. Therefore $|Q(a)_{c_1c_2}^{*c_1}| = 2^3$. In Ω_{c_1} , the octades $c_1 + b$ and $c_1 + x$ intersect in four elements and the subgroup of $O_2(G_{c_1b}^{*c_1})$ fixing $c_1 + x$ is of order 2^2 . Therefore $|Q(a)_{c_1c_2x}^{*c_1}| \le 2^2$ and so $|Q(a)_x| \le 2^3$, as required.

By parts (i) and (ii), $[G_{ac} : G_{ax}] = 2^6.3.7$. Since $|Q(a)_c| = 2^9$ by Theorem 5 we must have $|Q(a)_x| \le 2^3$ and so $|Q(a)_x| = 2^3$ and $[G_{ac}^{*a} : G_{ax}^{*a}] = 3.7$. Using the ATLAS [2] and Theorem 5 we get $G_{ax}^{*a} \sim 2^6 : S_4$. This completes the proof of the lemma.

Lemmas 7.6 and 7.8 now imply

Lemma 7.10. Let $x \in \Delta_3^7(a)$ and $c \in \Delta_2^1(a) \cap \Delta_1(x)$. Then

(i)
$$\Delta_2(x) \cap \Delta_1(a) = \{a, c\}^{\perp}$$
 with $|\Delta_2^1(x) \cap \Delta_1(a)| = 0, |\Delta_2^2(x) \cap \Delta_1(a)| = 4$
and $|\Delta_2^3(x) \cap \Delta_1(a)| = 1.$

(ii) If $b \in \Delta_2^3(x) \cap \Delta_1(a)$, then $\Delta_2(a) \cap \Delta_1(x) = \{b, x\}^{\perp}$ with $|\Delta_2^1(a) \cap \Delta_1(x)| = 1$, $|\Delta_2^2(a) \cap \Delta_1(x)| = 2$ and $|\Delta_2^3(a) \cap \Delta_1(x)| = 0$.

Lemma 7.11. (i) $|\Delta_3^7(a)| = 2^9.3^2.5.7.11.23.$

(ii) G_a is transitive on $\Delta_3^7(a)$.

(iii) For $x \in \Delta_3^7(a)$, $G_{ax} \sim [2^9].S_4$ and $G_{ax}^{*x} \sim 2^5 : S_4$ is the stabilizer in G_x^{*x} of the octad x + d (where d is the unique element of $\Delta_2^2(a) \cap \Delta_1(x)$), the trio \mathcal{T}_0 which is the unique element of $\Gamma_3(b, x)$ for $b \in \Delta_2^3(x) \cap \Delta_1(a)$ and a partition of the octad x + d into four 2-element sets.

Proof. Let $x \in \Delta_3^7(a)$ and $c \in \Delta_2^1(a) \cap \Delta_1(x)$. Then $|\Delta_3^3(a) \cap \Delta_1(c)|$ is twice the number of octads in Ω_c lying in $\alpha_{24}(c, X(c, a))$ that have an empty intersection with t(c, a). This number is 240. Therefore Lemmas 5.6 and 7.10 give

$$|\Delta_3^7| = 2^9 \cdot 3^2 \cdot 5 \cdot 7 \cdot 11 \cdot 23$$

Let $x' \in \Gamma_0(c+x) \setminus \{c, x\}$. Then by definition $x' \in \Delta_3^7(a)$. Since $c+x \notin \Gamma_1(X(c, a))$, there exists $Y \in \beta_3(c, X(c, a))$ with $c+x \in \alpha_{153}(c, Y)$. For this Y we have $x^{\tau(Y)} = x'$ by Lemma 4.4. By $\mathbf{O}(2.2)$ and Lemma 5.5(iii), G_{ca}^{*c} is transitive on the lines in $\alpha_{24}(c, X(c, a))$ that have an empty intersection with t(c, a) and so part (ii) follows from the transitivity of G_a on $\Delta_2^2(a)$ (see Lemma 5.6(ii)). For part (iii) we know that $a \in \Delta_3^{10}(x)$ by Lemma 7.6 and hence $G_{ax} \sim [2^9].S_4$ by Lemma 7.9(iii). Let $b \in \Delta_2^3(x) \cap \Delta_1(a)$ and $e_1, e_2 \in \{b, x\}^{\perp} \cap \Delta_2^2(a)$ with $e_1 \neq e_2$. (Such points exist by Lemma 7.10.) Assume $Q(a)_x \notin Q(a)_{e_1}$ and let $g \in Q(a)_y \setminus Q(a)_{e_1}$. If $b^g = b$, then $g^{*b} \in O_2(G_{ba}^{*b})$ and so in Ω_b , the octads $b + e_1$ and $b + e_1^g$ intersect b + a in the same two elements. However $e_1^g \in \{b, x\}^{\perp}$ and so $(b + e_1) \cap (b + e_1^g) = \emptyset$ because $b \in \Delta_2^3(x)$. Therefore $b^g \neq b$. Since $b^g \in \Gamma_0(a + b)$, Lemma 7.7 implies that $a \in \Delta_1(x)$, a contradiction. Therefore $Q(a)_x \leqslant Q(a)_{e_1}$ and similarly $Q(a)_x \leqslant Q(a)_{e_2}$. Using an argument similar to that in the proof of Lemma 7.9(iii), we get $|Q(a)_x| \leq 2^4$.

Since c is the unique point in $\Delta_2^1(a) \cap \Delta_1(x)$, $G_{ax} \leq G_{ac}$. By Lemma 5.6(iii) we have $|Q(c)_a| = 2^7$. Therefore $Q(c)_a^{*a} \leq O_2(G_{ac}^{*a})$. Since $c + x \in \alpha_{2^4}(c, X(c, a))$, there exists $Y \in \beta_3(c, X(c, a))$ such that $c + x \in \alpha_{1^{53}}(c, Y)$. Then Lemma 4.4 implies that $\tau(Y) \notin G_x$. However $\tau(Y) \in Q(c) \cap Q(X(c, a))$ and $\tau(Y) \notin Q(a)$. Therefore $|O_2(G_{xa}^{*x}| \leq 2^5)$ and so $G_{xa}^{*x} \sim 2^5 S_4$ and $|Q(x)_a| = 2^4$.

We end this section by examining the set

 $\Delta_3^9(a) = \{x \in \Gamma_0 \mid \text{there exists } c \in \Delta_2^2(a) \cap \Delta_1(x) \text{ such that}$ $c + x \in \alpha_{2,0}(c, c + b, \mathcal{D}_{ca}), \text{ where } \{b\} = \{a, c\}^{\perp}\}.$

Lemma 7.12. $\Delta_3^9(a) \cap \Delta_3^i(a) = \emptyset$ for i = 1, ..., 8 and i = 10.

Proof. Since $\Omega_a \cap \Omega_x = \emptyset$ by definition, $\Delta_3^9(a) \cap \Delta_3^i(a) = \emptyset$ for i = 1, ..., 6. By Lemma 7.4(iii), $\Delta_3^9(a) \cap \Delta_3^8(a) = \emptyset$. By Lemmas 7.8 and 7.10 and $\mathbf{O}(2.3)$ if $x \in \Delta_3^7(a) \cup \Delta_3^{10}(a)$, then $|(c + x) \cap (c + b)| = 0$ or 4 in Ω_c for any $c \in \Delta_2^2(a) \cap \Delta_1(x)$. Therefore $\Delta_3^9(a) \cap \Delta_3^i(a) = \emptyset$ for i = 7, 10 as required.

Lemma 7.13. Let $x \in \Delta_3^9(a)$. Then there exists a unique path of length three between a and x in \mathcal{G} .

Proof. Let $c \in \Delta_2^2(a) \cap \Delta_1(x)$ with $c + x \in \alpha_{20}(c, c + b, \mathcal{D}_{ca})$, and $\{b\} = \{a, c\}^{\perp}$. Then $b \in \Delta_2^2(x)$ by definition. Assume that a, b_1, c_1, x is another path of length three in \mathcal{G} . By Lemmas 7.8, 7.10, and 7.4 and $\mathbf{O}(2.2)$ and $\mathbf{O}(2.4)$, we must have $c_1 \in \Delta_2^2(a)$ and $b_1 \in \Delta_2^2(x)$. It then follows from Lemma 5.8(ii) that $b_1 \neq b$ and $c_1 \neq c$. Therefore $b_1 \in \Delta_2(b)$ and we consider the three possible choices separately.

First assume that $b_1 \in \Delta_2^3(b)$. Notice that $c_1 \notin \Delta_1(b) \cup \Delta_2(b)$ by Lemma 7.7 and Lemma 5.8(ii) and so $c_1 \in \Delta_3(b)$. Therefore $c_1 \in \Delta_3^8(b)$ $\cup \Delta_3^{10}(b)$ by $\mathbf{O}(2.4)$. However Lemma 7.4(iii) implies that $c_1 \in \Delta_3^{10}(b)$. We now have $c \in \Delta_2^1(c_1) \cap \{b, b_1\}^{\perp}$ by Lemma 7.8 and so $c, c_1 \in \{x, b_1\}^{\perp}$, contrary to Lemma 5.8(ii).

Next suppose that $b_1 \in \Delta_2^1(b)$. Therefore $c \in \Delta_3^7(b_1) \cup \Delta_3^8(b_1)$. Using Lemma 7.4(iii) we must have $c \in \Delta_3^7(b_1)$. This again leads to the contradiction that $c, c_1 \in \{x, b_1\}^{\perp}$.

Therefore we must have $b_1 \in \Delta_2^2(b)$. In Ω_c , $c + x \cap \mathcal{D}_{ca} = \emptyset$ and $|c + x \cap c + b| = 2$. Using the MOG and Lemma 4.4, we can find a sextet $Y \in \Gamma_3(c, b)$ with $\tau(Y) \in G_{ax}$. Since $\tau(Y) \notin Q(a)$ and $a + b_1 \in \alpha_2(a, b)$

a + b, $\tau(Y)$ does not fix $a + b_1$. However by the above argument we must have $a + b_1^{\tau(Y)} \in \alpha_2(a, a + b) \cap \alpha_2(a, a + b_1)$ and $(a + b) \cap (a + b_1) = (a + b)$ $\cap (a + b_1^{\tau(Y)})$ in Ω_a . As this cannot occur we again get a contradiction. This completes the proof of the lemma.

Lemma 7.14. (i) $|\Delta_3^9(a)| = 2^{13} \cdot 3^2 \cdot 5 \cdot 7 \cdot 11 \cdot 23$.

- (ii) G_a is transitive on $\Delta_3^9(a)$.
- (iii) For $x \in \Delta_3^9(a)$, $G_{ax} \sim [2^5].S_4$ and $G_{ax}^{*x} \sim 2^4.S_4$.

Proof. Let $x \in \Delta_3^9(a)$ and let a, b, c, x be the unique path of length three between a and x in \mathcal{G} .

(i) From **O**(2.4), $\Delta_1(c) \cap \Delta_3^9(a) = 2 \times 240 = 2^5.3.5$. Using Lemmas 5.8(ii) and Lemma 7.13 we then have $|\Delta_3^9(a)| = 2^1 3.3^2.5.7.11.23$.

(ii) Since $c + x \ \alpha_{2,0}(c, c + b, \mathcal{D}_{ca})$ and using Lemma 4.4, we can find $Y \in \Gamma_3(b,c)$ with $\tau(Y) \in G_a \setminus G_x$. Since $\tau(Y)$ fixes $c + x, \tau(Y)$ interchanges the points in $\Gamma_0(c + x) \setminus \{c\}$. Because G_a is transitive on $\Delta_2^2(a)$ and $\alpha_{2,0}(c, c + b, \mathcal{D}_{ca})$ is a G_{ac} -orbit, G_a is transitive on $\Delta_3^9(a)$.

(iii) We have $G_{ax} \leq G_{ac}$. Since $c + x \in \alpha_2(c, c + b)$, then $Q(a)_{cx}^{*c} = 1$ and so $Q(a)_x \leq Q(a) \cap Q(c)$. Using the MOG we see there exist $Y_1, Y_2, Y_3 \in \Gamma_3(c + b)$ with $Q(a) \cap Q(c) = \langle \tau(Y_1)\tau(Y_2)\tau(Y_3) \rangle$. Further, if δ is the duad in Ω_c fixed by G_{ca}^{*c} and t_i is the tetrad in Y_i containing δ (i = 1, 2, 3), then of the six elements in $(c + a) \setminus \delta$ in Ω_c , three lie in exactly two of the tetrads t_i and three lie in none of the tetrads t_i . (For details, see Proposition 8.12 in [17] where $\Delta_2^2(a)$ is denoted by $\Delta_2^3(a)$.) Since $\Omega_a \cap \Omega_x = \emptyset$ we have that $c + x \in \alpha_{153}(c, Y_i)$ for precisely two or none of the sextets Y_i , i = 1, 2, 3. Therefore $\tau(Y_1)\tau(Y_2)\tau(Y_3) \in G_x$ by Lemma 4.4. Hence $|Q(a)_x| = 2$ and it follows that $[G_{xb}^{*x} : G_{xa}^{*x}] = 2.3.5$. Since $G_{xb}^{*x} \sim 2^4 S_6$ by Lemma 5.8(iii) we must have $G_{xa}^{*x} \sim 2^4 S_4$, as required.

References

- M. Aschbacher, 3-Transposition Groups, Cambridge University Press, 1996. DOI: https://doi.org/10.1017/CBO9780511759413
- [2] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of Finite Groups, Oxford University Press, London, 1985.
- [3] R. T. Curtis, On the Mathieu Group M_{24} and Related Topics, Ph.D. Thesis, University of Cambridge, 1972.
- [4] R. T. Curtis, A new combinatorial approach to M_{24} , Mathematical Proceedings of the Cambridge Philosophical Society 79(1) (1976), 25-42.

DOI: https://doi.org/10.1017/S0305004100052075

[5] B. Fischer, Finite groups generated by 3-transpositions: I, Inventiones Mathematicae 13(3) (1971), 232-246.

DOI: https://doi.org/10.1007/BF01404633

[6] W. M. Kantor, Some geometries that are almost buildings, European Journal of Combinatorics 2(3) (1981), 239-247.

DOI: https://doi.org/10.1016/S0195-6698(81)80031-5

- [7] S. Linton, personal communication
- [8] R. List, On a Unitary Group in Six Dimensions, Ph.D. Thesis, University of Birmingham, 1973.
- M. A. Ronan and S. D. Smith, 2-Local geometries for some sporadic groups, A.M.S. Proceedings of Symposia in Pure Mathematics 37 (1980), 283-289.
- [10] M. Ronan and G. Stroth, Minimal parabolic geometries for the sporadic groups, European Journal of Combinatorics 5(1) (1984), 59-91.

DOI: https://doi.org/10.1016/S0195-6698(84)80020-7

[11] P. Rowley and L. Walker, On the Fi₂₂-minimal parabolic geometry, Geometriae Dedicata 61(2) (1996), 121-167.

DOI: https://doi.org/10.1007/BF00151580

- P. Rowley and L. Walker, A 195, 747, 435 vertex graph related to the Fischer group I, JP Journal of Algebra, Number Theory and Applications 23(1) (2011), 87-120.
- P. Rowley and L. Walker, A 195, 747, 435 vertex graph related to the Fischer group Fi₂₃: II, JP Journal of Algebra, Number Theory and Applications 24(2) (2012), 203-239.
- [14] P. Rowley and L. Walker, A 195, 747, 435 vertex graph related to the Fischer group Fi_{23} : III, JP Journal of Algebra, Number Theory and Applications 27(1) (2012), 1-44.
- [15] P. Rowley and L. Walker, Octad orbits for certain subgroups of M_{24} , Journal of Algebra, Number Theory: Advances and Applications 24(2) (2021), 155-199.
- [16] P. Rowley and B. Wright, Structure of the Fi'_{24} maximal 2-local geometry pointline collinearity graph, LMS Journal of Computation and Mathematics 19(1) (2016), 105-154.

DOI: https://doi.org/10.1112/S1461157016000036

 [17] L. Walker, The Maximal 2-Local Geometry for Fi[']₂₄, PhD Thesis, University of Manchester, 1991.