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Abstract 

The disc structure of the point-line collinearity graph for the maximal 2-local 

geometry associated with the largest simple Fischer group is investigated. For 

an arbitrary vertex of this graph the first three discs are determined. 

Additionally a fragment of the fourth disc is uncovered. 
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1. Introduction and Main Results 

The investigations of Fischer [5] into groups generated by                   

3-transpositions not only had an influence upon certain later work related 

to the classification of the finite simple groups but also unearthed three 

previously unknown sporadic groups, ,, 2322 FiFi  and .24Fi  The first two 

of these are simple while ,24Fi  though not simple, has a simple subgroup 

24iF ′  of index 2. For more on these groups and 3-transposition groups in 

general, see the book by Aschbacher [1]. 

Along with many of the other sporadic simple groups, ,, 2322 FiFi  and 

24iF ′  possess minimal parabolic geometries and maximal 2-local 

geometries (see [9] and [10]). In the present paper we study the point-line 

collinearity graph G  of ,Γ  the maximal 2-local geometry for .24iF ′  This 

geometry has rank 4 and its associated diagram is  

 

Many properties of Γ  are itemized in Section 2. We recall that the 

vertices of G  are ,0Γ  the points of Γ  and two points are adjacent in G  if 

they are incident with a common line. In [11, 12, 13] and [14] complete 

and detailed descriptions of the corresponding point-line collinearity 

graphs for 22Fi  and 23Fi  are presented. 

For 0Γ∈x  and ( )xi i∆∈ ,N  denotes the set of points of 0Γ  distance i 

from x. Let .24iFG ′=  Now G acts flag transitively on Γ  and so, in 

studying ,G  there is no loss in choosing and fixing a point a of .Γ  Here we 

shall obtain properties of the first three discs of G  around a (that is, of 

( ) ( )aa 2, ∆∆1  and ( ))a3∆  as well as describing a certain fragment of 
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( ).4 a∆  In a subsequent paper [16], a complete description of G  is 

obtained - however the work in [16] is exclusively computer based, 

whereas this paper does not rely on any machine calculations. It is worth 

remarking that the notation and conventions used here and in [16] are 

compatible so as to allow a smooth transition between the two viewpoints. 

Earlier in [17], the second author obtained results on the structure of the 

first three discs of .G The arguments given here will differ to some extent 

from those in [17] as we may now call upon results in [12, 13] and [14]. 

Further we are able to give more detail on adjacency within ( ).3 a∆  

We now present our main results - for notation we refer the reader to 

Section 2. 

Theorem 1. (i) ( )a1∆  is a orbitGa -  of size 1518; 

(ii) ( )a2∆  is the union of three ( ) ( )3,2,1- 2 =∆ iaorbitsG i
a  and 

( ) ;504,560,12 =∆ a  

(iii) ( )a3∆  is the union of ten ( ) ( )10,,1- 3 …=∆ iaorbitsG i
a  and 

( ) ;432,874,400,13 =∆ a  and 

(iv) ( ) { }004 /=/ΩΩΓ∈∆ axxa ∩∩  is the union of six ( )aorbitsG i
a 4- ∆  

( )6,,1 …=i  and consists of 3, 992, 911, 872 points. 
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Tables 1 and 2 list the sizes of the above mentioned ( ).orbits- aG i
ja ∆  

Table 1 

( )ai
j

∆  Size of ( )ai
j

∆  

( )a1∆  151823.11.3.2 =  

( )a1
2∆  016,17023.11.7.3.25 =  

( )a2
2∆  128,360,123.11.7.3.28 =  

( )a3
2∆  360,3023.11.5.3.23 =  

( )a1
3∆  288,036,123.11.212 =  

( )a2
3∆  240,658,1123.11.5.3.2 210 =  

( )a3
3∆  048,762,2123.11.7.3.212 =  

( )a4
3∆  624,28223.3.212 =  

( )a5
3∆  152,289,52223.11.7.3.2 215 =  

( )a6
3∆  240,810,10823.11.7.5.3.212 =  

( )a7
3∆  840,803,4023.11.7.5.3.2 29 =  

( )a8
3∆  720,56623.11.7.5.26 =  

( )a9
3∆  440,861,65223.11.7.5.3.2 213 =  

( )a10
3∆  840,803,4023.11.7.5.3.2 29 =  
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Table 2 

( )ai
j

∆  Size of ( )ai
j

∆  

( )a1
4∆  360,127,74623.11.5.3.2 216 =  

( )a2
4∆  912,870,2423.11.3.215 =  

( )a3
4∆  920,481,87023.11.7.5.3.215 =  

( )a4
4∆  312,693,75923.7.3.2 219 =  

( )a5
4∆  296,967,19823.11.3.218 =  

( )a6
4∆  072,771,392,123.11.7.3.218 =  

Theorem 2. Let ( ).1 ax ∆∈  Then 8
410 :2.2~ AGax  (with =∗x

axG  

( ) ,:2~ 8
4 AG ax

x
ax +
∗  an octad stabilizer) has 4 orbits on ( )x1Γ  with point 

distribution as follows: 

Orbit Size Point distribution 

{ }ax +  1 { } 12∆a  

( )axx +α ,0  30 3
212∆∆  

( )axx +α ,2  448 2
212∆∆  

( )axx +α ,4  280 1
212∆∆  

Theorem 3. Let ( ).1
2 ax ∆∈  Then ( )5

67 3:2.2~ SGax ×  (with =∗x
axG  

{ } ( ),3:2~, 5
6

21 SStab x
xG

×ΛΛ∗  where xa ΩΩ=Λ ∩1  is a tetrad and 

2Λ  is the unique sextet of xΩ  containing ).1Λ  Also ,aXax GG ≤  where 

X  is the unique hyperplane incident with both a and x. Further, axG  has 

6 orbits on ( )x1Γ  with point distribution as follows: 
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Orbit Size Point distribution 

( )214,4
,,2 ΛΛα x  5 1

212∆∆  

( )214,0
,,2 ΛΛα x  10 8

3
1
22∆∆  

( )2131,1
,,5 ΛΛα x  320 6

3
1
22∆∆  

( )212,2
,,4 ΛΛα x  240 2

3
1
22∆∆  

( )212,0
,,4 ΛΛα x  120 7

3
1
22∆∆  

( )2131,3
,,5 ΛΛα x  64 1

3
1
22∆∆  

Theorem 4. Let ( ).2
2 ax ∆∈  Then { } 1,,:2.2~ 6

45 =⊥
xaSGax  and 

{ } ,:2~, 6
4

21 SStabG x
xG

x
ax ΛΛ= ∗
∗  where 1Λ  is the octad of xΩ  corresponding 

to bx +  (where { } )⊥= xab ,  and ,22 xb ΩΩΩ=Λ ∩∩  a duad contained 

in .1Λ  The number of orbitsGax -  on ( )x1Γ  is 8 with point distribution as 

follows: 

Orbit Size Point distribution 

( ) { }bxx +=ΛΛα 212,8 ,,  1 2
212∆∆  

( )212,2 ,, ΛΛα x  16 4
3

3
3

2
2 ∆∆∆  

( )212,4 ,, ΛΛα x  60 2
3

2
22∆∆  

( )211,4 ,, ΛΛα x  160 6
3

2
22∆∆  

( )211,2 ,, ΛΛα x  192 5
3

2
22∆∆  

( )210,4 ,, ΛΛα x  60 10
3

2
22∆∆  

( )210,2 ,, ΛΛα x  240 9
3

2
22∆∆  

( )210,0 ,, ΛΛα x  30 7
3

2
22∆∆  
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Theorem 5. Let ( ).3
2 ax ∆∈  Then ( )( )32:2.2~ 3

69 ×LGax  and 

( )( ),32:2~ 3
6 ×∗ LG x

ax  the derived subgroup of { },1Λ∗x
xG

Stab  where 1Λ  is 

a trio of .xΩ  Also ,π≤ aax GG  where π  is the unique plane incident with 

both a and x. The number of orbitsGax -  on ( )x1Γ  is 3 with point 

distribution as follows: 

Orbit Size Point distribution 

( )180
,2 Λα x  3 3

212∆∆  

( )14
,2 Λα x  84 8

3
3
22∆∆  

( )142
,2 Λα x  672 10

3
3
22∆∆  

Now we move onto ( )a3∆  the third disc of a; we caution that in the 

following results the point distribution is incomplete. 

Theorem 6. Let ( ).1
3 ax ∆∈  Then ( ) 33

2 :4.2~ SLGax  and =∗x
axG  

{ } ( ) ,:4~ 331 SLStab x
xG

Λ∗  where 1Λ  is a triad of .xΩ  The number of 

orbitsGax -  on ( )x1Γ  is 4, the point distribution of 3 of them are as follows: 

Orbit Size Point distribution 

( )13 , Λα x  21 1
3

1
22∆∆  

( )12 , Λα x  168 3
3

1
32∆∆  

( )11 , Λα x  360 1
4

1
32∆∆  

Theorem 7. Let ( ).2
3 ax ∆∈  Then ( )( )22:2.2~ 3

34 ×LGax  and 

{ } ( )( ),22:2~, 3
3

21 ×ΛΛ= ∗
∗ LStabG x

xG

x
ax  where 1Λ  is an octad and 2Λ  

is a duad of xΩ  and .021 /=ΛΛ ∩  The number of orbitsGax -  on ( )x1Γ  is 

11, the point distribution of 6 of them are as follows: 
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Orbit Size Point distribution 

( )212,0 ,, ΛΛα x  7 2
3

1
22∆∆  

( )211,0 ,, ΛΛα x  16 2
4

2
32∆∆  

( )212,4 ,, ΛΛα x  14 2
3

2
22∆∆  

( )212,2 ,, ΛΛα x  56 3
3

2
32∆∆  

( )211,4 ,, ΛΛα x  112 3
4

2
32∆∆  

( )211,2 ,, ΛΛα x  224 1
4

2
32∆∆  

Theorem 8. Let ( ).3
3 ax ∆∈  Then 6

4 :2.2~ SGax  and =∗x
axG  

{ } ,:2~, 6
4

21 SStab x
xG

ΛΛ∗  where 1Λ  is an octad and 2Λ  is a duad of 

xΩ  and .12 Λ⊆Λ  The number of orbitsGax -  on ( )x1Γ  is 8, the point 

distribution of 5 of them are as follows: 

Orbit Size Point distribution 

( ) { }1212,8 ,, Λ=ΛΛα x  1 4
3

3
3

2
2 ∆∆∆  

( )212,2 ,, ΛΛα x  16  3
3

1
32∆∆  

( )212,4 ,, ΛΛα x  60 3
3

2
32∆∆  

( )211,4 ,, ΛΛα x  160 6
4

3
32∆∆  

( )211,2 ,, ΛΛα x  192 4
4

3
32∆∆  

Theorem 9. Let ( ).4
3 ax ∆∈  Then 2:.2~ 22MGax  and =∗x

axG  

{ } ,2:~ 221 MStab x
xG

Λ∗  where 1Λ  is a duad of .xΩ  The number of 

orbitsGax -  on ( )x1Γ  is 3, the point distribution of 2 of them are as follows: 
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Orbit Size Point distribution 

( )12 , Λα x  77 4
3

3
3

2
2 ∆∆∆  

( )11 , Λα x  352 5
4

4
32∆∆  

Theorem 10. Let ( ).5
3 ax ∆∈  Then ,,{ 21 ΛΛ=≅ ∗

∗
x

xG

x
axax StabGG   

,:2~} 5
4

3 AΛ  where { },, 211 ∞=Λ=Λ O  and { }.143 =Λ  The number of 

orbitsGax -  on ( )x1Γ  is 13, the point distribution of 9 of them are as 

follows: 

Orbit Size Point distribution 

( ) { }13211,1,8 ,,, Ox =ΛΛΛα  1 5
3

2
22∆∆  

( )3211,1,2 ,,, ΛΛΛα x  16 5
4

4
4

5
3 ∆∆∆  

( ) ( )321
1

0,1,4 ,,, ΛΛΛα x  40 3
4

5
32∆∆  

( ) ( )321
2

0,1,4 ,,, ΛΛΛα x  40 6
4

5
4

5
3 ∆∆∆  

( ) ( )321
1

1,0,4 ,,, ΛΛΛα x  40 3
4

5
32∆∆  

( ) ( )321
2

1,0,4 ,,, ΛΛΛα x  40 6
4

5
4

5
3 ∆∆∆  

( )3211,1,4 ,,, ΛΛΛα x  60 3
4

1
4

5
3 ∆∆∆  

( )3210,1,2 ,,, ΛΛΛα x  96 6
4

5
32 ∆∆  

( )3211,0,2 ,,, ΛΛΛα x  96 6
4

5
32 ∆∆  

Theorem 11. Let ( ).6
3 ax ∆∈  Then [ ] 4

6 .3:2~ SGax  and =∗x
axG  

{ } ,.3:2~,, 4
4

321 SStab x
xG

ΛΛΛ∗  where 1Λ  is an octad of 2, ΛΩx  a 

tetrad contained in 1Λ  and 3Λ  a 1-element subset of .2Λ  The number of 

orbitsGax -  on ( )x1Γ  is 16, the point distribution of 7 of them are as 

follows: 
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Orbit Size Point distribution 

{ }1Λ  1 6
3

1
22∆∆  

( )3211,4,4 ,,, ΛΛΛα x  4 6
3

2
22∆∆  

( )3211,1,4 ,,, ΛΛΛα x  16 3
4

2
4

6
3 ∆∆∆  

( )3211,2,2 ,,, ΛΛΛα x  48 3
4

6
32∆∆  

( )3211,3,4 ,,, ΛΛΛα x  48 1
4

6
32∆∆  

( )3211,1,2 ,,, ΛΛΛα x  64 6
4

5
4

6
3 ∆∆∆  

( )3211,2,4 ,,, ΛΛΛα x  72 1
4

6
32∆∆  

Theorem 12. (i) Let ( ).7
3 ax ∆∈  Then [ ] 4

9 .2~ SGax  and =∗x
axG  

{ } [ ] ,.2~,, 4
6

321 SStab x
xG

ΛΛΛ∗  where ,, 2211 OO =Λ=Λ  and 3Λ  is the 

partition of 1O  given by { } { } { } { }.18,15,20,3,8,0,14,∞  The point 

distribution of 3 of the orbitsGax -  on ( )x1Γ  are as follows: 

Orbit Size Point distribution 

( )3212,0,8
,,,4 ΛΛΛα x  1 7

3
1
22∆∆  

( )3210,8,0
,,,4 ΛΛΛα x  1 7

3
2
22∆∆  

( )3210,0,0
,,,4 ΛΛΛα x  1 7

3
2
22∆∆  

(ii) For ( ) [ ] 4:3.3.2~, 2138
3 axGax ∆∈  and { }321 ,, ΛΛΛ= ∗

∗
x

xG

x
ax StabG  

,4:3.3.2~ 26  where { },10,16,4,17,18,15,20,3,8,0,14,, 201 ∞=Λ=Λ S  

and .23 ΛΩ=Λ \ x  The point distribution of 3 of the orbitsGax -  on ( )x1Γ  

are as follows: 
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Orbit Size Point distribution 

( )3210,8,4
,,,2 ΛΛΛα x  3 8

3
3
22∆∆  

( )3218,0,4
,,,2 ΛΛΛα x  3 8

3
3
22∆∆  

( )3214,4,4
,,,2 ΛΛΛα x  9 8

3
1
22∆∆  

(iii) For ( ) { } ,:2.2~,,,, 4
4

4321
9
3 SStabGGax x

xG

x
axax ΛΛΛΛ=≅∆∈ ∗
∗   

where ,,, 332211 OOO =Λ=Λ=Λ  and { }.14,4 ∞=Λ  The point distribution 

of the ( )43212,0,0,8 ,,,,- ΛΛΛΛα xorbitGax  is .2 9
3

2
2 ∆∆  

(iv) For ( ) [ ] 4
910

3 .2~, SGax ax∆∈  and { }321 ,, ΛΛΛ= ∗
∗

x
xG

x
ax StabG  

[ ] ,.2~ 4
5 S  where 1Λ  is the tetrad { } 2,15,3,0, Λ∞  is the duad { },8,14  

and 3Λ  is the duad { }.18,20  The point distributions of 2 of the 

orbitsGax -  on ( )x1Γ  are as follows: 

Orbit Size Point distribution 

( )3212,2,4 ,,, ΛΛΛα x  1 10
3

3
22∆∆  

( )3210,0,4 ,,, ΛΛΛα x  4 10
3

2
22∆∆  

Theorem 13. (i) For ( ) ( ) ,2.2.2~, 3
1
4 LGax ax∆∈  and ( ) .2.2~ 3LG x

ax
∗  

(ii) For ( ) ., 8
2
4 AGGax x

axax ≅≅∆∈ ∗   

(iii) For ( ) .3.2~, 263
4

x
axax GGax ∗≅∆∈  

(iv) For ( ) ( ).11, 2
4
4 LGGax x

axax ≅≅∆∈ ∗  

(v) For ( ) ., 7
5
4 AGGax x

axax ≅≅∆∈ ∗  

(vi) For ( ) ( ) .2.3~, 5
6
4 AGGax x

axax ×≅∆∈ ∗  
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Since, for t
axaxa GGt =Ω∈ ,  for all ( ) ( ),6,,14 …=∆∈ iax i  the 

point distributions given in Theorems 11-16 of [12] may be directly 

translated to give the point distributions for orbits-axG  on ( )x1Γ  of those 

lines within .0
tΓ   

As mentioned earlier, in Section 2 we explain the notation we shall be 

using. Additionally, in (2.1), we summarize the properties we shall 

assume about .Γ  In (2.2) we give the definition of the ( )xG j
ia ∆orbits-  

(for ).0Γ∈x  While Section 3 studies various properties of the point and 

hyperplane residues that we shall need to call upon later. Then Section 4 

introduces, for X  a hyperplane, the involutions ( )Xτ  in .G  These play 

an important part in many of our arguments, primarily because of 

Lemma 4.4. In Lemma 4.7 we quickly describe the first ( ).disc 1 a∆  The 

second ( )a2disc ∆  is examined in Section 5 with ( )a3∆  and part of ( )a4∆  

being investigated in Sections 6 and 7. 

We close this section by summarizing the collapsed adjacencies 

established in Theorems 1-13. 
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2. Notation and Γ  

The maximal 2-local geometry Γ  for 24iFG ′=  has rank 4 and we use 

( )3,2,1,0=Γ ii  to denote the objects of type i in ;Γ  objects of type 0 

(respectively, 1, 2, 3) will be referred to as points (respectively, lines, 

planes, hyperplanes). For ,Γ∈x  the residue of ,, xx Γ  is defined to be 

{ },yxy ∗Γ∈  where ∗  is the symmetric incidence relation of .Γ  Also, for 

,Γ∈x  we set  

( ) { gGgxQ x∈=  fixes all objects in },xΓ  
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and for xGH �  we write xH ∗  for ( ) ( ).xQxHQ  If Γ⊆∑  and 

{ },3,2,1,0∈i  then we set ( ) { yxx ii ∗Γ∈=∑Γ  for all }.∑∈y  The 

point-line collinearity graph G  of Γ  has 0Γ  as its vertex set and for 

xyx ,, 0Γ∈  and y  are adjacent in G  if they are collinear, that is if 

( ) .0,1 /=/Γ yx  For ,, 0Γ∈yx  put { } ( ) ( )., 11 yxyx ∆∆=⊥
∩  Also for ,0Γ∈x  

we define ( ) { gGgxZ ∈=1  fixes { } ( )xx 1∆∪  pointwise} - note that 

( ) .1 xGxZ ⊲  

We take as our starting point the following properties of .Γ  

(2.1) (i) G  acts flag transitively on .Γ  

(ii) Γ  is a string geometry. 

(iii) For ( ) 3, 01 =ΓΓ∈ ℓℓ  and if ( )ℓ0, Γ∈yx  with ,yx =/  then 

( ) { }.,1 ℓ=Γ yx  

(iv) For 24
11

0 2~, MGx x ⋅Γ∈  with ( ) ,211≅xQ  the dual of the 

Golay code module and .24MG x
x ≅∗  Moreover, xΓ  is isomorphic to the 

24M  maximal 2-local geometry. 

(v) For ( ) 2.3.3.2~, 4
121

3 UGX X
+

+Γ∈  with ( ) ( ) =+
+ XGZXQ ,3.2~ 121  

( )( )( ) 22 ≅XQOZ  and ( ) .2.3~ 4UG X
X
∗  Also, XΓ  is isomorphic to a 

geometry for ( ) 2.34U  which is a subgeometry of the unitary geometry for 

( ).26U  

In (2.1) and elsewhere we follow the ubiquitous ATLAS [2] in 

describing group structures - it is also a convenient source for information 

about 24iF ′  and subgroups of 24M  and ( ) .2.34U  In the situation of (2.1) 

we shall frequently denote ℓ  by yx +  (to indicate we are viewing ℓ  in 

)xΓ  or xy +  (to indicate we are viewing ℓ  in ).yΓ  See Section 3 for 

further details on the residue geometry in (2.1) (v). 
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Let 0Γ∈x  and let X,, πℓ  be, respectively, a line, plane and 

hyperplane in .xΓ  We remark that ℓ  corresponds to an octad, π  to a trio 

and X  to a sextet (see [9] and [4]). For a further discussion of xΓ  and ,XΓ  

see Section 3. Other details of these geometries may be found in [6] and 

[17]. 

Before introducing an alternative way of viewing Γ  we note, in 

passing, that 215,946,413,503,20 =Γ  and that the permutation rank 

of G  on 0Γ  is 120 [7]. 

Let T  denote the set of transpositions in .24Fi  It is a fact that a 

maximal set B of pairwise commuting transpositions has 24=B  and 

( ) .2~ 24
11 MBStabG ⋅  Such a set is called a base in [2] and G  is 

transitive on the set of bases. Since 24iF ′  has only one conjugacy class of 

subgroups isomorphic to 24
112 M⋅  we may identify 0Γ  with the set of 

bases in a way which is compatible with the G-action. For 0Γ∈x  we use 

xΩ  to denote the base identified with x. Now xΩ  carries a copy of the 

Steiner system ( )5,8,24S  preserved by ( ).xGStab Ω  Indeed an octad of 

xΩ  corresponds to a line in xΓ  (such an octad is contained in precisely 

three bases and incidence between points and lines corresponds to 

containment of bases and octads). Therefore 0, Γ∈yx  are adjacent in G  

if and only if yx ΩΩ ∩  is an octad of both xΩ  and .yΩ  

For T∈t  put { }.00 x
t tx Ω∈Γ∈=Γ  So the points in t

0Γ  correspond 

to all the bases which contain the fixed transposition t. Also put 

( ).tCG G
t =  Then 23FiGt ≅  and t

0Γ  is the set of points of the 23Fi  

geometry scrutinized in [12], [13], [14] (see especially Section 1). Further, 

if tG  denotes the point-line collinearity graph of this 23Fi  geometry, then 

we see that for xyx t ,, 0Γ∈  and y are adjacent in tG  if and only if x and y 
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are adjacent in .G  This observation gives us access to a rich vein of 

geometric information from [12, 13, 14]. So, in studying ,G  we may view 

Γ  geometrically working within residues or regard 0Γ  as living in the 

world of transpositions. In our arguments we adopt whichever viewpoint 

is the most efficacious. We shall also frequently call upon data given in 

[15] and accordingly will denote result (i.j) in [15] by O(i.j). We carry 

along the notational conventions of [4]. So 0S  and 0T  denote the 

standard sextet and standard trio and 321 ,, OOO  are the heavy blocks of 

the MOG. Additionally we adapt the notation in [15] in the following 

manner. Let .0Γ∈x  In xΓ  the lines correspond to the octads of the 24M  

maximal 2-local geometry so to indicate we are working in xΓ  we write 

( )1, Λα xi  instead of just iα  (see O(2.1)), with a similar convention for the 

other orbits itemized in [15]. 

(2.2) Let x be a point in .Γ  

(i) ( ) { 0
1
2 Γ∈=∆ yx  there exists { }⊥∈ yxb ,  such that 4α∈+ yb  

( )}., xbb +  

(ii) ( ) { 0
2
2 Γ∈=∆ yx  there exists { }⊥∈ yxb ,  such that 2α∈+ yb  

( )}., xbb +  

(iii) ( ) { 0
3
2 Γ∈=∆ yx  there exists { }⊥∈ yxb ,  such that 0α∈+ yb  

( )}., xbb +  

(iv) ( ) { 0
1
3 Γ∈=∆ yx  there exists ( ) ( )yxc 1

1
2 ∆∆∈ ∩  such that ∈+ yc  

( )}.,,531,3 cxcxc SΩΩα ∩  

(v) ( ) { 0
2
3 Γ∈=∆ yx  there exists ( ) ( )yxc 1

2
2 ∆∆∈ ∩  such that ∈+ yc  

( ),,,2,4 cxbcc D+α  where { } { } }.,
⊥= cxb  
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(vi) ( ) { 0
3
3 Γ∈=∆ yx  there exists ( ) ( )yxc 1

2
2 ∆∆∈ ∩  such that ∈+ yc  

( ),,,2,2 cxbcc D+α  where { } { }⊥= cxb ,  and for ct cx ,D∈  is the unique 

point in ( ) ( )}.1
2
20 yxt ∆∆Γ ∩∩  

(vii) ( ) { 0
4
3 Γ∈=∆ yx  there exists ( ) ( )yxc 1

2
2 ∆∆∈ ∩  such that  

( ),,,2,2 cxbccyc D+α∈+  where { } { }⊥= cxb ,  and for ,cxt D∈  there are 

77 points in ( ) ( )}.1
2
20 yxt ∆∆Γ ∩∩  

(viii) ( ) { 0
5
3 Γ∈=∆ yx  there exists ( ) ( )yxc 1

2
2 ∆∆∈ ∩  such that  

( ),,,1,2 cxbccyc D+α∈+  where { } { } }.,
⊥= cxb  

(ix) ( ) { 0
6
3 Γ∈=∆ yx  there exists ( ) ( )yxc 1

2
2 ∆∆∈ ∩  such that  

( ),,,1,4 cxbccyc D+α∈+  where { } { } }.,
⊥= cxb  

(x) ( ) { 0
7
3 Γ∈=∆ yx  there exists ( ) ( )yxc 1

1
2 ∆∆∈ ∩  such that 

( )}.,,42,0 cxcxcyc SΩΩα∈+ ∩   

(xi) ( ) { 0
8
3 Γ∈=∆ yx  there exists ( ) ( )yxc 1

3
2 ∆∆∈ ∩  such that  

( )}.,4 cxcyc Tα∈+  

(xii) ( ) { 0
9
3 Γ∈=∆ yx  there exists ( ) ( )yxc 1

2
2 ∆∆∈ ∩  such that  

( ),,,0,2 cxbccyc D+α∈+  where { } { } }.,
⊥= cxb  

(xiii) ( ) { 0
10
3 Γ∈=∆ yx  there exists ( ) ( )yxc 1

3
2 ∆∆∈ ∩  such that  

( )}.,242 cxcyc Tα∈+  

(xiv) ( ) { 0
1
4 Γ∈=∆ yx  there exists ( ) ( )yxd 1

1
3 ∆∆∈ ∩  such that  

( )}.,1 dxdyd Tα∈+  
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(xv) ( ) { 0
2
4 Γ∈=∆ yx  there exists ( ) ( )yxd 1

2
3 ∆∆∈ ∩  such that  

( )}.,,1,0 dxdxdyd DOα∈+  

(xvi) ( ) { 0
3
4 Γ∈=∆ yx  there exists ( ) ( )yxd 1

2
3 ∆∆∈ ∩  such that  

( )}.,,1,4 dxdxdyd DOα∈+  

(xvii) ( ) { 0
4
4 Γ∈=∆ yx  there exists ( ) ( )yxd 1

3
3 ∆∆∈ ∩  such that  

( ),,,1,2 dxbddyd D+α∈+  where { } ( ) ( )}.2
21 xdb ∆∆= ∩  

(xviii) ( ) { 0
5
4 Γ∈=∆ yx  there exists ( ) ( )yxd 1

4
3 ∆∆∈ ∩  such that  

( )}.,1 dxdyd Dα∈+  

(xix) ( ) { 0
6
4 Γ∈=∆ yx  there exists ( ) ( )yxd 1

3
3 ∆∆∈ ∩  such that  

( ),,,1,4 dxbddyd D+α∈+  where { } ( ) ( )}.2
21 xdb ∆∆= ∩  

In (2.2) the letters TSDO ,,,  (with appropriate subscripts) stand 

for, respectively, particular octads, duads, sextets and trios of certain 

bases. Their exact description will emerge later, and will tie in with the 

data given in [15]. 

Remark. In fact  

( )
( )

( ) ( ).30
8
3

3

xXx

xX

∆Γ=∆

Γ∈

∩∪  

See [17] for further details. 

Let 0Γ∈x  and .xt Ω∈  Set ( ) ( ) tt
xx 011 Γ∆=∆ ∩  and for ,2,1=i  let 

( ) ( ) .022
titi xx Γ∆=∆ ∩  For ,6,,1 …=i  we set 

( ) ( ) ,033
titi xx Γ∆=∆ ∩  

and 

( ) ( ) .044
titi xx Γ∆=∆ ∩  
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Further we put ( ) ( ) .tt
GxQxQ ∩=  The above notation is set up so as 

( )ti
j

x∆  corresponds to the ( )xi
j

∆  as given in [12; (2.15)] for the point-line 

collinearity graph .tG  

(2.3) Let .0Γ∈x  

(i) ( ) ( ) ( ) ( ) ( )2,1, 2211 =∆=∆∆=∆
Ω∈Ω∈

ixxxx
ti

t

it

t xx
∪∪  and ( ) =∆ xi

j
 

( ) ( ).4,3,6,,1 ==∆
Ω∈

jix
ti

jt x
…∪  

(ii) For each ( ) ( ) .,
t

x xQxQt =Ω∈  

(iii) ( ) ( ) ( ) ( )xxxx i
3

2
2

1
21 ,,, ∆∆∆∆  and ( ) ( )6,,14 …=∆ ixi  are all distinct 

.orbits-xG  

(iv) If xt Ω∈  and ,0
ty Γ∈  then [ ] .24: ≤t

xyxy GG  

Proof. Part (i) follows from (2.2) and (ii) holds because ( )xQ  centralizes 

all transpositions t in .xΩ  Since xG  acts transitively on the 24 

transpositions in xΩ  and, by [12], ( ) ( ) ( ) ( ) ( )titittt
xxxxx 43

2
2

1
21 ,,,, ∆∆∆∆∆  

are all orbits-t
xG  (of different sizes) we infer that (iii) holds. Because 

24=Ωx  the orbit-xyG  of t can have size at most 24, whence we have 

(iv).  � 

3. The Point and Hyperplane Residues 

Recall that we shall employ the same notational conventions as in 

[15] for the subscripts of .α  Suppose that ( )xx 10 , Γ∈Γ∈ ℓ  and 

( ).3 xX Γ∈  By (2.1) we may identify ℓ  with an octad of xΩ  and X  with 

a sextet of .xΩ  So, for example, ( )Xx,24
α  denotes the set of octads 

(lines) which cut the sextet X  in ,42  and ( )ℓ,2 xα  is the set of octads 
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(lines) which intersect the octad ℓ  in two elements. Also we define 

( ) ( ) ( )XxXxXx ,,,,, 310 βββ  to be the set of sextets of xΩ  (not equal to )X  

which have, respectively, exactly 1,0  and 3 octads which are also 

incident with .X  Additionally, we define the following subsets of ( ):3 xΓ  

( ) { ( ) ( )},,, 2431 YxxYx α∈Γ∈=δ ℓℓ  

( ) { ( ) ( )},,, 4232 YxxYx α∈Γ∈=δ ℓℓ  

( ) { ( ) ( )}.,,
3133 5 YxxYx α∈Γ∈=δ ℓℓ  

Lemma 3.1. Let ( )xx 10 , Γ∈Γ∈ ℓ  and ( )., 3 xX Γ∈  

(i) The orbitsGx -ℓ  on ( )x1Γ  are { } ( ) ( )ℓℓℓ ,,,, 20 xx αα  and ( ),,4 ℓxα  

where ( ) ( ) ,448,,30, 20 =α=α ℓℓ xx  and ( ) .280,4 =α ℓx  

(ii) The orbitsGx -ℓ  on ( )x3Γ  are ( ) ( )ℓℓ ,,, 21 xx δδ  and ( ),,3 ℓxδ  where 

( ) ( ) ,840,,35, 21 =δ=δ ℓℓ xx  and ( ) .896,3 =δ ℓx  

Proof. See [3] or [4]. 

Lemma 3.2. Let 0Γ∈x  and ( )xX 3Γ∈  (so in Xx ,Γ  may be identified 

with a sextet in ).xΩ  Then the orbits of xXG  on ( )x1Γ  (the octads of )xΩ  

are ( ) ( ),,,,
314 52 XxXx αα  and ( ).,42

Xxα  Moreover ( ) ,15,24
=α Xx  

( ) ,384,
315 =α Xx  and ( ) .360,42

=α Xx  

Proof. Since ,.3:2~ 6
6 SG x

xX
∗  the stabilizer of the sextet ,X  this 

follows from [3].  � 

Lemma 3.3. For 0Γ∈x  and ( ),3 xX Γ∈  the orbitsGxX -  on ( )x3Γ  are 

{ } ( ) ( ),,,,, 10 XxXxX ββ  and ( ).,3 Xxβ  Further ( ) ,1440,0 =β Xx  

( ) ,240,1 =β Xx  and ( ) .90,3 =β Xx  

Proof. See [3].  � 
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Lemma 3.4. Let ,0Γ∈x  and ( )., 3 xYX Γ∈  

(i) Suppose ( ).,3 XxY β∈  Of the fifteen octads in xΩ  incident with ,X  

three are in ( )Yx,24
α  and twelve are in ( ).,42

Yxα  

(ii) Suppose ( ).,1 XxY β∈  Of the fifteen octads in xΩ  incident with ,X  

one is in ( ),,24
Yxα  six are in ( )Yx,42

α  and eight are in ( ).,
315 Yxα  

(iii) Suppose ( ).,0 XxY β∈  Of the fifteen octads in xΩ  incident with ,X  

seven are in ( )Yx,42
α  and eight are in ( ).,

315 Yxα  

Proof. Since xG  is transitive on ( )x3Γ  we may suppose X  is the 

standard sextet. Then, in view of Lemma 3.2, for parts (i) (ii) and (iii), 

respectively we may take 

,,

□□□□□□

□□

×

∗∗∗∗×

++++×

−−−−×

=

++

++

∗∗−−××

∗∗−−××

=

�

�

�

�

��

��

YY  

and  

.

++∗

∗∗+

−−−×

+∗−×××

=

□□

□

□

�

��

�

Y  

It is now straightforward to check the result.  � 
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Lemma 3.5. Let ( )xmx 10 , Γ∈Γ∈  and ( ).3 xX Γ∈  If ( ),1 Xm Γ∉  

then there exists ( ) { }XXxY ∪,3β∈  such that ( ).,
315 Yxm α∈  

Proof. Since ( ) ( ).,, 241 XxmXm α∉Γ∉  Hence, by Lemma 3.2, 

( ) ( ).,, 45 231
XxXxm αα∈ ∪  If ( ),,

315 Xxm α∈  then we let .XY =  So 

now we assume that ( ).,42
Xxm α∈  Let 1t  and 2t  be tetrads of X  such 

that 21 =mt ∩  and .02 =mt ∩  Now choose a tetrad 3t  such that 

22313 == tttt ∩∩  and .13 =mt ∩  Letting Y  be the unique sextet 

containing ,3t  we have ( )XxY ,3β∈  and ( ),,
315 Yxm α∈  so proving the 

lemma.  � 

The balance of this section considers the hyperplane residue of .Γ  Set 

( ) ( X
XGUH *

4 2.3 ≅=  where ).3Γ∈X  We consider H as a subgroup of 

( ),26U  and let V  denote the 6-dimensional ( )4GF  unitary module. Now 

there are 693 isotropic 1-subspaces of V (see [2]) and H has two orbits on 

these 1-spaces, say, P  and Q  with 567=P  and .126=Q  Of the 6237 

isotropic 2-subspaces of V, 2835 of them have three 1-subspaces in P  and 

two 1-subspaces in denote-Q  this set by .L  Among the 891 isotropic       

3-subspaces, 567 contain exactly one 1-subspace in ;Q  call this set .R  

We define a geometry 210 ΛΛΛ=Λ ∪∪  where LP =Λ=Λ 10 ,  and 

,2 R=Λ  where incidence is symmetrized inclusion. This geometry is an 

example of a GAB (see [6]) and we have  

Lemma 3.6. For XX ΓΓ∈ ,3  is isomorphic to .Λ  

Our next result lists some properties of Λ  we shall require later on. 

Lemma 3.7. Let .0Λ∈x  

(i) The orbitsHx -  on 0Λ  are ( ) ( ) ( )xDxDxD 2
2

1
21 ,,  and ( ),1

3 xD  where 

( ) ( ) ( ) ,96,120,30 2
2

1
21 === xDxDxD  and ( ) .3201

3 =xD  
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(ii) The point-line collinearity graph of Λ  is as follows 

 

(iii) We have 6
4.2~ SHx  with ( ) .24

2 ≅HO  

(iv) If ( ) ,1,2 =/∈ gHOg x  then g interchanges ( ) { }xℓ0Λ  for 8 lines 

ℓ  incident with x and fixes ( )ℓ0Λ  for the other 7 lines incident with x. 

Proof. See either [6], [8] or Section 3 of [17]. 

4. Involutions 

In this section, we explore the combinatorial relationship between G  

and the residue geometries as it relates to the action of G  on .Γ  

Lemma 4.1. Let 0Γ∈x  and ( ).3 xX Γ∈  Then 

(i) ( ) ( ) 72≅XQxQ ∩  and ( ) ( ) ;.2~2 6
4*4*

SGxQ X
xX

X
⊲≅  and 

(ii) ( ) .11 =xZ  
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Proof. First we note that ( ) ( ).XQxQ �/  For ( ) ( )XQxQ �  gives, by 

(2.1)(v), ( ) ( )( ) .2 121
2

+
+≅XQOxQ �  Since ( )xQ  is elementary abelian of 

order ,211  this is impossible. So ( ) ,21 6
4**

SGxQ X
xX

X ≅=/ ⊲  using 

Lemma 3.7(iii). Since the 42  is an irreducible module-6S  we must have 

( ) .24* ≅X
xQ  Hence ( ) ( ) 72≅XQxQ ∩  and part (i) holds. 

Since ( )xQ  is an irreducible module-xG  and ( ) ,Z1 xGx ⊲  either 

( ) 11 =xZ  or ( ) ( ).1 xQxZ =  If ( ) ( ),1 xQxZ =  then ( ) ( )X
xX

X
GOxZ *

2
*

1 =  by 

part (i). However, from Lemma 3.7(iv), every non-trivial element of 

( )X
xXGO *

2  moves some point in ( )xX 1∆Γ ∩  whereas ( )xZ1  fixes all points 

in ( )x1∆  by definition, a contradiction. Thus ( ) .11 =xZ  � 

For ,3Γ∈X  we use ( )Xτ  to denote the involution in ( );XGZ  recall 

that ( ) 2=XGZ  by (2.1)(v). Now let ( ).0 Xx Γ∈  In xΓ  we may identify 

X  with a sextet (of )xΩ  whose tetrads are ,,, 61 TT …  and we have, for 

each { },6,,1 …∈i  

( ) .tX

iTt

∏
∈

=τ  

(We note that ( )Xτ  is a tetra-transposition in the language of [2; p207].) 

Also observe, as ( )( ) ,XG GXC =τ  for ( ) ( )YXYX ττ =Γ∈ ,, 3  if and only 

if .YX =  

Let .0Γ∈x  In xΩ  consider a duad (that is, a 2-element subset), say 

{ }., 21 ttD =  Then ( ) 21ttD =δ  is referred to as a bi-transposition in [2]. 

Every involution in G  is conjugate in G  to either ( )Xτ  or ( ).Dδ  
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Lemma 4.2. Let ( )xXx 30 , Γ∈Γ∈  and D  be a duad of .xΩ  Then 

(i) ( ) ( ) ( );, xQDX ∈δτ  

(ii) ( )( ) ( ) ( )( ) ;2:2~,2.33.2~ 224
121 FDCUXC GG ⋅δ⋅+

+τ  and 

(iii) ( ) { } ( ) ( ) xx GG
DXxQ δ= ∪τ1\  with ( ) 1771=xG

Xτ  and ( ) .276=δ xG
D  

Proof. The definitions of ( ) ( )DX δ,τ  and (2.1)(iv), (v) give part (i). 

For part (ii), see [2]. Part (iii) follows from the definition of ( ) ( )DX δ,τ  

and properties of the Golay co-code.  � 

Our next lemma concerns sextet lines whose definition we recall. For 

,0Γ∈x  let ( ),,, 3321 xXXX Γ∈  if for all ,31,, ≤<≤ jiji  we have 

( ),,3 ji XxX β∈  then { }321 ,, XXX  is called a sextet line of .xΩ  

Lemma 4.3. Suppose that 0Γ∈x  and { }321 ,, XXX  is a sextet line of 

.xΩ  Then ( ) ( ) ( ).321 XXX τττ =  

Proof. Since, for ,3Γ∈X  

( ) ,tX

Tt

∏
∈

=τ  

for any tetrad T of X, the lemma follows immediately.  � 

Lemma 4.4. Let ( )xx 10 , Γ∈Γ∈ ℓ  and ( ).3 xX Γ∈  Then ( )Xτ  

interchanges the points in ( ) { }x\ℓ0Γ  if and only if ( ).,
315 Xxα∈ℓ  
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Proof. Since xG  is transitive on ( )x3Γ  we may in ,xΓ  without loss of 

generality, suppose X is the standard sextet. Now let Y be the sextet 

.

□□□□×

∗∗∗∗×

++++×

−−−−×

�

�

�

�

 

By Lemma 3.4(ii), of the 15 octads incident with ,Y  one is in 

( ),,24
Xxα  eight are in ( )Xx,

315α  and six are in ( ).,42
Xxα  Since 

( ) ( ),xXGZX ∈τ  if ( )Xτ  fixes ( )ℓ0Γ  (point-wise) for some ( )Xx,24
α∈ℓ  

(respectively, ( ) ( )),,,, 45 231
XxXx αα  then, by Lemma 3.2 ( )Xτ  fixes ( )ℓ0Γ  

(point-wise)) for all ( )Xx,24
α∈ℓ  (respectively, ( ) ( )).,,, 45 231

XxXx αα  

Because xG  is transitive on ( )x3Γ  and, by Lemma 4.1(ii), ( ) ,11 =xZ  

( ) .1
* =/
Y

Xτ  So, by Lemmas 4.1(i) and 4.2(i), ( ) ( ) YY
xQX

**
1 ∈=/ τ  

( ).*
2

Y
xYGO=  Then ( ) Y

X
*

τ  (and ( ))Xτ  fixes ( )ℓ0Γ  (point-wise) for exactly 

7 of the lines ( )Yx,1Γ∈ℓ  by Lemma 3.7(iv). Therefore ( )Xτ  

interchanges the points in ( ) { }x\ℓ0Γ  only when ( ).,
315 Xxα∈ℓ   � 

Lemma 4.5. Let 0Γ∈x  and ( )xYX 3, Γ∈  with .YX =/  Then 

( )XxY ,3β∈  if and only if ( ) ( ).XQY ∈τ  

Proof. If ( ) ( ),,, 10 XxXxY ββ∈ ∪  then there exists ( )Yx,
315α∈ℓ  

by consulting the MOG in [4], and so, by Lemma 4.4, ( )Yτ  does not fix 

( )ℓ0Γ  point-wise. Therefore ( ) ( ).XQY ∉τ  While if ( ),,3 XxY β∈  then 

( ) ( ) ( )YxYxXx ,,, 42 241 αα⊆Γ ∪  and hence ( )Yτ  fixes ( )ℓ0Γ  point-wise 

for all ( )Xx,1Γ∈ℓ  by Lemma 4.4. Since, by Lemmas 4.1(i) and 4.2(i), 

( ) ( ) ( ),*
2

** X
xX

XX
GOxQY =∈τ  Lemma 3.7(iv) implies ( ) .1

* =X
Yτ  So 

( ) ( )XQY ∈τ  as desired.  � 
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Lemma 4.6. Let zyx ,,  be distinct points of 0Γ  such that { }zyx ,,  is 

a triangle in .G  Then ( )yxz +Γ∈ 0  (or, in other words, { } ( )ℓ0,, Γ=zyx  

for some ).1Γ∈ℓ  

Proof. We have that yx ΩΩ ∩  and yz ΩΩ ∩  are octads in .yΩ  Let 

.zxt ΩΩ∈ ∩  Then t centralizes the transpositions in yx ΩΩ ∩  and 

yz ΩΩ ∩  and so either yzyx ΩΩ=ΩΩ ∩∩  or .yt Ω∈  In either case we 

get .zxzyyx ΩΩ=ΩΩ=ΩΩ ∩∩∩   � 

Lemma 4.7. (i) ( ) ;23.11.3.215181 ==∆ a  

(ii) ( )a1∆  is a ;-orbitGa  and 

(iii) if ( ),1 ax ∆∈  then 8
410 :22~ AGax ⋅  (with ,** x

axx
x

ax GG +=  an 

octad stabilizer). 

Proof. (i) Since ( ) { } 20 =Γ a \ℓ  for any ( ) ( ) ( )aax 111 2, Γ=∆Γ∈ℓ  

.1518=  

(ii) For ( )a1Γ∈ℓ  we can find ( )aX 3Γ∈  such that ( ).,
315 Xaα∈ℓ  

Hence by Lemma 4.4, ( )aQ  is transitive on ( ) { }.0 a \ℓΓ  Since aG  is 

transitive on ( ),1 aΓ  (ii) holds. 

(iii) We have axxax GG +�  because ax +  is the unique line in 

( )xa,1Γ  and [ ] 2: ≤+ axaxx GG  as ( ) { } .20 =+Γ x ax \  Hence as ( )aQ  is 

transitive on ( ) { }xax \+Γ0  we obtain (iii).  � 

Combining Lemma 4.7 and O(2.1) with the definitions of ( ) ( ),, 2
2

1
2 aa ∆∆  

and ( )a3
2∆  given in (2.2) we obtain Theorem 2. 
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Lemma 4.8. Let ( )xy 1∆∈  where .0Γ∈x  Then 

(i) ( ) ( ) ;26=yQxQ ∩  and 

(ii) for ( ) ( ) ( ),,3 yQXxX ∈Γ∈ τ  if and only if ( ).3 yX Γ∈  

Proof. Since ( )y
xyGO *

2  is an irreducible 4-dimensional module-8A  

over ( ) ( ) 1,2
* =y
yxQGF  or ( ) .

*
2

y
xyGO  Suppose ( ) 1

* =y
yxQ  and so 

( ) ( ) ( ).yQxQxQ y ∩=  Let ( )xX 3Γ∈  with ( ).,42
Xxyx α∈+  Then 

( ) ( ) ( ).yQxQX y ⊆∈τ  Therefore, 

( ) 26118401771 =+≥yQ  

by Lemma 3.1(ii). This contradicts ( ) 112=yQ  from (2.1)(iv). So 

( ) 4*
2=b

yxQ  and then part (i) follows from Lemma 4.7(iii). For part (ii), 

if ( )yX 3Γ∈  then ( ) ( )yQX ∈τ  by Lemma 4.2(i). Suppose that ( )yX 3Γ∉  

and ( ) ( ).yQX ∈τ  Since ( ),1 Xyx Γ∉+  we then have ( )Xxyx ,42
α∈+  

( ).,
315 Xxα∪  Suppose that ( ).,42

Xxyx α∈+  Since x
xyG*  is transitive on 

the set of hyperplanes ( ) { ( ) ( )}YxyxxYyxx ,, 4232 α∈+Γ∈=+δ  by 

Lemma 3.1(ii) and ( ) ( )yQX ∈τ  we have ( ) ( )yQY ∈τ  for all 

( ).,2 yxxY +δ∈  Then  

( ) ( ) .87584035 =+≥yQxQ ∩  

This contradicts part (i). By a similar argument, if ( )Xxyx ,
315α∈+  we 

get 

( ) ( ) ,93389635 =+≥yQxQ ∩  

again giving a contradiction. This proves part (ii).  � 
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5. The Second Disc, ( )a2∆  

We begin by defining certain subsets of ( )a2∆  as follows. 

( ) { ( ) ( ) ( )},,0,
~

232
1
2 xaxaaxa Γ=/=/Γ∆∈=∆  

( ) { ( ) ( ) },0,
~

32
2
2 /=Γ∆∈=∆ xaaxa  

( ) { ( ) ( ) ( )}.,0,
~

232
3
2 xaxaaxa Γ=//=/Γ∆∈=∆  

An immediate consequence of these definitions is 

Lemma 5.1. For ( ) ( ) 0
~~

,31 22 /=∆∆≤<≤ aaj
j k

k ∩  and ( ) ( ).~
22

3

1
aa

i

i
∆=∆

=∪   

Lemma 5.2. Suppose ( )ax 2∆∈  with ( ).,3 xaX Γ∈  Then { } ( )., 0 Xxa Γ⊆⊥
  

Proof. Let ( )⊥∈ xab ,  and assume that ( ).0 Xb Γ∉  Then ( )Xba 1Γ∉+  

as Γ  is a string geometry. Using Lemma 3.5, we can find 

( ) { }XXaY ∪,3β∈  for which ( ).,
315 Yaba α∈+  By Lemma 4.5, 

( ) ( )xQY ∈τ  which implies that ( ) ( ) .xaQY ∈τ  Since ( )Yτ  does not fix b 

by Lemma 4.4 we get a triangle { ( )}Ybbx τ,,  which then forces xa =  by 

Lemma 4.6. From this contradiction we infer that ( ),0 Xb Γ∈  so proving 

the lemma.  � 

Lemma 5.3. For ( ) ( ).~
,3,2,1 22 aai

ii ∆=∆=  

Proof. Let { } .,
⊥∈ xab  Using MOG information in ,bΩ  Lemma 5.2 

implies that ( ) ( )aa
ii
22

~
∆=∆  for .3,2,1=i   � 

Lemma 5.4. Let ( ).1
2 ax ∆∈  Then there is a unique hyperplane in 

( ).,3 xaΓ  
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Proof. Let ( )xaYX ,, 3Γ∈  and { } .,
⊥∈ xab  Then ( ) ( )YXb 00 ΓΓ∈ ∩  

by Lemma 5.2. If ,YX =/  then ( ) ( )YXabxb 00, ΓΓ∈++ ∩  and 

( ) 0,2 /=/++Γ abxb  by considering MOG information in .bΓ  Hence 

( ),~1
2 xx ∆∈/  whereas ( ) ( )xx

1
2

1
2

~
∆=∆  by Lemma 5.3. Thus we conclude 

YX =  and the lemma is proved.  � 

Let the unique hyperplane in Lemma 5.4 be denoted by ( )xaX ,  

(respectively, ( )), axX  if we regard ( ) ( ),, 3 axaX Γ∈  (respectively 

( ) ( ))., 3 xaxX Γ∈  Of course ( ) ( ).,, axXxaX =  

Lemma 5.5. Let ( ).1
2 ax ∆∈  Then { } 5, =⊥

xa  and, for each 

{ } ,,
⊥∈ xab  the octad ba +  in aΩ  contains a fixed tetrad of the sextet 

( )., xaX   

Proof. By Lemma 5.2, for every { } ( )( )xaXbxab ,,, 0Γ∈∈ ⊥
 and so 

( )( ).,1 xaXba Γ∈+  Working in the residue geometry of ( )xaX ,  and 

using Lemma 3.7(ii) we get { } .5, =⊥
xa  Since ( ) 0,2 /=Γ xa  by Lemma 

5.3, in ,aΩ  the five octads { { } }⊥∈+ xabba ,  must intersect in the same 

tetrad of the sextet ( )., xaX   � 

Note that ( )ax 1
2∆∈  implies ( ).1

2 xa ∆∈  We denote the fixed tetrad in 

aΩ  (respectively, )xΩ  described in Lemma 5.5 by ( )xat ,  (respectively, 

( ) .), axt  
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Lemma 5.6. (i) ( ) .23.11.7.3.251
2 =∆ a  

(ii) ( )a1
2∆  is a .-orbitGa  

(iii) For ( )ax 1
2∆∈  and )3(:2~ 5

6* SG x
ax ×  is the stabilizer in x

xG*  of 

( )axX ,  and ( )axt ,  and ( ) .27=axQ  

Proof. By Lemma 3.7(i), for any ( ) ( ) ( ) 96, 1
203 =∆ΓΓ∈ aXaX ∩  and 

so by Lemma 5.4 we get ( ) ( ) ,23.11.7.3.2.96 5
3

1
2 =Γ=∆ aa  proving part (i). 

For part (ii), let ( )ab 1∆∈  and ( ) ( ).1
1
2 bax ∆∆∈ ∩  Then in ,bΩ  

( ).,4 xbbab +α∈+  Since ( )xbb +α ,4  is a orbit-*b
ab

G  it is enough to 

show that there exists abGg ∈  with ,xx g ′=  where ( ) { }.,,0 xxbxb ′=+Γ  

In ,bΩ  we can choose a sextet Y  incident with the octad ab +  such that 

( ).,
315 Yxxa α∈+  Then by Lemma 4.4, ( ) ( ( ) ( )) xGbQaQY \∩∈τ  and so 

( )Yτ  is the required element of .abG  

For xat xba ,,ΩΩΩ∈ ∩∩  are vertices of tG  with ( ) .1
2

t
ax ∆∈  

Hence ( ) ( ) 72≅= t
aa xQxQ  by Theorem 3 of [12]. Since, by parts (i) and 

(ii), ,5.3.2 216=axG  Lemmas 5.4 and 5.5 yield part (iii). 

� 

We now turn to ( ).2
2 a∆  

Lemma 5.7. Let ( )ax 2
2∆∈  and { } .,

⊥∈ xab  Then 

(i) ( ) ( ) 7.272
21 =∆∆ ab ∩  with abG  transitive on ( ) ( );2

21 ab ∆∆ ∩  and 

(ii) { } 1, =⊥
xa  or 2. 
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Proof. Since ( ) 0,3 /=Γ xa  by Lemma 5.3, we have ( ).,2 xbbab +α∈+  

So by Lemma 3.1(i), ( ) ( ) .7.24482 72
21 =×=∆∆ ab ∩  Let ( )xbx +Γ∈′ 0  

{ }., xb\  We can choose ( )abY +Γ∈ 3  with ( ).,
315 Ybxb α∈+  By Lemma 

4.4, ( ) xx Y ′=τ  and so abG  is transitive on ( ) ( )ab 2
21 ∆∆ ∩  because 

( )xbb +α ,2  is a orbit-abG  by Lemma 3.1(i). 

Using (i), [2] and the fact that [ ] 8
14 .2~ AGab  by Lemma 4.7(iii) we 

must have [ ] 6
9 .2~ SGabx  or [ ] ..2 6

10 A  In either case a
abx

G*  is contained 

in the stabilizer in aΩ  of a duad δ  contained in the octad .ba +  We now 

show that for every { } ,,
⊥∈ xac  the octad ca +  in aΩ  contains .δ  

Assume, for a contradiction that for some { } caxac +∈ ⊥
,,  does not 

contain .δ  Since ( ) ,0,3 /=Γ xa  we must have ( ).,2 baaca +α∈+  Using 

MOG information, there are exactly 15 sextets in ( )ba,3Γ  that each have 

a tetrad containing .δ  Let T denote this set of 15 sextets. 

We can take TYYY ∈321 ,,  forming a sextet line. Since ( ) ( ) =21 YY ττ  

( )3Yτ  by Lemma 4.3 we must have ( ) xi GY ∈τ  for each .3,2,1=i  

Because abxG  is transitive on T it follows that ( ) xGY ∈τ  for each TY ∈  

Since ca +  does not contain δ  we must have ( )Yca
315α∈+  for some 

TY ∈  and then ( ) .xx Y =/
τ  Lemma 4.5 now implies that ,xa =  a 

contradiction. Part (ii) follows because we cannot find three octads in ,aΩ  

intersecting pairwise in exactly .δ  � 
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Lemma 5.8. Let ( ).2
2 ax ∆∈  Then 

(i) ( )a2
2∆  is a ;-orbitGa  

(ii) { } ( ) 23.11.7.3.2,1, 82
2 =∆=⊥

axa  and abG  is transitive on  

( ) ( ),2
21 ab ∆∆ ∩  where { } { };, bxa =⊥

 and 

(iii) 6
4* :2~ SG x

ax  is the stabilizer in xΩ  of the octad bx +  and the 

duad ,xba ΩΩΩ ∩∩  where { } { }., bxa =⊥
 

Proof. Part (i) follows from Lemma 5.7(i) and the fact that ( )a1∆  is a 

orbit.-aG   

Suppose that { } .1, =/
⊥

xa  Then { } { }cbxa ,, =⊥
 with cb =/  by 

Lemma 5.7(ii). Lemma 4.5 rules out ( ) .1, =cbd  If ( ) ( )bbc 3
2

1
2 ∆∆∈ ∪  

( ( ) ( )),~~ 3
2

1
2 bb ∆∆= ∪  then ( )Xcb 0, Γ∈  for some 3Γ∈X  whence, by Lemma 5.2, 

( )., 0 Xxa Γ∈  However ( ) ,0,3 /=Γ xa  and therefore ( ).2
2 bx ∆∈  Hence 

( ).,2 baaca +α∈+  From Theorem 4 of [12] ( ) 52≅xaQ  and so, as  

[ ] 6
9 .2~ SGabx  or [ ] [ ] 6

4*
6

10 .2~,.2 SGA a
abx

 or [ ] ..2 6
5 A  In particular 

.2 *8 a
abx

G  Clearly abxcabx GG =  and so .** a
abx

a
abxc

GG =  Since ∈+ ca  

( ) a
abxc

Gbaa *
2 ,, +α  leaves a dodecad of aΩ  invariant whence a

abxc
G*  is 

isomorphic to a subgroup of .12M  But a
abxc

G*82  yields a contradiction. 

Thus, we conclude that { } ,1, =⊥
xa  and consequently for { }⊥∈ xab ,  

( )
( ) ( ) ( )

{ }
.13.11.7.3.2

,

81
2
212

2 =
∆∆∆

=∆
⊥

xa

aab
a

∩
 

Part (iii), using ( ) ,25≅axQ  follows readily.  � 
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Lemma 5.9. Let ( ).3
2 ax ∆∈  Then there is a unique element ( )xa,Λ  

( )xa,2Γ∈  and for every { } ( ( )).,,, 0 xabxab ΛΓ∈∈ ⊥
 

Proof. By definition, ( ) .0,2 /=/Γ xa  Let { }⊥∈ xab ,  with 0α∈+ ab  

( )xbb +,  and let ( )xa,Λ  be the unique element of ( ).,2 xbab ++Γ  

Suppose { }⊥∈′ xab ,  with ( )( ).,0 xab ΛΓ∈/′  In bΩ  there are seven sextets 

( )7,,1 …=iXi  in ( )xbab ++Γ ,3  and by Lemma 5.2 )(0 iXb Γ∈′  for 

each .7,,1 …=i  Therefore, in b′Ω  there exists a trio 

( )iXxbab ,,2 +′+′Γ∈Λ  for each .7,,1 …=i  Considering the situation 

in aΩ  we must have ( )xa,Λ=Λ  and the lemma is proved.  � 

We follow our earlier notational convention and also denote the 

unique plane in Lemma 5.9 by ( )ax,Λ  if we are viewing ( )ax,Λ  as a trio 

in .xΓ  

Lemma 5.10. Let ( ).3
2 ax ∆∈  Then ( ) 7,3 =Γ xa  and { } .3, =⊥

xa  

Proof. By Lemma 5.2, for ( ),,, 33 xaXX Γ∈Γ∈  if and only if 

( )( ).,3 xaX ΛΓ∈  The result now follows from Lemma 5.9 because in XΓ  

there are three points collinear with a and x and in ( )( ) .7,, 3 =ΛΓΓ xaa  

� 

Lemma 5.11. Let ( ).3
2 ax Λ∈  Then 

(i) ( ) ;23.11.5.3.233
2 =∆ a  

(ii) ( )a3
2∆  is a ;-orbitGa  and 

(iii) ( ( ) )32:2~ 3
6* ×LG x

ax  is a subgroup of index 2 of the stabilizer in 

xΩ  of the trio ( )ax,Λ  and ( ) .29=axQ  
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Proof. Since { } 3, =⊥
xa  by Lemma 5.10, ( ) ( ∈=+α babb 30,0  

{ } )⊥
xa,  and, by Lemma 4.7(i), ( ) ,23.11.3.21 =∆ a  we calculate that 

( ) .23.11.5.3.233
2 =∆ a   

For part (ii), let ( )ab 1∆∈  with ( )ba,2Γ∈Λ  and ( ).3 ΛΓ∈X  Then 

)2(.2~ 4
4* ×Λ SG X

aX  and is transitive on the four points in ( ) ( )ba 1
3
2 ∆∆ ∩  

( ).0 ΛΓ∩  Then aG  is transitive on ( )a3
2∆  because ( )a2Γ  and ( )a1∆  are 

.orbits-aG  

By Lemma 5.10 { } { }.,,, 321 bbbxa =⊥
 Also, using Lemma 5.9, 

( ) ( ( ) ).2:2~ 33
6*

,
* SLGG a

xaax
a

ax ×≤
Λ

 Let .31 ≤<≤ ji  Then iba +  and 

jba +  are disjoint octads as they are both incident with the trio ( )., xaΛ  

Choose a tetrad δ  of aΩ  which intersects iba +  in two elements and 

jba +  in one element, and let Y  denote the sextet of aΩ  with δ  a tetrad 

of .Y  Then ( )Yaba i ,42
α∈+  and ( ).,

315 Yaba j α∈+  Hence, by Lemma 

4.4, ( ) ( ) ( ) .\
ji bb aQaQY ∈τ  Thus ( ) ( )

ji bb aQaQ =/  for .31 ≤<≤ ji  

Further ( ) ( ) ( ),31 ≤≤≤ iaQaQ
ibx  for ( ) ( )

ibx aQaQ ≤/  yields that 

{ } ( ) 2, 0 =+Γ⊥
ibaxa ∩  whereas no two points of { }⊥

xa,  are collinear. 

So, as [ ( ) ( ) ] 2: =
ibaQaQ  and ( ) ( )

ji bb aQaQ =/  for ,ji =/  we have [ ( ) :aQ  

( ) ] .22≥xaQ  Consequently using part (i) either ( ( ) )32:2~ 3
6* ×LG a

ax  

with ( ) 92=xaQ  or ( ( ) )33
6* 2:2~ SLG x

ax ×  with ( ) .28=xaQ  Suppose 

the latter holds. Let ξ  be the element of order 3 in the 3S  direct factor of 

.*x
axG  Then, as ξ  permutes the three octads { ,1=+ iba i  }3,2  and 

( ) ( ) ( ) ξ=/=/ ,jiaQaQ
ji bb  must act non-trivially on ( ) ( ) .xaQaQ  But 

then λ  centralizes ( ) ( ) ,xaQaQ  where λ  is an element of x
axG*  of order 

7, a contradiction as ( )( ) .22=λaQC  Thus, as ( ),3
2 xa ∆∈  we obtain 

( ( ) )32:2~ 3
6* ×LG x

ax  and ( ) ,29=axQ  so proving (iii).  � 
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Lemma 5.6 combined with (2.2) proves Theorem 3 except for the octad 

orbits ( ) ( ),,,,,, 2131,1212,2 54 ΛΛαΛΛα xx  and ( ).,, 214,0 2 ΛΛα x  The 

first two will be settled by Theorems 7 and 11 and the data in O(2.2), 

while the last one follows from Theorem 12(ii). Theorem 4, apart from the 

octad orbits ( )210,0 ,, ΛΛα x  and ( ),,, 210,4 ΛΛα x  follows from Lemma 

5.8 and (2.2). The remaining two orbits are dealt with by Theorem 12(i), 

(iv) and O(2.3). Finally Lemma 5.11 and (2.2) deliver Theorem 5. 

6. Theorems 6-11 and 13 

Lemma 6.1. Suppose that 0Γ∈x  and that .0/=/ΩΩ xa ∩  Let at Ω∈  

and let ∆  denote the orbitGa -  of x. Set { } .0
s

a xs Γ∈Ω∈=k  Then 

.24 0
tΓ∆=∆ ∩k  

Proof. Since ∆  is a orbit-aG  and aG  acts transitively on s
a 0, Γ∆Ω ∩  

is the same for all .as Ω∈  Furthermore, we also have that 

{ }s
a ys 0Γ∈Ω∈  is the same for all .∆∈y  Because 0/=/ΩΩ xa ∩  we 

note that .0=/k  Now counting in two ways the number of elements in  

{( ) }s
a yys 0, Γ∈∆×Ω∈  

yields, as ,24=Ωa  the lemma.  � 

For 0Γ∈x  and s
xx Gs ,Ω∈  denotes the stabilizer of x in .23FiGs ≅  

So .2~ 23
11 MGs

x  Also recall that ( )sxQ  denotes the normal elementary 

abelian subgroup of s
xG  of order .211  

Lemma 6.2. For 0Γ∈x  and ( ) ( )., xQxQs
s

x =Ω∈  

Proof. Since ,2~~2 24
11

23
11 MGGM x

s
x �  the subgroup structure 

of 24M  forces ( ) ( ).xQxQ
s =   � 
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Lemma 6.3. (i) If ( ),1
2 ax ∆∈  then { } .40 =Γ∈Ω∈ s

a xs  

(ii) If ( ),2
2 ax ∆∈  then { } .20 =Γ∈Ω∈ s

a xs  

Proof. Let ( )ax 1
2∆∈  and set { } .0

s
a xs Γ∈Ω∈=k  Observe that, 

for ( ) ( ) ., 1
20

1
2

tt
a aat ∆=Γ∆Ω∈ ∩  Since aG  is transitive on ( ),1

2 a∆  

Lemmas 5.6(ii) and 6.1 imply that 

( ) ( ) ,24 1
2

1
2

t
aa ∆=∆k  

where t is some fixed transposition in .aΩ  From Lemma 5.6(i) and Table 

1 of [12], ( ) 23.11.7.3.251
2 =∆ a  and ( ) ,23.11.7.241

2 =∆ t
a  and therefore 

.4=k  

A similar argument, using Lemma 5.8 instead of Lemma 5.6, 

establishes part (ii).  � 

Lemma 6.4. For ( )ai i
3,6,,1 ∆= …  is a orbitGa -  and, for ,at Ω∈  

( ) ( ) .303
titi aa ∆=Γ∆ ∩  

Proof. Let ( )ax 1
2∆∈  and { } .0 xa

s
a xst ΩΩ=Γ∈Ω∈∈ ∩  From 

Lemma 5.6 and Theorem 3 of [12], 5.3.216=axG  and .5.3.214=t
axG  

So [ ] 4: =t
axax GG  and hence, by Lemma 6.3(i), axG  is transitive on 

{ }.0
s

a xs Γ∈Ω∈  Because t
axG  is transitive on ( ) ( ) ,0

1
3

1
3

tt
aa Γ∆=∆ ∩  we 

conclude that aG  is transitive on ( ).1
3 a∆  

The remaining sets ( ) ( )6,,23 …=∆ iai  are defined from ( ).2
2 a∆  Now 

similar arguments may be employed for these sets as [ ] 2: =t
axax GG  for 

( )ax 2
2∆∈  (where { } )s

a xst 0Γ∈Ω∈∈  and, by Lemma 6.3(ii) { xs aΩ∈  

} .20 =Γ∈ s   � 
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Theorem 6.5. Let ( ).3 ax i∆∈  

(i) If ,1=i  then ( ) { } ( ) ,:4~,:4.2~ 331
*

33
2

* SLStabGSLG x
xG

x
axax Λ=  

where 1Λ  is a triad of xΩ  and ( ) .23.11.2121
3 =∆ a  

(ii) If ,2=i  then ( ( ) ) { }21
*

3
34 ,,22:2.2~ * ΛΛ=× x

xG

x
axax StabGLG  

( ( ) ),22:2~ 3
3 ×L  where 1Λ  is an octad, 2Λ  is a duad of xΩ  with 

,021 /=ΛΛ ∩  and ( ) .23.11.5.3.2 2102
3 =∆ a  

(iii) If ,3=i  then { } ,:2~,,:2.2~ 6
4

21
*

6
4

* SStabGSG x
xG

x
axax ΛΛ=  

where 1Λ  is an octad, 2Λ  is a duad of xΩ  with ,12 Λ⊆Λ  and ( ) =∆ a3
3  

.23.11.7.3.212  

(iv) If ,4=i  then { } ,2:,2:.2~ 221
*

22 * MStabGMG x
xG

x
axax ≅Λ=  

where 1Λ  is a duad of xΩ  and ( ) .23.3.2124
3 =∆ a  

(v) If ,5=i  then { },,,~:2 321
*

5
4

* ΛΛΛ≤≅ x
xG

x
axax StabGGA  

where 1Λ  is an octad of 1, 32 =Λ=ΛΩx  with ,132 Λ⊆ΛΛ ∪  and 

( ) =∆ a5
3  .23.11.7.3.2 215  

(vi) If ,6=i  then { } ,.3.2~,,,.3.]2[~ 4
4

321
*

4
6

* SStabGSG x
xG

x
axax ΛΛΛ=   

where 1Λ  is an octad of ,,1,4, 12332 Λ⊆Λ⊆Λ=Λ=ΛΩx  and 

( ) .23.11.7.5.3.2126
3 =∆ a  

Proof. (i) Let .at Ω∈  From Lemma 6.4, ( )a1
3∆  is a orbit-aG  and 

( ) ( ) .1
30

1
3

tt aa ∆=Γ∆ ∩  For ( ),1
3 ax ∆∈  let { } .0

s
a xs Γ∈Ω∈=k  Using 

Lemma 6.1, we obtain 

( ) ( ) .24 1
3

1
3

t
aa ∆=∆k  
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By the definition of ( ),1
3 a∆  there exists ( )ay 1

2∆∈  such that ∈+ xy  

( ).,, 2131,3 5 ΛΛα x  Now consulting Theorem 3, we see that ,1 ya ΩΩ=Λ ∩  

and hence .3≥ΩΩ xa ∩  So .3≥k  Therefore, as ( ) 23.11.291
3 =∆ t

a  by 

Table 1 of [12], 

( )
( )

kk

23.11.2.2424 91
31

3 =
∆

=∆
t

a
a  

 .2.11.2
3

23.11.2.24 12
9

=≤  

Supposing that .0
tx Γ∈  Then ( ) 2:4.2~ 3

2 LGax  by Theorem 5 of [12]. 

Since ( )a1
3∆  is a ( )aGa

1
3orbit,- ∆  must divide [ ] .23.11.3.2: 12=t

axa GG  

Bearing in mind the possible overgroups of ( ) 2:43L  in x
xGM *

24 ≅  and 

Lemma 6.2, we get that [ ] .3: =t
axax GG  Thus ( ) 23.11.2121

3 =∆ a  with 

3=k  and ( ) 33
2 :4.2~ SLGax  with { } 11

* ,* ΛΛ= x
xG

x
ax StabG  being the 

triad { } ( )., axDt ∪  (With ( )xaD ,  as in Theorem 5 of [12].) This 

establishes (i). 

Parts (ii)-(vi) may be proved in a similar fashion. For these cases we 

may extract { }s
a xs 0Γ∈Ω∈=k  (for ( ) )6,,2,3 …=∆∈ ixx i  from [12]. 

Recall that in the 23Fi  geometry, a hyperplane is just a transposition 

with points of this geometry being sets of 23 pairwise commuting 

transpositions. For ( ) ,,3 a
ti tax Ω∈∆∈  where { },4,3,2∈i  a and x are 

incident with a unique hyperplane of the 23Fi  geometry (see Section 1 of 

[12]) - so for { } .2,4,3,2 =∈ ki  Whereas, for ( ) { },6,5,3 ∈∆∈ iax
ti  a 

and x are not incident with a common hyperplane of the 23Fi  geometry. 

Thus 1=k  for { }.6,5∈i  So knowing k  we can make effective use of 

Lemma 6.1. We observe that for ( ) ( )a
ti tax Ω∈Γ∆∈ 03 ∩  we have 
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t
axax GG =  for .6,5,3=i  While [ ] 2: =t

axax GG  for .4,3,2=i  In these 

latter cases, we must also call on the services of Lemma 6.2 in order to 

deduce that axG  has shape, respectively, ( ) 6
42

3
34 :2.2,)22(:2.2 SL ×  and 

.2:.2 22M  

We are now in a position to verify Theorems 6-13. For Theorem 6, 

Theorem 6.5(i) gives axG  and x
axG*  for ( ).1

3 ax ∆∈  We must discover the 

point distribution of the axG  line orbits ( ) ( ),3,2,1, 1 =Λα ixi  three of 

the orbits-*x
axG  on lines, see [15]. Let ( )xy 1∆∈  be such that ∈+ yx  

( )., 11 Λα x  Now we may further assume y is chosen so as tyx 0, Γ∈  for 

some .at Ω∈  Then, by Theorem 5 of [12], ( )( )axDxyx ,,0α∈+  (seen 

within )0
tΓ  with yx +  having point distribution .2 1

4
1
3

tt ∆∆  Since ( )11 , Λα x  

is a orbit-axG  and ( ) ( ),1
4

1
4 aa

t ∆⊆∆  we conclude that lines in ( )11 , Λα x  

have point distribution .2 1
4

1
3 ∆∆  Similarly, we see that ( )12 , Λα x  has 

point distribution 3
3

1
32∆∆  and ( )13 , Λα x  has point distribution .2 1

3
1
2 ∆∆  

The same kind of arguments work for ( ) ( ) ( ) ( )aaaa 5
3

4
3

3
3

2
3 ,,, ∆∆∆∆  and 

( ),6
3 a∆  so we omit the details.  � 

The same strategy as employed in this section will reveal axG  and orbit 

sizes for ( ) .6,,1,4 …=∆∈ iax i  Note that in all these cases { xs aΩ∈=k  

} 10 =Γ∈ s  as a and x cannot be incident with a common hyperplane in 

the 23Fi  geometry, as the point-line collinearity graph of the 22Fi  

geometry has diameter 3 (see Appendix 1 of [11]). 
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7. Proof of Theorem 12 

The orbits considered in Theorem 12 do not lie within a 23Fi  residue 

and so we cannot apply the same reasoning as in Section 6. Recall that for 

any XX ΓΓ∈ ,3  is isomorphic to the geometry for ( ) 2.34U  described in 

[6]. 

We define 

�
( )8

3 a∆ = { ( ) 0,30 /=/ΓΓ∈ xax  and ( ) }.3, =xad  

Lemma 7.1. ( )
�

( )8 8
3 3 .a a∆ = ∆  

Proof. If 
�

( )8
3x a∈ ∆  and ( ),, xaX Γ∈  using information about the 

geometry XΓ  given in Lemma 3.7(ii), there exists ( ) ( )aac 12 ∆∆∈ ∩  with 

( ),,24
Tcxc α∈+  where ( ).,2 caΓ∈T  By (2.2) ( )ac 3

2∆∈  and ( ).8
3 ax ∆∈  

Conversely if ( )ax 8
3∆∈  we must have ( ) 0,3 /=/Γ xa  by O(2.4) and 

( ) 3, =xad  by Lemma 5.2. So 
�

( )8
3x a∈ ∆  as required.  � 

Lemma 7.2. If ( ),8
3 ax ∆∈  then ( ) .1,3 =Γ xa  

Proof. Let ( )ax 8
3∆∈  and assume that ( )xaYX ,, 3Γ∈  with .YX =/  

Using information about the ( ) 2.34U  geometry described in Lemma 3.7(ii), 

for every ( ),,1 XaΓ∈ℓ  there exists ( )ℓ0Γ∈b  with ( ) ( ).12 axb ∆∆∈ ∩  If 

( ),,3 XaY β∉  then there is some ( ) ( )axb 12 ∆∆∈ ∩  with ( )Yaba ,315α∈+  

by Lemma 3.4. Therefore Lemma 4.4 implies that ( )Yτ  does not fix b. Since 

( ) ( ) ( ) ( ) ( )., 20 xbabaQY Y
x ∆+Γ∈∈ ∩

τ

τ  However, as ( ) ( ),00 Xba Γ⊆+Γ  

Lemma 3.7(ii) implies that ( ),1 xa ∆∈  a contradiction. Hence ( ).,3 XaY β∈  

In ,aΓ  there are three octads ℓ  incident with X  and Y  and for one of 

these, we can find ( ) ( ).1
20 ay ∆Γ∈ ∩ℓ  Since ( )yaYX ,, 3Γ∈  we now have 

a contradiction to Lemma 5.4, and so YX =  as asserted.  � 
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Lemma 7.3. Let ( )ac 2
21 ∆∈  and ( ) ( ).1122 cac ∆∆∈ ∩  Then  

(i) ( );2
22 ac ∆∈  and 

(ii) if ( ) { },, 2210 cc ccy 1\+Γ∈  then ( ).1 ay ∆∈  

Proof. (i) Suppose that ( ) ( ),3
2

1
22 aac ∆∆∈ ∪  and argue for a contradiction. 

Then, by definition of ( )a1
2∆  and ( ),3

2 a∆  there exists ( )., 23 caX Γ∈  Since 

( ) { } .1,, 1
2
21 =∆∈ ⊥

caac  Let { } { }., 1 bca =⊥
 If ( ),0 Xb Γ∈  then, using 

Lemma 5.2, { } ( )Xcbc 021 , Γ⊆∈ ⊥
 and so ( ),, 23 caX Γ∈  whereas 

( ) .0, 23 /=Γ ca  Thus ( )Xb 0Γ∈/  and as a consequence ( ).1 Xba Γ∉+  

Hence ( ) ( ).,,
312 54 XaXaba αα∈+ ∪  Assume that ( ).,42

Xaba α∈+  

Then ( ) ( )baQX ∈τ  by Lemma 4.4. Since ( ) ( ) ( )bQXbX ∈/Γ∈/ τ,3  by Lemma 

4.8(ii). So ( ) ( ) ( )bQ aQX b \∈τ  and hence ( ) ( ) ( ).1 *
2

** b
ba

bb
GOaQX =∈=/ τ  

Since ( )abbcb +α∈+ ,21  we then infer that ( ) b
X

*
τ  does not leave the 

octad 1cb +  invariant. Hence ( ) .
1c

GX ∈/τ  However ( ) ( )2cQX ∈τ  and so 

we obtain a triangle { ( )}Xccb τ

11 ,,  with 
( ) ( ).2101 ccc X +Γ∈τ

 Lemma 4.6 

forces ,2cb =  a contradiction. Thus we have shown that ( )Xaba ,42
α∈/+  

and so ( ).,
315 Xaba α∈+  By Lemma 4.4, ( ) .bb X =/

τ  If 
( )

,11 cc X =τ

 then 

{ ( ) }1,, cbb Xτ  is a triangle, whence 1ca =  by Lemma 4.6. Thus 
( )

.11 cc X =/
τ

 

Since 
( ) ( ),2101 ccc X +Γ∈τ

 this gives { ( )} { ( ) }⊥⊆ 11 ,, cbcb XX ττ

 which, as 

( ) ( ),1
2
2 cb X ∆∈τ  contradicts Lemma 5.8(ii) (note that 

( )Xcb τ

1=  would give 

( )102 cbc +Γ∈  and then ( ) .)2
22 ac ∆∈  With this contradiction we have 

established part (i). 
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(ii) Let { } { }ii bca =⊥
,  for .2,1=i  Suppose (ii) is false and argue for a 

contradiction. We first claim that ( ) ( ).,2, 1221 cbdcbd ==  If, say, 

( ) ,1, 21 =cbd  then { }211 ,, ccb  is a triangle and so, as ( ),, 221 acc ∆∈  

Lemma 4.6 yields that ( ).11 aby ∆∈=  Thus ( ) 1, 21 =cbd  and, similarly, 

( ) .2, 12 =cbd  In particular, this gives .21 bb =/  Further, ( ) .2, 21 =bbd  

For ( ) 1, 21 =bbd  implies ( )102 bab +Γ∈  by Lemma 4.6 and then { }21 , cb  

{ } ., 12
⊥⊆ cb  This contradicts Lemma 5.8(ii) as ( ).1

2
22 cb ∆∈  

If ( ) ( ),2
3
22

1
21 bbb ∆∆∈ ∪  then by part (i) (with 1b  in place of a) 

( ).2
2
21 bc ∆∈/  Therefore ( ) ( ).2

3
22

1
21 bbc ∆∆∈ ∪  Consequently ( )1

2
2 ca ∆∈  

and ( ) ( )1
3
21

1
22 ccb ∆∆∈ ∪  which is contrary to part (i) (with 1c  in place of a). 

Thus ( ) ( )2
3
22

1
21 bbb ∆∆∈/ ∪  and hence ( ).2

2
21 bb ∆∈  Similar arguments 

show that ( )2
2
21 bc ∆∈  and ( ).1

2
22 bc ∆∈  By considering the elements of 

( )213 , cbΓ  as sextets in 
1b

Ω  and using Lemma 4.4 there exists 

( )113 , cbY Γ∈  with ( ) .aGY ∈τ  Suppose that ( ) .
2cGY ∈/τ  Since ( )Yτ  

fixes the line ,21 cc +  Lemma 4.6 implies that 
( )

22 bb X =/
τ

 and 

( ) ( ).aQY ∈/τ  Therefore ( ) ( ).1 *
2

*

1

a
ab

a
GOY ∈=/ τ  This means that, in ,aΩ  

the octads 
( )

12 , baba Y ++ τ

 and 2ba +  intersect pairwise in the same 

duad. However, we see from the MOG [4] that this is impossible. Thus, 

we have shown that ( ) .
2cGY ∈τ  Since ( ) ( )232

2
21 , cYcb Γ∈/∆∈  and so 

( ) ( )2cQY ∈/τ  by Lemma 4.8(ii). Then ( ) ( ).1 2

12

2 *
2

* c
cc

c
GOY ∈=/ τ  Since 

( ),, 122222 cccbc +α∈+  ( ) 2*c
Yτ  does not fix .22 bc +  This contradicts 

Lemma 5.8(ii) and hence gives part (ii), completing the proof of Lemma 

7.3. 

� 
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Lemma 7.4. (i) ( )a8
3∆  is a orbitGa -  and ( ) .23.11.7.5.268

3 =∆ a  

(ii) For ( ) 4:3.3.]2[~, 2138
3 axGax ∆∈  and 4:3.3:2~ 26*x

axG  is 

the stabilizer in x
xG*  of the sextet ( )xaX ,3Γ∈  and the partition of xΩ  

into { }10,16,4,17,18,15,20,3,8,0,14,∞=∑  and its complement 

(where X is identified with the standard sextet in ).xΩ  

(iii) ( ) ( ) 61
1
2 =∆∆ xa ∩  and ( ) ( ) .91

3
2 =∆∆ xa ∩  

(iv) Let ( )ax 8
3∆∈  and { } ( ).,3 xaX Γ=  If { }xcba ,,,  is a path of 

length 3 in ,G  then ( )., 0 Xcb Γ∈  Moreover ( ) ( ) .01
2
2 /=∆∆ xa ∩  

Proof. Let ( ).8
3 ax ∆∈  By Lemma 7.2, ( ) { }.,3 Xxa =Γ  Observe that 

( ) ( ) ( )aDaX 1
3

8
30 =∆Γ ∩  by Lemmas 7.1, and 3.7(ii). Since aG  is transitive 

on ( )a3Γ  and, by Lemma 3.7(i), ( )aD1
3  is a ,orbit-aXG  we see that ( )a8

3∆  

is a .orbit-aG  Also, as ( ) 3201
3 =aD  by Lemma 3.7(i), 

( ) ( ) ( ) ( )aXaa 8
303

8
3 ∆ΓΓ=∆ ∩  

 .23.11.7.5.2320.23.11.7 6==  

So (i) holds. 

Clearly we have axXax GG ≤  and so .32~ 6
6** SGG x

axX
x

ax ≤  Also, by 

part (i), .3.2 315=axG  We now look at ( ) .xaQ  Using Lemma 4.5, as 

( ),, 0 Xxa Γ∈  gives ( ) ( ) ( ) .,3 xaQXaYY ≤β∈τ  Hence, by Lemma 3.3, 

( ) .27≥xaQ  Now select ( ) ( ) ( ( ) )aDXay 2
20

1
2 =Γ∆∈ ∩  with ( ).1 xy ∆∈  

Suppose ( ) ( ) ,yx aQaQ ≤/  and let ( ) ( ) .yx aQ aQg \∈  Then yyg =/  and 

( ) ( ) ( ).0
1
21 Xaxyg Γ∆∆∈ ∩∩  Let { }⊥∈ yab ,  (and note that ( ) ).0 Xy Γ∈  

Since ( ) ( )., 0 babaQg g +Γ∈∈  If ,gbb =/  then Lemma 3.7(ii) forces 
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( )xa 1∆∈  whereas ( ) .3, =xad  Thus gbb =  and consequently 

{ } .},{, ⊥⊥ = gyaya  Looking in ( )X0Γ  we see this is impossible. Hence we 

infer that ( ) ( ) .yx aQaQ ≤  By Theorem 3, ( ) 72=′yaQ  and therefore 

( ) .27=xaQ  Since ( ),8
3 xa ∆∈  we also get ( ) ,27=axQ  and so 

.3.2 38* =x
axG  Since x

axG*  contains a Sylow 3-subgroup of x
axXG*  and the 

only subgroup of 6S  of order α232  are subgroups of 4:32  we see that 

,4:3.3:2~ 26*x
axG  which completes the proof of (ii). 

Consulting Lemma 3.7(ii) we see ( ) ( ) ( ) 601
1
2 =Γ∆∆ Xxa ∩∩  and 

( ) ( ) ( ) .901
3
2 =Γ∆∆ Xxa ∩∩  If ( ) ( ) ,91

3
2 >∆∆ xa ∩  then for ( )ay 3

2∆∈  

the lines in ( )( )yay ,,242
Tα  must be incident with at least one point in 

( ).8
3 a∆  Let ( ) ( ) .3

21 ax ∆∆= ∩k  Using part (i), Lemma 5.11 and O(2.4) we 

calculate that 936 +=k  or .972 +  Now, by O(2.11), there are no line 

orbits (apart from ( )Xx,8,42α  and ( ) )Xx,22 4,4α  of size .72≤  Thus      

we conclude that ( ) ( ) .91
3
2 =∆∆ xa ∩  A similar argument, using 

( ) ( )aa 1
2

8
3 , ∆∆  and O(2.11) shows that ( ) ( ) 61

1
2 =∆∆ xa ∩  - note that 

all the line orbits from ( )ay 1
2∆∈  have already been accounted for except 

( ).,, 212,0 4 ΛΛα y  

Suppose (iv) is false, and argue for a contradiction. Then, by Lemma 5.2, 

( )., 0 Xcb Γ∈/  By Lemma 3.5, there exists ( ) { }XXaY ∪,3β∈  with 

( ).,
315 Yaba α∈+  Set ( ).Yττ =  By Lemma 4.5 ( )XQ∈τ  and so 

aa =τ  and .xx =τ  Also, from Lemma 4.4, ( ).0 babb +Γ∈=/
τ  Note that 

( )xbb 2, ∆∈τ  and that b  and τb  are in the same .orbit-xG  Lemma 7.1 

implies that ( ).8
3 xa ∆∈  If ( ) ( ),3

2
1
2 xxb ∆∆∈ ∪  then part (iii) (with a and x 
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interchanged) yields that ( ).0 Xb Γ∈  Thus ( )., 2
2 xbb ∆∈τ  Using Lemma 

7.3(ii) (with x in place of a) we infer that ( ),1 xa ∆∈  a contradiction. That 

( ) ( ) 01
2
2 /=∆∆ xa ∩  follows from Lemma 3.7(ii).  � 

We now consider the set 

( ) 0
10
3 { Γ∈=∆ xa  there exists ( ) ( )xac 1

3
2 ∆∆∈ ∩  such that ( )},,242 cacxc Tα∈+  

where caT  is the unique element of ( ).,2 caΓ  

Lemma 7.5. ( ) ( )aa 3
10
3 ∆⊆∆  and ( ) ( ) 08

3
10
3 /=∆∆ aa ∩  and so ( ) .0,3 /=Γ xa  

Proof. Let ( )ax 10
3∆∈  and ( ) ( )xac 1

3
2 ∆∆∈ ∩  such that 242

α∈+ xc  

.),( cac T  If ( ),8
3 ax ∆∈  then there exists ( )xaX ,3Γ∈  and, by Lemma 

7.4(iv), in ,cΩ  the octad xc +  would intersect caT  in ,42  a contradiction. 

So ( ) ( ) 08
3

10
3 /=∆∆ aa ∩  and ( ) .0,3 /=Γ xa  If ( ),1 ax ∆∈  then { }⊥∈ cax ,  

and so ( )Xx 0Γ∈  for each ( ),,3 caX Γ∈  a contradiction. Suppose that 

( ).2 ax ∆∈  Then Lemma 7.3 gives that ( ) ( ).3
2

1
2 aax ∆∆∈ ∪  However this 

contradicts ( ) 0,3 /=Γ xa  again. Therefore ( )ax 3∆∈  by definition.  � 

We now turn to ( ).7
3 a∆  Recall from (2.2) that 

( ) { 0
7
3 Γ∈=∆ xa  there exists ( ) ( )xac 1

1
2 ∆∆∈ ∩  such that  

}( ),,,42,0 caaccyc SΩΩα∈+ ∩  

where ac ΩΩ ∩  is the tetrad of aΩ  described in Lemma 5.5 and caS  is 

the sextet in aΩ  corresponding to the unique element of ( ).,3 caΓ  

The next result shows the link between ( )a7
3∆  and ( ).10

3 a∆  

Lemma 7.6. For any ( ),, 10
30 axx ∆∈Γ∈  if and only if ( ).7

3 aa ∆∈  
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Proof. Let ( )ax 10
3∆∈  and let ( ) ( )xac 1

3
2 ∆∆∈ ∩  with ( ,24

cxc α∈+  

).caT  If { } { }321 ,,, bbbca =⊥
 we may suppose that ( )xb 1

21 ∆∈  and 

( )., 2
232 abb ∆∈  In ,

1b
Ω  the octad cb +1  is incident with the sextet 

( ),,1 xbX  where ( )xbX ,1  is the unique element of ( )xb ,13Γ  (see Lemma 

5.4). Also ( ) ( ) 011 /=++ cbab ∩  as octads in 
1b

Ω  because ( ).3
2 ac ∆∈  

Therefore ( )( )xbXbab ,, 1121 4α∈+  and ( ) ( ) ,0,11 =+ xbtab ∩  where T 

is the tetrad contained in db +1  for all { } .,1
⊥∈ xbd  Therefore 

( )xa 7
3∆∈  by definition. 

Conversely assume ( )xa 7
3∆∈  and let ( ) ( )axb 1

1
2 ∆∆∈ ∩  with ∈+ ab  

( ),,42
Xbα  where X  is the unique element of ( )xb,3Γ  and 

( ) ( ) 0, =+ xbtab ∩  in ,bΩ  where ( ) ., xbxbt ΩΩ= ∩  Then there exists 

{ }⊥∈ xbd ,  such that ( )Xxb 1Γ∈+  and ( ) ( ) 0/=++ abdb ∩  in .bΩ  

Hence ( )ad 3
2∆∈  and now ( )ax 10

3∆∈  by definition.  � 

Lemma 7.7. Suppose that ( )axx 221 , ∆∈  and ( ).211 xx ∆∈  Let 

( ) { }.,, 21210 xxxxx =+Γ  Then ( )axx i
221 , ∆∈  for the same { }3,2,1∈i  

and ( ).1 ax ∆∈  

Proof. If ( ),3
21 ax ∆∈  the lemma follows from Lemma 7.3. So we may 

assume ( ) ( ).3
2

1
21 aax ∆∆∈ ∪  The point distributions (see, for ( ),1

2 a∆  Lemmas 

5.5, 7.4 and Section 6 and, for ( ),3
2 a∆  Lemmas 5.10, 7.4, 7.5) of lines from 

( ) ( )aa 3
2

1
2 ∆∆ ∪  are all known with the exception of ( )2112,0 ,,4 ΛΛα x  

when ( ).1
21 ax ∆∈  (The problem here with ( )2112,0 ,,4 ΛΛα x  is that 

( )a7
3∆  could equal one of the orbits-aG  in ( ).)2 a∆  From Lemmas 7.5 and 7.6, 
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we deduce that ( ) ( ).3
7
3 aa ∆⊆∆  In particular, for ( ),,, 2112,0 4 ΛΛα∈ xℓ  

( ) ( ) { } ( ) ( ),201
1
20 axa ∆Λ==∆Λ ∩ℓ∩ℓ  so completing the proof of Lemma 

7.7.  � 

Lemma 7.8. Let ( )ax 10
2∆∈  and ( ) ( ).1

3
2 xac ∆∆∈ ∩  

(i) We have ( ) ( ) { }⊥=∆∆ caax ,12 ∩  with ( ) ( ) ( )xax 2
21

1
2 ,1 ∆=∆∆ ∩  

( ) 21 =∆ a∩  and ( ) ( ) .01
3
2 =∆∆ ax ∩  

(ii) If ( ) ( ),1
1
2 axb ∆∆∈ ∩  then ( ) ( ) { }⊥=∆∆ xbxa ,12 ∩  with ( ) ∩a1

2∆  

( ) ( ) ( ) 4,0 1
2
21 =∆∆=∆ xax ∩  and ( ) ( ) .11

3
2 =∆∆ xa ∩  

Proof. In ,cΩ  for every { } ,,
⊥∈ cab  the octad bc +  is incident with 

the trio caT  and since ( )cacxc T,242
α∈+  we get ( ) { } ,1,1

2 =∆ ⊥
cax ∩  

( ) { } ,2,2
2 =∆ ⊥

cax ∩  and ( ) { } 0,3
2 =∆ ⊥

cax ∩  from the definitions of 

( ) ( ).3,2,12 =∆ ixi  Let { } ( ) { } .,1
2

⊥∆= caxb ∩  In ,bΩ  the two octads ab +  

and cb +  are incident with the trio caT  and so the octads are disjoint. Let 

X  be the unique element of ( ).,3 xbΓ  Then ( ).,42 Xbab α∈+  Therefore, 

for every { } { },, cxbd \⊥∈  the octads ab +  and db +  intersect in exactly 

two elements of .bΩ  So ( ) { } ( ) { } ,4,,0, 2
2

1
2 =∆=∆ ⊥⊥

xbxxba ∩∩  and 

( ) { } .1,3
2 =∆ ⊥

xba ∩  

To complete the proof by Lemma 7.8, it is enough to show that ( )x2∆  

( ) { } .,1
⊥=∆ caa∩  Assume that ( ) ( )axb 121 ∆∆∈ ∩  with { } .,1

⊥∈/ cab  If 

( )Xba 11 Γ∈+  for some ( ),,3 caX Γ∈  then ( ) ( )YaYba ,4211 αΓ∈+ ∪  

for every ( )caY ,3Γ∈  and so ( ) ( )
1b

aQY ∈τ  by Lemmas 4.2(i) and 4.4. By 

the definition of ( ),10
3 a∆  we can find ( )caY ,3Γ∈  with ( )Ycxc ,

315α∈+  
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and then ( ) xGY ∈/τ  by Lemma 4.4. So ( ) ( ) ( )xcbxx Y +Γ∆∈ 012, ∩
τ  and 

Lemma 7.7 gives ( ),11 bc ∆∈  contrary to the choice of .1b  Therefore 

( )Xba 11 Γ∈/+  for all ( )caX ,3Γ∈  and so in ,aΩ  the octad 1ba +  

intersects the trio caT  in .422  

We now show that ( ).2
21 xb ∆∈  Let X  be the unique element of 

( ).,3 xbΓ  Assume ( )xb 2
21 ∆∈/  for a contradiction. Then there exists 

( )., 13 bxY Γ∈  If ( )YxX i ,β∈  for ,0,1=i  then there exists { }⊥∈ 1, bxd  

with ( ).,315 Xxdx α∈+  By Lemma 4.4, ( ) .dd X =/
τ  Since ( ),,42 Xbab α∈+  

using Lemma 4.4 again we have ( ) .aa X =τ  Using Lemma 7.7 with d and 

( ),Xdτ  we get ( ).1 ax ∆∈  So we must have ( ).,3 YxX β∈  We can choose 

{ }⊥∈ xbd ,  with ( ).,24 Yxdx α∈+  So ( ).0 Yd Γ∈  If ( )11 bd ∆∈  then 

( )ad 2
2∆∈/  by Lemma 5.8(ii). Then cd =  from the first part of the proof. 

This contradicts the fact that { } .,1
⊥∈/ cab  If ( ),12 bd ∆∈  then Lemma 7.7 

implies that the point in ( ) { }110 , ba ba \+Γ  lies in ( )d1∆  and using 

Lemma 7.7 again we get ( ).1 xa ∆∈  So ( )1
8
3 bd ∆∈  because ( ) .0, 13 /=/Γ bd  

However Lemma 7.4(iv) now yields ( ) 0,3 /=/Γ xa  which contradicts 

Lemma 7.5. Hence we have shown that ( ).2
21 xb ∆∈  

Let d be the unique point in { } ., 1
⊥

bx  We can choose ( )caY ,3Γ∈  

such that ( ).,42
Ycxc α∈+  Then ( )Yτ  fixes x by Lemma 4.4. Assume 

( )ad 2
2∆∈/  and let ( ).,3 daZ Γ∈  If ( )caZ T3Γ∈/  we could choose 

( )caY T31 Γ∈  such that ( )ZaY i ,1 β∈  for 0=i  or 1 and { }⊥∈′ dab ,  with 

( )., 1315 Yaba α∈′+  So ( )1Yτ  does not fix b′  by Lemma 4.4 and then 

Lemma 7.7 gives ( ),1 xa ∆∈  a contradiction. Therefore ( ).3 caZ TΓ∈  

Applying a similar argument to the one used to show ( ),2
21 xb ∆∈  we can 

prove that ( ).2
2 ad ∆∈  
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Since { } ,,1
⊥∈/ cab  the octad 1ba +  in aΩ  is not incident with the 

trio .caT  Therefore, we can choose ( )caY ,3Γ∈  with ( ) xGY ∈τ  and 

( ).01 Yb Γ∈/  If ( )Yτ  does not fix 1b  Lemma 7.7 would imply that 

( )xa 1∆∈  and so ( ) .
1b

GY ∈τ  From Lemma 4.8(ii), as ( ),01 Yb Γ∈/  

( ) ( ).1bQY ∈/τ  Hence ( ) ( ) 4*
2

*
21 1

1

1 ≅∈=/
b

ab
b

GOYτ  and because ( ),2
2 ad ∆∈  

the octads (in ) abb +Ω 11
 and db +1  intersect in two elements. As a 

consequence ( )Yτ  does not fix the line .1 db +  In particular, ( ) dd Y =/
τ  

and therefore, as ( ) { } ,,, 1
⊥∈ xbdd Yτ  we have now have { } 1,1 >⊥

xb  

which contradicts Lemma 5.8(ii). This completes the proof of the lemma. 

� 

Lemma 7.9. (i) ( ) .23.11.7.5.3.2 2910
3 =∆ a  

(ii) aG  is transitive on ( ).10
3 a∆  

(iii) For ( ) 4
910

3 .]2[~, SGax ax∆∈  and 4
6* :2~ SG x

ax  is the 

stabilizer in x
xG*  of the tetrad ( )bxt ,  (where b is the unique element of 

( ) ( ))xa 1
21 ∆∆ ∩  and a partition of ( )bxtcx ,\+  into two pairs of elements. 

Proof. Let ( )ax 10
3∆∈  and c be the unique point in ( ) ( )xa 1

3
2 ∆∆ ∩         

(c exists by Lemma 7.8). Then ( ) ( ) 672.2),(2 2421
10
3 =α=∆∆ cacca T∩  

by O(2.4). By the uniqueness of c and Lemma 5.11(i), we have  

( ) ( ) .23.11.7.5.3.2.672.2 293
2

10
3 =∆=∆ aa  

For part (ii), working in ,cΩ  there are four sextets ( )caX ,3Γ∈  such 

that ( )Xcxc ,
315α∈+  and so ( ) xGX ∈/τ  by Lemma 4.4. Therefore acG  

is transitive on ( ) { }.0 cxc \+Γ  Now part (ii) follows because ( )Xc,315α  is a 

orbit-acG  on ( )c1Γ  and ( )a3
2∆  is a orbit-aG  of points by Lemma 5.11(ii).  



THE POINT-LINE COLLINEARITY GRAPH OF … 103 

Turning to part (iii) we have .acax GG �  Let { } ( )xcab 1
2, ∆∈ ⊥

∩          

(b exists and is unique by Lemma 7.8(i)). By Lemma 7.8(ii) there exists 

{ } ( )axbcc 2
221 ,, ∆∈ ⊥

∩  with .21 cc =/  We show that ( ) 32≤xaQ  by first 

proving that ( ) ( )
icx aQaQ �  for .2,1=i  Assume ( ) ( )

icx aQ aQg \∈  for a 

contradiction. If ,bbg =  then in bΩ  the octads 1cb +  and gcb 1+  contain 

the same two elements of .ab +  However Lemma 5.5 implies that 

( ) cbxbt +⊆,  which gives ( ) ( ) ,0/=/++ cbab ∩  contrary to Lemma 5.9. 

So bbg =/  and we can use Lemma 7.7 to show that ( ),1 xa ∆∈  a 

contradiction. So ( ) ( )
icx aQaQ �  for .2,1=i  Since ( ) ( ) 0/=++ icbab ∩  

in ,bΩ  there are seven hyperplanes ( ) ( )7,,1,3 …=Γ∈ ibaYi  with 

( )
21cci GY ∈τ  and the subgroup generated by the elements ( )iYτ  has 

order at least .24  Further we can show that, up to relabelling ( ) ( )1cQaQ ∩  

( ) ( ) ( ) ( )
21321 ccaQYYY �τττ=  (see Lemma 6.15 in [17] for details). Since 

( ) ( )
121 ccc aQaQ =/  we have ( ) 42

21
=ccaQ  by Theorem 4. Therefore 

( ) .23* 1

21
=

c
cc

aQ  In ,
1c

Ω  the octads bc +1  and xc +1  intersect in four 

elements and the subgroup of ( )1

1

*
2

c
bc

GO  fixing xc +1  is of order .22  

Therefore ( ) 2*
21

21
≤

c
xcc

aQ  and so ( ) ,23≤xaQ  as required.  

By parts (i) and (ii), .7.3.2]:[ 6=axac GG  Since ( ) 92=caQ  by Theorem 

5 we must have ( ) 32≤xaQ  and so ( ) 32=xaQ  and .7.3]:[ ** =a
ax

a
ac GG  

Using the ATLAS [2] and Theorem 5 we get .:2~ 4
6* SG a

ax  This 

completes the proof of the lemma.  � 

Lemmas 7.6 and 7.8 now imply 
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Lemma 7.10. Let ( )ax 7
3∆∈  and ( ) ( ).1

1
2 xac ∆∆∈ ∩  Then 

(i) ( ) ( ) { }⊥=∆∆ caax ,12 ∩  with ( ) ( ) ( ) ( ) 4,0 1
2
21

1
2 =∆∆=∆∆ axax ∩∩  

and ( ) ( ) .11
3
2 =∆∆ ax ∩   

(ii) If ( ) ( ),1
3
2 axb ∆∆∈ ∩  then ( ) ( ) { }⊥=∆∆ xbxa ,12 ∩  with ( )a1

2∆  

( ) ( ) ( ) 2,1 1
2
21 =∆∆=∆ xax ∩∩  and ( ) ( ) .01

3
2 =∆∆ xa ∩  

Lemma 7.11. (i) ( ) .23.11.7.5.3.2 297
3 =∆ a  

(ii) aG  is transitive on ( ).7
3 a∆  

(iii) For ( ) 4
97

3 .]2[~, SGax ax∆∈  and 4
5* :2~ SG x

ax  is the stabilizer 

in x
xG*  of the octad dx +  (where d is the unique element of ( ) ( ) ,)1

2
2 xa ∆∆ ∩  

the trio 0T  which is the unique element of ( )xb,3Γ  for ( ) ( )axb 1
3
2 ∆∆∈ ∩   

and a partition of the octad dx +  into four 2-element sets. 

Proof. Let ( )ax 7
3∆∈  and ( ) ( ).1

1
2 xac ∆∆∈ ∩  Then ( ) ( )ca 1

3
3 ∆∆ ∩  is 

twice the number of octads in cΩ  lying in ( )( )acXc ,,42α  that have an 

empty intersection with ( )., act  This number is 240. Therefore Lemmas 

5.6 and 7.10 give  

.23.11.7.5.3.2 297
3 =∆  

Let ( ) { }.,0 xc xcx \+Γ∈′  Then by definition ( ).7
3 ax ∆∈′  Since ∈/+ xc  

( )( ),,1 acXΓ  there exists ( )( )acXcY ,,3β∈  with ( ).,
315 Ycxc α∈+  For 

this Y we have ( ) xx Y ′=τ  by Lemma 4.4. By O(2.2) and Lemma 5.5(iii), 

c
caG*  is transitive on the lines in ( )( )acXc ,,42α  that have an empty 

intersection with ( )act ,  and so part (ii) follows from the transitivity of 

aG  on ( )a2
2∆  (see Lemma 5.6(ii)). 
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For part (iii) we know that ( )xa 10
3∆∈  by Lemma 7.6 and hence 

4
9 .]2[~ SGax  by Lemma 7.9(iii). Let ( ) ( )axb 1

3
2 ∆∆∈ ∩  and ∈21 , ee  

{ } ( )axb 2
2, ∆⊥

∩  with .21 ee =/  (Such points exist by Lemma 7.10.) Assume 

( ) ( )
1ex aQaQ �/  and let ( ) ( ) .

1ey aQaQg \∈  If ,bbg =  then )( *
2

* b
ba

b GOg ∈  

and so in ,bΩ  the octads 1eb +  and geb 1+  intersect ab +  in the same 

two elements. However { }⊥∈ xbeg ,1  and so ( ) 0)( 11 /=++ gebeb ∩  

because ( ).3
2 xb ∆∈  Therefore .bbg =/  Since ( ),0 babg +Γ∈  Lemma 7.7 

implies that ( ),1 xa ∆∈  a contradiction. Therefore ( ) ( )
1ex aQaQ �  and 

similarly ( ) ( ) .
2ex aQaQ �  Using an argument similar to that in the proof 

of Lemma 7.9(iii), we get ( ) .24≤xaQ  

Since c is the unique point in ( ) ( ) .,1
1
2 acax GGxa �∆∆ ∩  By Lemma 

5.6(iii) we have ( ) .27=acQ  Therefore ( ) .)( *
2

* a
ac

a
a GOcQ �  Since ∈+ xc  

( )( ),,,42 acXcα  there exists ( )( )acXcY ,,3β∈  such that ( ).,315 Ycxc α∈+  

Then Lemma 4.4 implies that ( ) .xGY ∈/τ  However ( ) ( ) ( )( )acXQcQY ,∩∈τ  

and ( ) ( ).aQY ∈/τ  Therefore 5*
2 2( ≤x

xaGO  and so 4
5* .2~ SG x

xa  and 

( ) .24=axQ   � 

We end this section by examining the set 

( ) 0
9
3 { Γ∈=∆ xa  there exists ( ) ( )xac 1

2
2 ∆∆∈ ∩  such that 

),,,(0,2 cabccxc D+α∈+  where { } { } .},
⊥= cab  

Lemma 7.12. ( ) ( ) 03
9
3 /=∆∆ aa i

∩  for 8,,1 …=i  and .10=i  

 



PETER ROWLEY and LOUISE WALKER  106 

Proof. Since 0/=ΩΩ xa ∩  by definition, ( ) ( ) 03
9
3 /=∆∆ aa i

∩  for 

.6,,1 …=i  By Lemma 7.4(iii), ( ) ( ) .08
3

9
3 /=∆∆ aa ∩  By Lemmas 7.8 and 

7.10 and O(2.3) if ( ) ( ),10
3

7
3 aax ∆∆∈ ∪  then ( ) ( ) 0=++ bcxc ∩  or 4 in 

cΩ  for any ( ) ( ).1
2
2 xac ∆∆∈ ∩  Therefore ( ) ( ) 03

9
3 /=∆∆ aa i

∩  for 10,7=i  

as required.  � 

Lemma 7.13. Let ( ).9
3 ax ∆∈  Then there exists a unique path of 

length three between a and x in .G  

Proof. Let ( ) ( )xac 1
2
2 ∆∆∈ ∩  with ),,,(02 cabccxc D+α∈+  and 

{ } { } .,
⊥= cab  Then ( )xb 2

2∆∈  by definition. Assume that xcba ,,, 11  is 

another path of length three in .G  By Lemmas 7.8, 7.10, and 7.4 and 

O(2.2) and O(2.4), we must have ( )ac 2
21 ∆∈  and ( ).2

21 xb ∆∈  It then 

follows from Lemma 5.8(ii) that bb =/1  and .1 cc =/  Therefore ( )bb 21 ∆∈  

and we consider the three possible choices separately. 

First assume that ( ).3
21 bb ∆∈  Notice that ( ) ( )bbc 211 ∆∆∈/ ∪  by 

Lemma 7.7 and Lemma 5.8(ii) and so ( ).31 bc ∆∈  Therefore ( )bc 8
31 ∆∈  

( )b10
3∆∪  by O(2.4). However Lemma 7.4(iii) implies that ( ).10

31 bc ∆∈  We 

now have ( ) { }⊥∆∈ 11
1
2 , bbcc ∩  by Lemma 7.8 and so { } ,,, 11

⊥∈ bxcc  

contrary to Lemma 5.8(ii). 

Next suppose that ( ).1
21 bb ∆∈  Therefore ( ) ( ).1

8
31

7
3 bbc ∆∆∈ ∪  Using 

Lemma 7.4(iii) we must have ( ).1
7
3 bc ∆∈  This again leads to the 

contradiction that { } .,, 11
⊥∈ bxcc  

Therefore we must have ( ).2
21 bb ∆∈  In 0, /=+Ω cac xc D∩  and 

.2=++ bcxc ∩  Using the MOG and Lemma 4.4, we can find a sextet 

( )bcY ,3Γ∈  with ( ) .axGY ∈τ  Since ( ) ( )aQY ∈/τ  and ,(21 aba α∈+  
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( )Yba τ,)+  does not fix .1ba +  However by the above argument we must 

have 
( ) ( ) ( )1221 ,, baabaaba Y +α+α∈+ ∩
τ

 and ( ) ( ) ( )bababa +=++ 1∩  

( )
)( 1

Yba τ+∩  in .aΩ  As this cannot occur we again get a contradiction. 

This completes the proof of the lemma.  � 

Lemma 7.14. (i) ( ) .23.11.7.5.3.2 2139
3 =∆ a  

(ii) aG  is transitive on ( ).9
3 a∆  

(iii) For ( ) 4
59

3 .]2[~, SGax ax∆∈  and ..2~ 4
4* SG x

ax  

Proof. Let ( )ax 9
3∆∈  and let xcba ,,,  be the unique path of length 

three between a and x in .G  

(i) From O(2.4), ( ) ( ) .5.3.22402 59
31 =×=∆∆ ac ∩  Using Lemmas 

5.8(ii) and Lemma 7.13 we then have ( ) .23.11.7.5.3.32 219
3 =∆ a  

(ii) Since ),,(0,2 cabccxc D+α+  and using Lemma 4.4, we can find 

( )cbY ,3Γ∈  with ( ) .xa GGY \∈τ  Since ( )Yτ  fixes ( )Yxc τ,+  interchanges the 

points in ( ) { }.0 cxc \+Γ  Because aG  is transitive on ( )a2
2∆  and 

),,(0,2 cabcc D+α  is a orbit,-acG  aG  is transitive on ( ).9
3 a∆  

(iii) We have .acax GG ≤  Since ( ),,2 bccxc +α∈+  then ( ) 1
* =c
cxaQ  

and so ( ) ( ) ( ).cQaQaQ x ∩≤  Using the MOG we see there exist ,, 21 YY  

( )bcY +Γ∈ 33  with ( ) ( ) ( ) ( ) ( ) .321 ><= YYYcQaQ τττ∩  Further, if δ  is 

the duad in cΩ  fixed by c
caG*  and it  is the tetrad in iY  containing 

,)3,2,1( =δ i  then of the six elements in ( ) δ+ \ac  in ,cΩ  three lie in 

exactly two of the tetrads it  and three lie in none of the tetrads .it       

(For details, see Proposition 8.12 in [17] where ( )a2
2∆  is denoted by 

( ).)3
2 a∆  Since 0/=ΩΩ xa ∩  we have that ( )iYcxc ,

315α∈+  for precisely 
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two or none of the sextets .3,2,1, =iYi  Therefore ( ) ( ) ( ) xGYYY ∈321 τττ  

by Lemma 4.4. Hence ( ) 2=xaQ  and it follows that .5.3.2]:[ ** =x
xa

x
xb

GG  

Since 6
4* .2~ SG x

xb
 by Lemma 5.8(iii) we must have ,.2~ 4

4* SG x
xa  as 

required.  

� 
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