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Abstract 

Stokes operators, ,, 42 EE  are well known partial differential operators of 

elliptic type, which are often used in Applied Mathematics. Stokes equation 

02 =/vE  describes the irrotational, axisymmetric creeping flow and Stokes     

bi-stream equation 04 =/vE  denotes the rotational one, where .224 EEE �=  

Necessary and sufficient conditions for the separability and the R-separability 

of the equation 02 =/vE  have been proved recently. Moreover, the 0-eigenspace 

and the generalized 0-eigenspace of the operator 2E  have been derived in 

several coordinate systems. Specifically, the spherical coordinate system is 

employed in many problems taking into account that in many engineering 

applications, the solutions in spherical geometry seem to be adequate for 

solving a problem. In the present manuscript, it is shown that equation 

,02 =/vE k ∗∈ Nk  admits a solution of the form ++++= …3
4

2
2

1 ururuU  

,22
k

k ur −  where k,,2,1, …=iui  are solutions of Stokes equation and r is the 

radial spherical variable. Additionally, we obtain the kernel of the k-th power of 

the Stokes operator, ,2kE  in the spherical geometry for every .∗∈ Nk  
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1. Introduction 

The Laplacian, ,2∇=∆  is the most common elliptic operator [1] that 

occurs in many physical phenomena, such as electric and gravitational 

potentials, the diffusion equation, wave propagation etc. The solution of 

each one of the equations 0,0 2 =∆=∆ uu  has been derived in several 

coordinate systems [1], [2]. Moreover, detailed description of the 

conditions needed to be satisfied for Laplace’s equation to be separable or 

R-separable were first given by Eisenhart [3]. Moon and Spencer in a 

series of celebrated papers [4]-[8] expanded and completed Eisenhart’s 

work. Furthermore, Almansi [9] proved that if 21, uu  are solutions of 

,0=∆u  the solution of 02 =∆ U  is ,2
2

1 uruU +=  where r is the 

Euclidean distance in the appropriate geometry. In this elaborated paper [9], 

he also derived the general solution of the equation ,02 =∆ un  .∗∈ Nn  

Stokes operator, ,2E  is an elliptic operator used in the case of an 

irrotational axisymmetric creeping flow [10]. Stokes equation 02 =/vE  

separates variables in spherical [10], in paraboloid [11] and in spheroid 

coordinate systems [12], while it R-separates variables in inverted prolate 

spheroid [13], [14], in inverted oblate spheroid [15], in bispherical, in toroidal 

[16], in cardiod and in tangent sphere [11] coordinate systems. Recently, 

Hadjinicolaou and Protopapas [17] stated and proved the necessary and 

sufficient conditions that must be fulfilled when we seek for the simple or 

the R-separability of equation 02 =/vE  in every axisymmetric geometry, 

employing the metric coefficients of the coordinate system. 

The steady axisymmetric creeping flow is fully described by the 

stream function ,v/  which satisfies the fourth order partial differential 

equation of elliptic type ,04 =/vE  where 224 EEE �=  is the Stokes      

bi-stream operator [10]. The solution of the equation 04 =/vE  is obtained 

by calculating the generalized eigenfunctions of Stokes equation. In the 
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spherical geometry it separates variables [10], in the prolate and oblate 

spheroid it semiseparates variables [12] and in the inverted spheroid 

coordinate systems it R-semiseparates variables [13]-[15]. 

Charalambopoulos and Dassios [18] expanded the Almansi type 

approach for the bi-harmonic Laplace operator to bi-stream Stokes 

operator, stating that the knowledge of two arbitrary solutions 21 , vv //  of 

,02 =/vE  provide the solution 2
2

1 vrv /+/=Ψ  of ,04 =ΨE  where r is the 

Euclidean distance of the coordinate system. Dassios and Vafeas [19] 

derived the Almansi type generalized eigenfunction in prolate coordinate 

system. The Almansi type approach for the solution of 04 =/vE  provide a 

safe road map for its general solution in every axisymmetric coordinate 

system when the general solution of 02 =/vE  is known. 

In this paper, we provide the analogous to the Almansi [9] expression 

for the solution of the equation 02 =/vE k  proving that we only need to 

know the eigenfunctions of the Stokes operator in order to calculate the    

0-eigenspace of ��� ���� �� �…��

times-

2222

k

k EEEE =  for every .∗∈ Nk  Moreover, we 

derive the 0-eigenspace of the operator k2E  for every ∗∈ Nk  in the 

spherical coordinate system. 

The manuscript is organized as follows. In Section 2, we present 

Stokes operator, while in Section 3, we show a solution for the equation 

.,02 ∗∈=/ Nk
kvE  In Section 4, we derive the kernel of the k-th power of 

the Stokes operator in spherical geometry. Finally, in Section 5, we 

summarize the results of the present work. 
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2. Stokes Operator 

In every curvilinear axisymmetric system of coordinates ( )φ,, 21 qq  

the Stokes operator [10] is 

,
21

2

212

1

1
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2
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
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∂

∂

ϖ∂

∂
+








∂

∂

ϖ∂

∂
ϖ=

qh

h

qqh

h

q
hhE  (1) 

where ϖ  is the radial cylindrical coordinate and 21 , hh  are the metric 

coefficients of the system. 

Using the spherical system of coordinates ( )φθ,,r  every point 

( )321 ,, xxx  is described [1] with 

( ) ( ),cos,sinsin,cossin,, 321 θφθφθ= rrrxxx   (2) 

where [ ] [ ),2,0,,0,0 π∈φπ∈θ>r  we derive 

,sin,
1

,1 21 θ=ϖ== r
r

hh   (3) 

so Stokes operator assumes the form 

.
1

sin

cos1
2

2

222

2
2

θ∂

∂
+

θ∂

∂

θ

θ
−

∂

∂
=

rrr
E  (4) 

If we substitute [ ],1,1cos −∈θ=ζ  we reach at 

.
1

2

2

2

2

2

2
2

ζ∂

∂ζ−
+

∂

∂
=

rr
E  (5) 

3. Solution for Equation ∗=/ N∈kk 0,2
vE  

Lemma 1. If u is a solution of ,2,02 ≥=/ k
kvE  then ur2  is a solution 

of ,022 =/
+ vE k  where r is the Euclidean distance, 2E  is the Stokes 

operator and .2222 EEE �
kk =+  
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Proof. 

( ) ( ( ))urEEurE 222222 kk =+  
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Lemma 2. If 1,,,, 21 ≥kkuuu …  belong to the 0-eigenspace of ,2E  

then 

k
k urururuU 22

3
4

2
2

1
−++++= …   (6) 

belongs to the 0-eigenspace of .,2 ∗∈ Nk
kE  

Proof. ●  For 1=k  the lemma holds true. 

●  For 2≥k  since ( ) ,2,,,2,1,ker 2 ≥=∀∈ kk…iEui  from Lemma 

1 and for k,,2,1 …=i  it holds that 

( ),ker 42 Eur i ∈−  

( ) ( ),ker 6224 Eurrur ii ∈=−  

( ) ( ),ker 8426 Eurrur ii ∈=−  

…−  

( ) ( ).ker 242222 kkk Eurrur ii ∈=− −−  

Furthermore ( ) ( ) ( ),kerkerker 242 kEEE ⊂⊂⊂ …  so ( ).ker 2kEU ∈  □ 
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From Lemma 2, we conclude that function U  defined in (6) is solution 

of .,02 ∗∈=/ Nk
kvE  

4. The Kernel of ∗
N∈k,k2E  in Spherical 

Coordinate System 

It has been proved [10] that the eigenfunctions of Stokes operator 2E  

in the spherical system are 

( ) ( ) ( ),,1
1, ζ=ζ n

n
n GrrL   (7) 

( ) ( ) ( ),,2
1, ζ=ζ n

n
n HrrL   (8) 

( ) ( ) ( ),, 13
1, ζ=ζ −

n
n

n GrrL   (9) 

( ) ( ) ( ),, 14
1, ζ=ζ −

n
n

n HrrL   (10) 

for ,,2,1,0 …=n  where nn HG ,  are Gegenbauer functions [20] of the 

first and the second kind, respectively. 

Furthermore, the generalized eigenfunctions of Stokes operator 2E  

in the spherical system [10] are 

( ) ( ) ( ),, 21
2, ζ=ζ +

n
n

n GrrL   (11) 

( ) ( ) ( ),, 22
2, ζ=ζ +

n
n

n HrrL   (12) 

( ) ( ) ( ),, 33
2, ζ=ζ −

n
n

n GrrL   (13) 

( ) ( ) ( ),, 34
2, ζ=ζ −

n
n

n HrrL   (14) 

for .,2,1,0 …=n  
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Therefore, the zero-eigenspace of the Stokes bi-stream operator 4E  

consists of all the functions ( ) .4,3,2,1,2,1,,, ==∈ ∗ imnL i
mn N  

Theorem 1. In the spherical coordinate system ( )φζ,,r  the functions 

( ) ( ) ( ) ,,,2,1,, 221
, k…=∀ζ=ζ −+ mGrrL n

mn
mn   (15) 

( ) ( ) ( ) ,,,2,1,, 222
, k…=∀ζ=ζ −+ mHrrL n

mn
mn   (16) 

( ) ( ) ( ) ,,,2,1,, 123
, k…=∀ζ=ζ −− mGrrL n

nm
mn   (17) 

( ) ( ) ( ) ,,,2,1,, 124
, k…=∀ζ=ζ −− mHrrL n

nm
mn   (18) 

for …,2,1,0=n  belong to the kernel of the operator ,,4,3,2,1,2
…=kkE  

where ��� ���� �� �…��

times

EEEE

-

2222

k

k =  and nn HG ,  are Gegenbauer functions. 

Proof. If 1=k  from (7) to (10), we easily verify that the functions 

( )i
nL 1,  belong to the zero-eigenspace of 2E  [10]. 

● Assuming that 
( ) ( )k
k

2
, ker EL i

n ∈  we will prove that 
( ) ( ),ker 22

1,
+

+ ∈ k

k
EL i

n  

where 

( ) ( ) ( ),, 21
1, ζ=ζ +

+ n
n

n GrrL k

k
  (19) 

( ) ( ) ( ),, 22
1, ζ=ζ +

+ n
n

n HrrL k

k
  (20) 

( ) ( ) ( ),, 123
1, ζ=ζ −+

+ n
n

n GrrL k

k
  (21) 

( ) ( ) ( )., 124
1, ζ=ζ −+

+ n
n

n HrrL k

k
  (22) 

We have 

( ) ( )( ) ( ( )) ,0, 2221
,

2 =ζ=ζ −+
n

n
n GrErLE kk

k

k  (23) 
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and 

( ) ( )( ) ( ( ( )))., 2221
1,

22 ζ=ζ +
+

+
n

n
n GrEErLE kk

k

k  (24) 

Substituting (5) in (24) we derive 

( ) ( )( ) ( ) ( ) ( )( ) ( ),1122, 2221
1,

22 ζ−−−++=ζ −+
+

+
n

n
n GrnnnnErLE kk

k

k
kk  

(25) 

and since ( )ζnG  satisfies the Gegenbauer equation 

( )
( )

( ) ( ) ,011
2

2
2 =ζ−+

ζ

ζ
ζ− fnn

d

fd
  (26) 

we derive that 

( ) ( ) ( ) ( ( )) .01222, 2221
1,

22 =ζ−+=ζ −+
+

+
n

n
n GrEnrLE kk

k

k
kk  (27) 

The proof is similar for the functions 
( ) ( ) .4,3,2,,1, =ζ+ irL i
n k  □ 

Lemma 3. In the spherical coordinate system ( )ζ,r  the solution of the 

equation ( ) …,4,3,2,1,0,2 ==ζ/ k
k rvE  is 
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 (28) 

where 22,,4,2,0,,3,2,1,0,,,, ,,,, −== k…… inDCBA inininin  are 

constants. 
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Proof. From Theorem 1 and the theory of the generalized 

eigenfunctions we conclude that the derived eigenfunctions of Theorem 1 

form a complete set of solutions, so Lemma 3 holds true. □ 

5. Conclusion 

In the present paper, we derived the 0-eigenspace of the operator 

∗∈ Nk
k ,2E  and the corresponding solution of the equation 02 =/vE k  in 

the case of the spherical coordinate system. The eigenfunctions are products 

between appropriate powers of the Euclidean distance and Gegenbauer 

functions of both kinds. Moreover, we showed a solution for the equation 

,02 =/vE k  which proves that solution of 02 =/vE k  can be derived using 

only eigenfunctions of Stokes operator. This decomposition is not unique. 

However every solution of 02 =/vE k  can be decomposed as (6) indicates. 
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