GENERALIZED CLUSTER TILTING OF *n*-ABELIAN CATEGORIES

DEREN LUO, ZHE LI and DALONG YANG

College of Mathematics Hunan Institute of Science and Technology 414006 Yueyang P. R. China e-mail: luoderen@126.com

Abstract

In this paper, we study the (m, n)-cluster tilting subcategories of *n*-abelian categories as a generalization of *m*-cluster tilting subcategories of abelian categories and prove that the (m, n)-cluster tilting subcategories of certain *n*-abelian categories are *mn*-abelian categories.

2020 Mathematics Subject Classification: 18G50, 18G15, 18E25. Keywords and phrases: *n*-abelian category, *n*-derived functor, cluster tilting. Received February 11, 2020; Revised March 7, 2020

© 2020 Scientific Advances Publishers

This work is licensed under the Creative Commons Attribution International License (CC BY 3.0).

http://creativecommons.org/licenses/by/3.0/deed.en_US

DEREN LUO et al.

1. Introduction

In recent years, *n*-cluster tilting theory of representation theory of finite dimensional algebras, abelian categories, triangulated categories, derived categories comes into focus [1, 2, 3, 4, 7]. Motivated by these, Jasso introduced the *n*-abelian categories and *n*-exact categories [5] as a generalization of the classical abelian categories and exact categories, he proved that *n*-cluster tilting subcategories of abelian categories are *n*-abelian categories. As a generalization of homological theory of abelian categories, homological properties of *n*-abelian categories were introduced in [8, 9] via higher (co)homology of *n*-(co)resolutions under right (left) exact functors for *n*-exact sequences.

In this paper, we study the (m, n)-cluster tilting subcategories of n-abelian categories via n-homological theory of abelian categories as a generalization of m-cluster tilting subcategories of abelian categories.

This paper is organized as follows. In Section 2, we recall some notions and notations of (co)homology properties of *n*-abelian categories. In Section 3, we introduce the (m, n)-cluster tilting subcategories of certain *n*-abelian categories, and show that the (m, n)-cluster-tilting subcategories of *n*-abelian categories are *mn*-abelian categories, and study the relationship between *nm*-exact sequences and *m*-fold *n*-exact sequences.

2. Definitions and Preliminaries

2.1. *n*-Abelian categories

Let *n* be a positive integer and *C* be an additive category. We denote the category of cochain complexes of *C* by Ch(C) and the homotopy category of *C* by H(C). Also, we denote by $Ch^{n}(C)$ the full subcategory of Ch(C) given by all complexes

$$X^{0} \xrightarrow{d^{0}} X^{1} \xrightarrow{d^{1}} \cdots \xrightarrow{d^{n-1}} X^{n} \xrightarrow{d^{n}} X^{n+1}$$

which are concentrated in degrees 0, 1, ..., n + 1. We write C(X, Y) for the morphisms in C from X to Y, if $X, Y \in obC$.

Let $d^0: X^0 \to X^1$ be a morphism in *C*. An *n*-cokernel of d^0 is a sequence of morphisms

$$(d^1, \dots, d^n): X^1 \xrightarrow{d^1} X^2 \xrightarrow{d^2} X^3 \to \dots \xrightarrow{d^n} X^{n+1}$$

such that for all $1 \le k \le n-1$ the morphism d^k is a weak cokernel of d^{k-1} , and d^n is moreover a cokernel of d^{n-1} . In this case, we say the sequence

$$(d^0, d^1, \dots, d^n): X^0 \xrightarrow{d^0} X^1 \xrightarrow{d^1} \dots \xrightarrow{d^n} X^{n+1}$$
(1)

is right *n*-exact. The concepts of *n*-kernel of a morphism and left *n*-exact are defined dually. If $n \ge 2$, the *n*-cokernels and *n*-kernels are not unique in general, but their are unique up to isomorphism in H(C) [5]. (1) is called an *n*-exact sequence if it is both right *n*-exact and left *n*-exact. A sequence

$$X^0 \to X^1 \to \dots \to X^{mn+1}$$

is called an *m*-fold *n*-exact sequence if it can be split into *m n*-exact sequences $Y^{in} \to X^{in+1} \to \cdots \to X^{(i+1)n} \to Y^{(i+1)n}$ for $i = 0, 1, \cdots, m-1$ where $Y^0 = X^0$ and $Y^{mn} = X^{mn+1}$.

As a generalization of the notion of classical abelian categories, Jasso introduced the n-abelian categories in [5] as follows.

Definition 2.1 (*n*-abelian category, Definition 3.1, [5]). An *n*-abelian category is an additive category \mathcal{A} which satisfies the following axioms:

- (A0) The category \mathcal{A} is idempotent complete.
- (A1) Every morphism in \mathcal{A} has an *n*-kernel and an *n*-cokernel.

DEREN LUO et al.

(A2) For every monomorphism $f^0: X^0 \to X^1$ in \mathcal{A} there exists an *n*-exact sequence:

$$X^{0} \xrightarrow{f^{0}} X^{1} \xrightarrow{f^{1}} \cdots \xrightarrow{f^{n-1}} X^{n} \xrightarrow{f^{n}} X^{n+1}$$

(A2^{op}) For every epimorphism $f^n: X^n \to X^{n+1}$ in \mathcal{A} there exists an *n*-exact sequence:

$$X^0 \xrightarrow{f^0} X^1 \xrightarrow{f^1} \cdots \xrightarrow{f^{n-1}} X^n \xrightarrow{f^n} X^{n+1}.$$

Note that 1-abelian categories are precisely abelian categories in the usual sense.

Let \mathcal{A} be an abelian category and \mathcal{D} be a generating-cogenerating full subcategory of \mathcal{A} . \mathcal{D} is called an *n*-cluster-tilting subcategory of \mathcal{A} if \mathcal{D} is functorially finite in \mathcal{A} and

$$\mathcal{D} = \{ X \in \mathcal{A} | \forall i \in \{1, \dots, n-1\} \mathsf{Ext}^{i}_{\mathcal{A}}(X, \mathcal{D}) = 0 \}$$
$$= \{ X \in \mathcal{A} | \forall i \in \{1, \dots, n-1\} \mathsf{Ext}^{i}_{\mathcal{A}}(\mathcal{D}, X) = 0 \}.$$

Note that \mathcal{A} itself is the unique 1-cluster-tilting subcategory of \mathcal{A} .

Lemma 2.2 (Theorem 3.16, [5]). Let \mathcal{A} be an abelian category and \mathcal{D} be an *n*-cluster tilting subcategory of \mathcal{A} . Then, \mathcal{D} is an *n*-abelian category.

2.2. (co)Homology of *n*-abelian categories

In this subsection, we recall the right (resp., left) derived functors of covariant or contravariant left (resp., right) n-exact functors and study their basic properties.

Let \mathcal{A} be an *n*-abelian category and \mathcal{B} be an abelian category, and let $G: \mathcal{A} \to \mathcal{B}$ be a covariant additive functor. Let $X: X^0 \xrightarrow{d^0} X^1 \xrightarrow{d^1} \cdots \xrightarrow{d^{n-1}} X^n \xrightarrow{d^n} X^{n+1}$ in $\operatorname{Ch}^n(\mathcal{A})$ be an *n*-exact sequence. We say that G is

(i) left *n*-exact if $0 \to GX^0 \to GX^1 \to \dots \to GX^n \to GX^{n+1}$ is an exact sequence of \mathcal{B} .

(ii) right n-exact if $GX^0 \to GX^1 \to \cdots \to GX^n \to GX^{n+1} \to 0$ is an exact sequence of \mathcal{B} .

(iii) *n*-exact if $0 \to GX^0 \to GX^1 \to \cdots \to GX^n \to GX^{n+1} \to 0$ is an exact sequence of \mathcal{B} .

The notions of covariant (contravariant) additive left (right) *n*-exact functors are defined dually. For example, the hom-functors $\mathcal{A}(M, -)$ (resp., $\mathcal{A}(-, M)$) is covariant (resp., contravariant) left *n*-exact by the definition of *n*-kernel (resp., *n*-cokernel).

We say that an *n*-abelian category \mathcal{A} has enough projectives if for every object $M \in \mathcal{A}$, there exist projective objects $P_1, P_2, \ldots, P_n \in \mathcal{A}$ and an *n*-exact sequence $N \to P_n \to \cdots \to P_1 \to M$. The notion of having enough injectives is defined dually. Let \mathcal{A} has enough projectives, $M \in \mathcal{A}$, there are *n*-exact sequences

$$\Omega_n M \xrightarrow{j_1} P_n \xrightarrow{a_n} \dots \to P_1 \to M$$
$$\Omega_n^2 M \xrightarrow{j_2} P_{2n} \xrightarrow{d_{2n}} \dots \to P_{n+1} \xrightarrow{\pi_1} \Omega_n M$$

Connecting them, let $d_{in+1} = j_i \pi_i$, we call the sequence

.

$$\dots \to P_{3n} \xrightarrow{d_{3n}} \dots \to P_{2n+1} \xrightarrow{d_{2n+1}} P_{2n} \xrightarrow{d_{2n}} \dots \to P_{n+1} \xrightarrow{d_{n+1}} P_n \xrightarrow{d_n} \dots \to P_1 \xrightarrow{d_1} M$$
(2)

a projective n-resolution of M, also denoted simply as $P_{\bullet} \xrightarrow{d_1} M$. We call $\Omega_n^k M$ the k-th n-syzygy of M for $k \ge 0$. The notions of injective n-resolution, k-th n-cosyzygy $\Omega_n^{-k} M$ of M are defined dually.

Let $F : \mathcal{A} \to \mathcal{B}$ be a contravariant left *n*-exact functor. The *right n*-derived functors nR^iF for $i \ge 0$ as follows, for any $M \in \mathcal{A}$, choose a projective *n*-resolution $P_{\bullet} \to M$ as (2) and define

$$nR^{i}F(M) := H_{in+1}(FP_{\bullet}) := KerFd_{in+2} / ImGd_{in+1}$$
 for $i = 0, 1, \cdots$

Note that $nR^0F(M) \simeq FM$. $nR^iF(-)$ is an additive functor from \mathcal{A} to \mathcal{B} and $nR^iF(P) = 0$ for all projective object P for any i > 0. The notions of right (left) n-derived functors of covariant or contravariant left (right) *n-exact functors* are defined dually. Specially, for contravariant (resp., covariant) left *n*-exact functor $\mathcal{A}(-, B)$ (resp., $\mathcal{A}(A, -)$), we define the right *n*-derived functors

$$\mathsf{nExt}^i_{\mathcal{A}}(-, B) = \mathsf{nR}^i \mathcal{A}(-, B) \quad \text{resp., } \mathsf{nExt}^i_{\mathcal{A}}(A, -) = \mathsf{nR}^i \mathcal{A}(A, -).$$

In particular, $\mathsf{nExt}^0_{\mathcal{A}}(-, B) = \mathcal{A}(-, B)$, $\mathsf{nExt}^0_{\mathcal{A}}(A, -) = \mathcal{A}(A, -)$.

There is an isomorphism $nE^{m}(A, B) \cong nExt_{\mathcal{A}}^{m}(A, B)$, here $nE^{m}(A, B)$ is the equivalence classes of *m*-fold *n*-extensions of *A* by *B*, it is an abelian group under *n*-Baer sum [8]. So, we can define $nExt_{\mathcal{A}}^{m}(A, B)$ even without of projective objects and injective objects.

Lemma 2.3 ([8], Proposition 4.3). Let \mathcal{A} be an n-abelian category, $\mathcal{A}, \mathcal{B} \in \mathcal{A}$, we have

(i) $nExt^{i}_{\mathcal{A}}(A, -)(B) \simeq nExt^{i}_{\mathcal{A}}(-, B)(A) = nExt^{i}_{\mathcal{A}}(A, B).$

(ii) If \mathcal{A} is an n-cluster tilting subcategory of a projectively generated injectivity cogenerated abelian category \mathcal{D} . Then $nExt^m_{\mathcal{A}}(A, B) \simeq Ext^{mn}_{\mathcal{D}}(A, B)$, $Ext^{mn+i}_{\mathcal{D}}(A, B) = 0 \ \forall A, B \in \mathcal{A}, m \ge 0, 1 \le i \le n-1.$

(iii) A is a projective object if and only if $\mathcal{A}(A, -)$ is an exact functor if and only if $\mathsf{nExt}^i_{\mathcal{A}}(A, B) = 0$ for all $i \neq 0$ and all B if and only if $\mathsf{nExt}^1_{\mathcal{A}}(A, B) = 0$ for all B.

If an *n*-abelian category \mathcal{A} is injectively cogenerated, then by the results of Jasso and Kvamme [5, 6], it follows that \mathcal{A} is equivalent to an *n*-cluster tilting subcategory in the dual of the category of finitely presented covariant functors over the full subcategory of injective objects of \mathcal{A} which is an injectively cogenerated abelian category.

Lemma 2.4. An injectively cogenerated additive category C is an *n*-abelian category if and only if there exists an injectively-cogenerated abelian categories A such that C can be embedded to A as an *n*-cluster tilting subcategory.

Using the Lemma 2.4, we can generalize the "Long *n*-exact sequence Theorem 4.5" of [8] as following:

Lemma 2.5. Let \mathcal{A} be an injectively cogenerated n-abelian category. $X: X^0 \xrightarrow{\alpha^0} X^1 \xrightarrow{\alpha^1} \cdots \xrightarrow{\alpha^n} X^{n+1}$ an n-exact sequence of \mathcal{A} , for any object $A \in \mathcal{A}$, we have exact sequences

$$0 \to \mathcal{A}(A, X^{0}) \to \dots \to \mathcal{A}(A, X^{n+1}) \stackrel{\partial_{n}}{\to} nExt^{1}_{\mathcal{A}}(A, X^{0}) \to \dots \to nExt^{1}_{\mathcal{A}}$$
$$(A, X^{n+1}) \stackrel{\partial_{n}^{1}}{\to} \dots \stackrel{\partial_{n}^{i-1}}{\to} nExt^{i}_{\mathcal{A}}(A, X^{0}) \to \dots \to nExt^{i}_{\mathcal{A}}(A, X^{n+1}) \stackrel{\partial_{n}^{i}}{\to} \dots .$$
$$0 \to \mathcal{A}(X^{n+1}, A) \to \dots \to \mathcal{A}(X^{0}, A) \stackrel{\partial_{n}}{\to} nExt^{1}_{\mathcal{A}}(X^{n+1}, A) \to \dots \to nExt^{1}_{\mathcal{A}}$$
$$(X^{0}, A) \stackrel{\partial_{n}^{1}}{\to} \dots \stackrel{\partial_{n}^{i-1}}{\to} nExt^{i}_{\mathcal{A}}(X^{n+1}, A) \to \dots \to nExt^{i}_{\mathcal{A}}(X^{0}, A) \stackrel{\partial_{n}^{i}}{\to} \dots .$$

DEREN LUO et al.

3. Cluster Tilting Subcategories of n-Abelian Categories

By Lemma 2.2, any *n*-cluster tilting subcategory of abelian category is an *n*-abelian category. It is natural to define (m, n)-cluster tilting subcategories of *n*-abelian categories.

Definition 3.1. Let \mathcal{A} be an *n*-abelian category and \mathcal{D} be a generating-cogenerating full subcategory of \mathcal{A} . \mathcal{D} is called an (m, n)-cluster tilting subcategory of \mathcal{A} if \mathcal{D} is functorially finite in \mathcal{A} and

$$\mathcal{D} = \{ X \in \mathcal{A} | \forall i \in \{1, \dots, m-1\} \mathsf{nExt}^i_{\mathcal{A}}(X, \mathcal{D}) = 0 \}$$
$$= \{ X \in \mathcal{A} | \forall i \in \{1, \dots, m-1\} \mathsf{nExt}^i_{\mathcal{A}}(\mathcal{D}, X) = 0 \}.$$

Note that \mathcal{A} itself is the unique (1, n) -cluster-tilting subcategory of \mathcal{A} .

Let \mathcal{A} be an abelian category, \mathcal{D} be an *n*-cluster tilting subcategory of \mathcal{A} , and \mathcal{M} be an (m, n)-cluster tilting subcategory of \mathcal{D} . Then, if m = n = 1, $\mathcal{A} = \mathcal{D} = \mathcal{M}$. If n = 1, m > 1, \mathcal{M} is an *m*-cluster tilting subcategory of \mathcal{A} . If n > 1, m = 1, \mathcal{M} is an *n*-cluster tilting subcategory of \mathcal{A} .

Our next aim is to show that the (m, n)-cluster tilting subcategories of small *n*-abelian categories are *mn*-abelian categories under certain conditions as a generalization of Lemma 2.2. First, we generalize ([5], Propositions 3.17, 3.18).

Lemma 3.2. Let \mathcal{A} be an injectively cogenerated n-abelian category, \mathcal{M} be an (m, n)-cluster tilting subcategory of \mathcal{A} . Then, for all $A \in \mathcal{A}$, there exist n-exact sequences,

$$\begin{split} A \xrightarrow{f^0} M^1 &\to \cdots \to M^n \xrightarrow{g^1} D^1 \\ D^1 \xrightarrow{f^1} M^{n+1} &\to \cdots \to M^{2n} \xrightarrow{g^2} D^2 \\ & \cdots \\ D^{m-2} \xrightarrow{f^{m-2}} M^{(m-2)n+1} \to \cdots \to M^{(m-1)n} \to M^{(m-1)n+1} \end{split}$$

satisfying the following properties:

- (i) $M^i \in \mathcal{M};$
- (ii) f^i are left \mathcal{M} -approximations;
- (iii) For all $M \in \mathcal{M}$, the induced sequence of abelian groups

 $0 \to \mathcal{A}(M^{(m-1)n+1}, M) \to \mathcal{A}(M^{(m-1)n}, M) \to \dots \to \mathcal{A}(M^1, M) \to \mathcal{A}(A, M) \to 0$

is exact.

Proof. This proof is an adaptation of the proof of ([5], Proposition 3.17). Note that $D^0 = A$.

The existences of these *n*-exact sequences follow from the functorially finiteness of \mathcal{M} . Indeed, for any $A \in \mathcal{A}$, there exists a left \mathcal{M} -approximation $f^0: A \to M^1$. Since \mathcal{A} is *n*-abelian, there exists a weak cokernel $k^1: M^1 \to C^1$ in \mathcal{A} , then taking a left \mathcal{M} -approximation $t^1: C^1 \to M^2$, this constructs a weak cokernel t^1k^1 of f^0 . Inductively, we can construct a *n*-exact sequence $A \xrightarrow{f^0} M^1 \to \cdots \to M^n \xrightarrow{g^1} D^1$, where g^1 is a cokernel of $M^{n-1} \to M^n$ by ([5], Proposition 3.7). Inductively, we can construct the desired *n*-exact sequences.

Given that for all $k \in \{0, ..., m-2\}$ the morphism f^k is a left \mathcal{M} -approximation, it readily follows that the sequence

$$0 \to \mathcal{A}(M^{(m-1)n+1}, M) \to \dots \to \mathcal{A}(M^1, M) \to \mathcal{A}(A, M) \to 0$$

is exact. It remains to show that $M^{(m-1)n+1} \in \mathcal{M}$.

We claim that for each $M \in \mathcal{M}$, $nExt^{i}_{\mathcal{A}}(M^{(m-1)n+1}, M) = 0$ for $i \in \{1, 2, \dots, m-1\}$. First, note that for all $M \in \mathcal{M}$ applying the contravariant functor $\mathcal{A}(-, M)$ to the *n*-exact sequence (3), we have isomorphisms

$$\mathsf{nExt}^{i}_{\mathcal{A}}(M^{(m-1)n+1}, M) \simeq \mathsf{nExt}^{i-1}_{\mathcal{A}}(D^{m-2}, M) \simeq \cdots \simeq \mathsf{nExt}^{1}_{\mathcal{A}}(D^{m-i}, M),$$

for $i \in \{1, 2, \dots, m-1\}$ by long *n*-exact sequence theorem. Moreover, the morphism $\mathcal{A}(M^{(m-i-1)n+1}, M) \to \mathcal{A}(D^{m-i-1}, M)$ is an epimorphism for f^{m-i-1} is a left \mathcal{M} -approximation of \mathcal{A} . Thus we have $\mathsf{nExt}^i_{\mathcal{A}}(M^{(m-1)n+1}, M) = 0$ as required. \Box

Lemma 3.3. Let \mathcal{A} be an injectively cogenerated n-abelian category. Let $B \in \mathcal{A}$, and \mathcal{M} be a subcategory of \mathcal{A} such that $nExt^k_{\mathcal{A}}(\mathcal{M}, B) = 0$ for all $k \in \{1, ..., m-1\}$. Consider a composition of n-exact sequences

$$\begin{array}{cccc} A_1 \stackrel{f_1}{\rightarrow} M_n \rightarrow \cdots \rightarrow M_1 \stackrel{g_0}{\rightarrow} A \\ \\ A_2 \stackrel{f_2}{\rightarrow} M_{2n} \rightarrow \cdots \rightarrow M_{n+1} \stackrel{g_1}{\rightarrow} A_1 \\ \\ \vdots \\ \\ \\ A_m \stackrel{f_m}{\rightarrow} M_{mn} \rightarrow \cdots \rightarrow M_{(m-1)n+1} \stackrel{g_{m-1}}{\rightarrow} A_{m-1} \end{array}$$

in \mathcal{A} such that $M_k \in \mathcal{M}$ for all $k \in \{1, 2, ..., mn\}$. Then, for each $k \in \{1, ..., m-1\}$ there is an isomorphism between $nExt^k_{\mathcal{A}}(A, B)$ and the cohomology of the induced complex

$$\mathcal{A}(M_1, B) \to \mathcal{A}(M_2, B) \to \dots \to \mathcal{A}(M_{mn}, B) \to \mathcal{A}(A_m, B)$$
(3)

at $\mathcal{A}(M_{kn+1}, B)$.

Proof. Note that $A_0 = A$. First, let us show that for each $k \in \{1, ..., m-1\}$ there exist isomorphisms

$$\mathsf{nExt}^k_{\mathcal{A}}(A_0, B) \simeq \mathsf{nExt}^{k-1}_{\mathcal{A}}(A_1, B) \simeq \cdots \simeq \mathsf{nExt}^1_{\mathcal{A}}(A_{k-1}, B)$$

The case k = 1 is obvious. If $2 \le k \le m-1$, then for each $2 \le \ell \le k$ applying the functor $\mathcal{A}(-, B)$ to the exact sequence $0 \to A_{k-\ell+1} \to M_{(k-\ell+1)n} \to \cdots \to M_{(k-\ell)n+1} \to A_{k-\ell} \to 0$ yields an exact sequence

$$0 = \operatorname{nExt}_{\mathcal{A}}^{\ell-1}(M_{(k-\ell+1)n}, B) \to \operatorname{nExt}_{\mathcal{A}}^{\ell-1}(A_{k-\ell+1}, B) \to \operatorname{nExt}_{\mathcal{A}}^{\ell}(A_{k-\ell}, B) \to$$
$$\operatorname{nExt}_{\mathcal{A}}^{\ell}(M_{(k-\ell)n+1}, B) = 0.$$

The claim follows.

Second, let us show that $nExt^{1}_{\mathcal{A}}(A_{k-1}, B)$ is isomorphic to the cohomology of the complex (3) at $\mathcal{A}(M_{kn+1}, B)$. The conclusion follows from the commutative diagram

$$\mathcal{A}(M_{kn}, B) \xrightarrow{} \mathcal{A}(M_{kn+1}, B) \xrightarrow{} \mathcal{A}(M_{kn+2}, B)$$

$$\overset{\checkmark}{\longrightarrow} \mathcal{A}(A_k, B) \xrightarrow{} \mathfrak{n}\mathsf{Ext}^1_{\mathcal{A}}(A_{k-1}, B) \xrightarrow{} \mathfrak{n}\mathsf{Ext}^1_{\mathcal{A}}(M_{(k-1)n+1}, B) = 0$$

Theorem 3.4. Let \mathcal{A} be an injectively cogenerated n-abelian category and \mathcal{M} be an (m, n)-cluster tilting subcategory of \mathcal{A} . Then, \mathcal{M} is an mn-abelian category.

Proof. We shall show that \mathcal{M} satisfies the axioms of mn-abelian category.

(A0) Since the *n*-abelian category \mathcal{A} is idempotent complete, it follows immediately from the definition of (m, n)-cluster tilting subcategory that \mathcal{M} also is idempotent complete.

(A1) Let $d^0: X^0 \to X^1$ be a morphism in \mathcal{M} . Let $X^1 \to \cdots \to X^{n+1}$ be an *n*-cokernel of d^0 , applying Lemma 3.2 to X^{n+1} gives the desired *mn*-cokernel of d^0 . By duality, d^0 has an *mn*-kernel.

(A2) and (A2^{op}) Let $f^0: X^0 \to X^1$ be a monomorphism in \mathcal{A} such that $X^0, X^1 \in \mathcal{M}$ and let $(f^k: X^k \to X^{k+1} | 1 \le k \le mn)$ be an *mn*-cokernel of f^0 in \mathcal{M} obtained as in the previous paragraph. Applying the dual of Lemma 3.3 to $(f^k: X^k \to X^{k+1} | 0 \le k \le mn)$, we obtain that for all $Y \in \mathcal{M}$ and for all $k \in \{1, ..., m-1\}$ the cohomology of the induced complex

$$\mathcal{A}(Y, X^1) \to \cdots \to \mathcal{A}(Y, X^{mn}) \to \mathcal{A}(Y, X^{mn+1})$$

at $\mathcal{A}(Y, X^{(k+1)n+1})$ is isomorphic to $nExt^k_{\mathcal{A}}(Y, X^0)$ which vanishes since \mathcal{M} is an (m, n)-cluster-tilting subcategory of \mathcal{A} , cohomology of the sequence vanisher at $\mathcal{A}(Y, X^j)$ for $j \neq (k+1)n+1$. This shows that (f^0, \ldots, f^{mn-1}) is an *mn*-kernel of f^{mn} in \mathcal{M} . \mathcal{M} also satisfies axiom $(A2^{op})$ follows by duality. \Box

Proposition 3.5. Let \mathcal{A} be an injectively cogenerated n-abelian category and \mathcal{M} be an (m, n)-cluster tilting subcategory of \mathcal{A} . Then the sequence of morphisms

$$X: X^0 \to X^1 \to \dots \to X^{mn+1}$$

is an mn-exact sequence of \mathcal{M} if and only if is an m-fold n-exact sequence of \mathcal{A} .

Proof. (\Rightarrow). We split $d^{in}: X^{in} \to X^{in+1}$ to $X^{in} \xrightarrow{\pi^i} C^i \xrightarrow{j^i} X^{in+1}$ such that π^i is a cokernel of d^{in-1} for $i \in \{1, 2, \dots, m-1\}$. Then we show that $C^{i-1} \xrightarrow{j^{i-1}} X^{(i-1)n+1} \to \dots \to X^{in} \xrightarrow{\pi^i} C^i$ are *n*-exact sequence of \mathcal{A} , it is enough to prove j^{i-1} are monomorphisms and $\operatorname{nExt}^j_{\mathcal{A}}(M, C^i) = 0$ for any $i \in \{1, 2, \dots, m\}, j \in \{1, 2, \dots, m-1-i\}$ by induction, where $C^0 = X^0$, $C^m = X^{mn+1}, j^0 = d^0$ and $\pi^m = d^{mn}$.

For $i = 1, j^0$ is a monomorphism. Applying $\mathcal{A}(M, -)$ on $X^0 \to X^1 \to \cdots \to X^n \xrightarrow{\pi^1} C^1$, by long *n*-exact sequence theorem, we have $n\operatorname{Ext}_{\mathcal{A}}^j(M, C^1) = 0$ for $j \in \{1, 2, \cdots, m-2\}$ since $n\operatorname{Ext}_{\mathcal{A}}^j(M, X^s) = 0$ for $s \in \{0, 1, \cdots, n\}, j \in \{1, 2, \cdots, m-1\}$. Suppose that $1 \le k \le m-1$ and that for all $\ell \le k-1, j^\ell$ are monomorphisms and $n\operatorname{Ext}_{\mathcal{A}}^j(M, C^{\ell+1}) = 0$ for $j \in \{1, 2, \cdots, m-2-\ell\}$. For j^k , let $u : A \to C^k$ be a morphism in \mathcal{A} such that $j^k u = 0$. Taking a right \mathcal{M} -approximation $v : M \to A$ (v is epic since \mathcal{M} is generating). Applying $\mathcal{A}(M, -)$ to *n*-exact sequence $C^{k-1} \to X^{(k-1)n+1} \to \cdots \to X^{kn} \to C^k$, by long *n*-exact sequence theorem, we have an exact sequence of groups

$$0 \to \mathcal{A}(M, C^{k-1}) \to \mathcal{A}(M, X^{(k-1)n+1}) \to \dots \to \mathcal{A}(M, X^{kn}) \to \mathcal{A}(M, C^k)$$
$$\to \mathsf{nExt}^1_{\mathcal{A}}(M, C^{k-1}) = 0. \tag{4}$$

Then there exists a morphism $w: M \to X^{kn}$ such that $u\nu = \pi^k w$, we have

$$d^{kn}w = j^k \pi^k w = j^k u \nu = 0.$$

Therefore, since d^{kn-1} is a weak kernel of d^{kn} , there exists a morphism $s: M \to X^{kn-1}$ such that $d^{kn-1}s = w$, thus $uv = \pi^k d^{kn-1}s = 0$, u = 0, since v is an epimorphism, this provides that j^k is a monomorphism. It follows that

$$C^k \to X^{kn+1} \to \dots \to X^{(k+1)n} \to C^{k+1}$$
(5)

is an *n*-exact sequence. Applying $\mathcal{A}(M, -)$ to (5), by long *n*-exact sequence theorem, we have exact sequence of groups for $j = 1, 2, \dots, m-2$

$$0 = \operatorname{nExt}_{\mathcal{A}}^{j}(M, X^{(k+1)n}) \to \operatorname{nExt}_{\mathcal{A}}^{j}(M, C^{k+1}) \to \operatorname{nExt}_{\mathcal{A}}^{j+1}(M, C^{k}) \to \operatorname{nExt}_{\mathcal{A}}^{j+1}$$
$$(M, X^{kn+1}) = 0.$$

but, $nExt_{\mathcal{A}}^{j+1}(M, C^k) = 0$ for $j = 0, \dots, m-2-k$, this finishes the induction steps.

(\Leftarrow). We split X to m n-exact sequences

$$C^{i-1} \xrightarrow{j^{i-1}} X^{(i-1)n+1} \to \dots \to X^{in} \xrightarrow{\pi^i} C^i,$$

where $C^0 = X^0$, $C^m = X^{mn+1}$, $j^0 = d^0$ and $\pi^m = d^{mn}$ for $i = 1, 2, \dots, m$. Applying $\mathcal{A}(M, -)$ to these *n*-exact sequences, by long *n*-exact sequence theorem, it is easily prove that $nExt^1_{\mathcal{A}}(\mathcal{M}, C^j) = 0$ for $j = 0, 1, \dots, m-2$.

We only need to show that d^{in} is a weak kernel of d^{in+1} and d^{in} is a weak cokernel of d^{in-1} for i = 1, 2, ..., m-1. We only show that d^{in} is a weak kernel of d^{in+1} . Let $u: M \to X^{in+1}$ be a morphism in \mathcal{M} such that $d^{in+1}u = 0$, since j^i is a kernel of d^{in+1} , there exists a morphism $\nu: M \to C^i$ such that $j^i\nu = u$. Applying $\mathcal{A}(M, -)$ to *n*-exact sequence $C^{i-1} \to X^{(i-1)n+1} \to \cdots \to X^{in} \to C^i$, by long *n*-exact sequence theorem, we have an exact sequence of groups like (4), thus, there exists a morphism $w: M \to X^{in}$ such that $\pi^i w = \nu$, so $d^{in}w = u$.

Theorem 3.6. Let \mathcal{A} be a projectively generated abelian category, \mathcal{D} be an n-cluster tilting subcategory of \mathcal{A} which closed under n-th syzygy, and \mathcal{M} be an additive full subcategory of \mathcal{D} . Then, if \mathcal{M} is an mn-cluster tilting subcategory of \mathcal{A} , then \mathcal{M} is an (m, n)-cluster tilting subcategory of \mathcal{D} .

Proof. If \mathcal{M} is an *mn*-cluster tilting subcategory of \mathcal{A} , then

$$\mathcal{M} = \{ X \in \mathcal{A} | \forall i \in \{1, 2, ..., mn - 1\} \operatorname{Ext}_{\mathcal{A}}^{i}(X, \mathcal{M}) = 0 \}$$
$$= \{ X \in \mathcal{D} | \forall i \in \{1, 2, ..., mn - 1\} \operatorname{Ext}_{\mathcal{A}}^{i}(X, \mathcal{M}) = 0 \}$$

but, \mathcal{D} is an *n*-cluster tilting subcategory closed under *n*-th syzygy, so \mathcal{D} is an *n*-abelian category which has enough projective objects, by Lemma 2.3, we have $\operatorname{Ext}_{\mathcal{A}}^{j}(X, \mathcal{M}) = 0$ for all $j \neq kn, k \in \mathbb{N}^{*}$, so

$$\{X \in \mathcal{D} | \forall i \in \{1, 2, ..., mn - 1\} \operatorname{Ext}_{\mathcal{A}}^{i}(X, \mathcal{M}) = 0\}$$
$$= \{X \in \mathcal{D} | \forall i \in \{1, 2, ..., m - 1\} \operatorname{Ext}_{\mathcal{A}}^{in}(X, \mathcal{M}) = 0\}$$
$$= \{X \in \mathcal{D} | \forall i \in \{1, ..., m - 1\} \operatorname{nExt}_{\mathcal{D}}^{i}(X, \mathcal{M}) = 0\}.$$

Since \mathcal{M} is generating and cogenerating functorial finite subcategory of \mathcal{A} , so is generating and cogenerating functorial finite subcategory of \mathcal{D} . So, \mathcal{M} is an (m, n)-cluster tilting subcategory of \mathcal{D} .

Acknowledgement

This work was supported by the Natural Science Foundation of China (CN) #11901191, by the Scientific Research Fund of Hunan Provincial Education Department (CN) #18C0639, and by the Study Learning and innovative experiment project for college students in Hunan Province#S201910543024.

References

 Aslak Bakke Buan, Robert Marsh, Markus Reineke, Idun Reiten and Gordana Todorov, Tilting theory and cluster combinatorics, Advances in Mathematics 204(2) (2006), 572-618.

DOI: https://doi.org/10.1016/j.aim.2005.06.003

 Osamu Iyama, Higher-dimensional Auslander-Reiten theory on maximal orthogonal subcategories, Advances in Mathematics 210(1) (2007), 22-50.

DOI: https://doi.org/10.1016/j.aim.2006.06.002

[3] Osamu Iyama, Cluster tilting for higher Auslander algebras, Advances in Mathematics 226(1) (2011), 1-61.

DOI: https://doi.org/10.1016/j.aim.2010.03.004

[4] Osamu Iyama and Yuji Yoshino, Mutation in triangulated categories and rigid Cohen-Macaulay modules, Inventiones Mathematicae 172(1) (2008), 117-168.

DOI: https://doi.org/10.1007/s00222-007-0096-4

 [5] Gustavo Jasso, n-abelian and n-exact categories, Mathematische Zeitschrift 283(3-4) (2016), 703-759.

DOI: https://doi.org/10.1007/s00209-016-1619-8

- [6] S. Kvamme, Projectively generated d-abelian categories are d-cluster tilting, arXiv: 1608.07985v3.
- [7] Christof Geiss, Bernhard Keller and Steffen Oppermann, n-angulated categories, Journal f
 ür die Reine und Angewandte Mathematik (Crelles Journal) 675 (2013), 101-120.

DOI: https://doi.org/10.1515/CRELLE.2011.177

 [8] Deren Luo, Homological algebra in n-abelian categories, Proceedings-Mathematical Sciences 127(4) (2017), 625-656.

DOI: https://doi.org/10.1007/s12044-017-0345-4

[9] Deren Luo and Panyue Zhou, The long n-exact sequence theorem in n-abelian categories, arXiv:2003.01493.