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Abstract 

In this paper, ( )dX ,  be a compact metric space without isolated points and 

XXfn →:  be a sequence of continuous functions which converges uniformly 

to a function f. Under the conditions of that, ( )nf  is transitive for each integer 

,1≥n  and 

( ) ,0,lim =∞
∞→

nn
n

n
ffd  

where ( )..,∞d  is defined in Section 2, some necessary and sufficient conditions, 

or sufficient conditions for f to be ,transitive-ω  syndetically transitive, or exact 

are obtained. These results extend and improve the preservation of some 

chaotic properties under limiting functions. 

1. Introduction 

Topologically transitive is an eternal topic in the study of dynamical 

systems. The concept of transitive could trace back to Birkhoff (see [1, 2]). 

It is used to describe some chaotic properties of dynamical system 

together with other dynamic behaviours. A dynamical system may be 

defined as a deterministic mathematical model for evolving the state of a 

system forward in time, and which can be represented by a set of 

functions (rules, or equations) that specify how variables change over 

time. For instance, in [3], the authors discussed several population 

growth models (such as Malthus’s growth model and Logistic growth 

model). They showed that the Malthus’s model is non-chaotic but not real 

model of population growth. While, Logistic model, as a more real model 

of population growth, is often regarded as an intuitive description of how 

complex, chaotic behaviour can arise from very simple nonlinear 

dynamical equations. 

For a dynamical system ( )fX ,  where the pair ( )fX ,  is given by a 

metric space X and a continuous function ,: XXf →  as a motivation for 

the notion of topologically transitivity, one may think of a real physical 

system, its state is unknown in most situations, but the empirical 
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observation (or experimental data) shows chaotic symptoms (for example, 

unpredictability, very small differences in starting values lead to very 

different behaviours). Consider a point ,Xx ∈  its trajectory is 

{ ( ) ( ) ( ) },,,,,, 2
…… xfxfxfx n  where nf  is the n-th iteration of f. The 

point ( )xf n  is the position of x after n units of time. The trajectory of x 

under f is called the orbit of x, denoted by ( )., fxO  Instead of points one 

should study open subsets of the phase space and describe how they move 

in that space. If for instant the minimality of ( )fX ,  is defined by 

requiring that every point Xx ∈  visit every open set V in X (i.e., 

( ) Vxf n ∈  for some )N∈n  then, instead, one may wish to study the 

following case. For every nonempty open subset VU ,  of ( ) 0, /=/VUfX n
∩  

for some N∈n  or these n not exist. If the system ( )fX ,  has this 

property, then it is called topologically transitive. Intuitively, a 

topologically transitive map f has points which eventually move under 

iteration from one arbitrarily small neighbourhood to any other. 

Consequently, the dynamical system can not be broken down or 

decomposed into two subsystems which do not interact under f, i.e., are 

invariant by ( ) XAf ⊂  is invariant ( ( ) )AAf ⊂  (see [3]). 

In 1989, Devaney [4] introduced the concept of Devaney’s chaos, 

XXf →:  is chaotic in the sense of Devaney if the following three 

conditions are satisfied: 

(D1) f is topologically transitive; 

(D2) the periodic points of f are dense in X; 

(D3) f has sensitive dependence on initial conditions. 

In this definition, sensitive dependence on initial conditions means 

that, there is a 0>δ  such that, for each Xx ∈  and any open 

neighbourhood V of x, there is a Vy ∈  and a positive integer n such that 
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( ( ) ( )) ., δ>yfxfd nn  In 1992, Banks et al. [5] proved that topologically 

transitive and periodic density imply sensitive dependence on initial 

conditions. In 1994, Vellekoop and Berglund [6] proved that for 

continuous functions on intervals in R, transitivity implies chaos. Since 

the end of the 20th century, transitivity and sensitivity has been hotly 

discussed, see [7-13], and others. Especially, the convergence of chaotic 

functions has attracted the attention of many scholars. Some research 

have contributed with interesting application in physics and engineering. 

For example, the convergence of chaotic linear semigroups has been used 

for solving certain parabolic equations arising in problems associated to 

diffusion phenomena, such as the propagation of gas in the air or the 

temperature distribution on a surface (see [14, 15]). And the 

approximation of functions by chaotic polynomials has been used for 

solving certain stochastic differential equations arising in transport 

problems as well as in flow-structure interactions (see [16, 17]). Actually, 

it is interesting to find conditions assuring the preservation of chaotic 

property under limit operations. In [18], on the one hand, the authors 

show that for a sequence of continuous functions ( )nf  which converges 

uniformly to a function ff ,  is not necessarily topologically transitive 

even if ( )nf  is topologically transitive for each .1≥n  On the other hand, 

the authors give a necessary and sufficient condition for the limit function 

f to be topologically transitive. In [19], the authors consider a compact 

metric space X, and a sequence of continuous functions XXfn →:  

which converges uniformly to a function f, and give some necessary and 

sufficient conditions for topologically transitive (resp., topologically weak 

mixing, topologically mixing, syndetically transitive). 

The current work discuss some other definitions related to 

transitivity and present some necessary and sufficient conditions or 

sufficient condition under the conditions of uniform convergence and 

( ) .0,lim =∞
∞→

nn
n

n
ffd  



THE RETENTIVITY OF TRANSITIVITY UNDER … 5 

2. Preliminary 

In this paper, let ( )dX ,  be a metric space and XXf →:  be a 

continuous function, .Xx ∈  A point Xy ∈  is called limit-ω  point if there 

is a subsequence { ( )}∞
=0k

k xf n
 of ( ) { ( ) ( ) ( ) }…… ,,,,,, 2 xfxfxfxfxO n=  

such that { ( )} ∞
=0k

k xf n
 converges to y. Let ( )fx,ω  denote the set of all the 

limit-ω  points of x. A subset S of nonnegative integers is said to be 

syndetic if there is an N∈N  such that [ ] 0, /=/+ SNnn ∩  for each 

nonnegative integer n. Let A be a subset of X, a point Ax ∈  is called an 

isolated point if there is a neighbourhood U of x such that { }.xAU =∩  

Definition 2.1. Let ( )dX ,  be a metric space and XXf →:  be a 

continuous function. Then f is said to be 

(1) topologically transitive (briefly, transitive) if for any pair of 

nonempty open subsets U and V of X, there is a N∈k  such that 

( ) ;0/=/VUf ∩
k  

(2) Z-transitive if for any pair of nonempty open subsets U and V of X, 

there is an integer n such that ( ) ;0/=/VUf n
∩  

(3) totally transitive if nf  is transitive for each ;1≥n  

(4) topologically weak mixing (briefly, wmixing) if ff ×  is transitive 

on ;XX ×  

(5) topologically mixing (briefly, mixing) if for any pair of nonempty 

open subsets U and V of X, there is an N∈n  such that ( ) 0/=/VUf n
∩  

for every ;Nn ≥  

(6) exact if there is an N∈m  such that ( ) XUf n =  for every 

nonempty open subset U of X; 

(7) transitive-ω  if there is an Xx ∈  such that ( ) ;, Xfx =ω  
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(8) syndetically transitive if { ( ) }0: /=/∈ VUfn n
∩N  is syndetic for 

any pair of nonempty open subsets U and V of X. 

It is obvious to observe that topologically transitive implies                

Z-transitive; Z-transitive implies totally transitive; both transitive-ω  and 

syndetically transitive imply topologically transitive. And in [20], the 

author shows, on closed interval of ,R  

Exact ⇒  Mixing ⇒  Weak mixing ⇒  Topologically transitive. 

3. Main Results 

For giving the proofs of main results, the following lemmas are 

needed. 

Lemma 3.1 ([19]). Let ( )dX ,  be a metric space, XXf →:  be a 

continuous function and f be a surjection. If the sequence { }∞
=0nnx  is dense 

in X, then so does { ( )} .0
∞

=nnxf  

Remark. As a corollary of this lemma, one can obtain that, if the 

orbit { }∞
=0nnx  is dense in X, then for every integer { ( )}∞

=≥ 0,1 nnxf kk  is 

also dense in X. 

Lemma 3.2 ([18]). Let ( )dX ,  be a compact metric space without 

isolated points. If XXf →: is a continuous function and f is a surjection, 

then f is transitive if and only if the orbit ( ) { ( ) }…,2,1,0:, == nxffxO n  

of some Xx ∈  is dense in X. 

Remark. If f is surjection, i.e., ( ) .XXf =  For every ,Xx ∈  there is 

an 0x  such that ( ) .0 xxf =  One has  

{ ( ) } { ( ) ( ) }…… ,,,,2,1,0: 2 xfxfxnxf n ==  

{ ( ) ( ) ( ) }…,,, 0
3

0
2

0 xfxfxf=  

rewrite ( )fxO ,  by { ( )} ,0
∞

=nnxf  where { } { ( ) }…,2,1,0:00 ==∞
= nxfx n

nn  

is the orbit of .0x  Then we can rewrite Lemma 3.2 to Lemma 3.3. 
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Lemma 3.3. Let ( )dX ,  be a compact metric space without isolated 

points. If XXf →:  is a continuous function and f is a surjection, then f 

is transitive if and only if there is an orbit { }∞
=0nnx  such that { ( )}∞

=0nnxf  

is dense in X. 

Combine these lemmas, the following theorem is right. 

Theorem 3.1. Let ( )dX ,  be a compact metric space without isolated 

points. If XXf →:  is a continuous function and f is a surjection, then f 

is transitive if and only if f is totally transitive. 

Proof. It is sufficient to show the necessity. By Lemma 3.3, if f is 

transitive, then there is an orbit { }∞
=0nnx  which is dense in X. By Lemma 

3.1, one has that { ( )}∞
=0nnxf k  is dense in X for every integer .1≥k  

Namely, for every integer ,1≥k  there is an orbit { }∞
=0nnx  such that 

{ ( )}∞
=0nnxf k  is dense in X. This implies kf  is transitive, so f is totally 

transitive. 

This completes the proof. 

Theorem 3.2. For any compact metric space, the following conclusions 

are hold: 

(a) each topologically mixing function f is syndetically transitive; 

(b) each transitive-ω  function f is syndetically transitive. 

Proof. (a) If f is topologically mixing, i.e., there is an N∈0N  such 

that ( ) 0/=/VUf n
∩  for any pair of nonempty subsets U and V of X and 

any .0Nn >  
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For a given ,N∈m  if ,0Nm ≥  one has ( ) 0/=/VUf m
∩  for the above 

open sets U and V. It means that for any ,N∈M  

{ ( ) } [ ] .0,0: /=/+/=/∈ MmmVUfn n
∩∩N  

If ,0Nm <  there is always an N∈M  such that [ ] ∩Mmm +,  

[ ] ,0,0 /=/∞+ N∩N  it implies 

{ ( ) } [ ] .0,0: /=/+/=/∈ MmmVUfn n
∩∩N  

Thus f is syndetically transitive. 

(b) If f is ,transitive-ω  i.e., there is some Xx ∈  such that for any 

( ).,, fxyXy ω∈∈  For any nonempty open subsets U of X, there is a 0y  

and its neighbourhood ( )00 , εyB  such that ( ) ., 000 UyBy ⊂ε∈  For 

( ),,0 fxXy ω=∈  there is a subsequence { ( )}∞
=0k

k xf
n

 of ( )fxO ,  which 

converges to .0y  That is to say, there is an N∈N  such that 

( ) ( )ε∈ ,0yBxf nk  for any 0>ε  and any .N≥k  For any pair of 

nonempty open subsets U and V of X, since f is ,transitive-ω  one has 

{ ( ) } .0:sup ∞=/=/∈ VUfn n
∩N  And it follows that for any given 

,N∈m  there is an M such that 

{ ( ) } [ ] .0,0: /=/+/=/∈ MmmVUfn n
∩∩N  

Thus f is syndetically transitive. 

This completes the proof. 

Now, let f and g be continuous functions on X, and denote 

( ) ( ) ( )( ).,sup, xgxfdgfd Xx∈∞ =  In ([18], [19]), necessary and sufficient 

conditions of transitive or topologically weak mixing have been proved by 

adding the condition (C1) (Propositions 3.1-3.3). Inspired by this, we 

prove the necessary and sufficient conditions of transitive-ω  and 

syndetically transitive (Theorems 3.3-3.4). Moreover, sufficient conditions 

of exact is given (Theorem 3.5). 
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Proposition 3.1 ([18]). Let ( )dX ,  be a compact metric space without 

isolated points, and XXfn →:  be a sequence of continuous and 

transitive functions such that ( )nf  converges uniformly to a function f. 

Additionally, suppose that 

(C1) ( ) .0,lim =∞
∞→

nn
n

n
ffd  

Then f is transitive if and only if 

(C2) { ( )}xf n
n  is dense in X for some .Xx ∈  

Remark. According to condition (C1), for arbitrary ,0>ε  there is an 

0>N  such that ( ( ) ( )) ,, ε<xfxfd nn
n  for any Nn >  and any .Xx ∈  

Proposition 3.2 ([19]). Let ( )dX ,  be a compact metric space without 

isolated points, and XXfn →:  be a sequence of continuous and 

transitive functions such that ( )nf  converges uniformly to a function f. 

Additionally, suppose that 

(C1) ( ) .0,lim =∞
∞→

nn
n

n
ffd  

Then f is topologically weak mixing if and only if 

(C3) { ( ) ( ) } ∞=/=//=/∈ 0,0:sup 2211 VUfVUfn n
n

n
n ∩∩N  for any 

nonempty open subsets ( ).2,1, =⊂ iXVU ii  

Proposition 3.3 ([19]). Let ( )dX ,  be a compact metric space without 

isolated points, and XXfn →:  be a sequence of continuous and 

transitive functions such that ( )nf  converges uniformly to a function f. 

Additionally, suppose that 

(C1) ( ) .0,lim =∞
∞→

nn
n

n
ffd  
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Then f is topologically weak mixing if and only if 

(C4) [ ] ( ) }0:{, /=/∈⊂∞+ VUfnm n
n ∩N  for some 0>m  and any 

pair of nonempty open subsets U and V of X. 

Theorem 3.3. Let ( )dX ,  be a compact metric space without isolated 

points, and XXfn →:  be a sequence of continuous and transitive 

functions such that ( )nf  converges uniformly to a function f. And 

(C1) ( ) .0,lim =∞
∞→

nn
n

n
ffd  

Then f is transitive-ω  if and only if 

(C5) { { }( ) }0: /=/∈ Uxfn n
n ∩N  is infinite, for some Xx ∈  and every 

nonempty open subset U of X. 

Proof. If { { }( ) }0: /=/∈ Uxfn n
n ∩N  is infinite for some Xx ∈  and 

every nonempty open subset U of X. For any ,Xy ∈  consider the open 

spherical-ε  neighbourhood ( )ε,yB  of y. One has that { { }( )xfn n
n:N∈  

( ) }0, /=/εyB∩  is infinite. That is, there are infinitely many integers 

0>k  and infinitely many N∈kn  such that ( ) ( )., ε∈ yBxf nk  

Due to the condition (C1), for the above ,0>ε  there is an 0>N  

such that ( ( ) ( )) ε<xfxfd nn
n ,  for any Nn >  and any .Xx ∈  So there 

are infinitely many N>k  and infinitely many Nn >k  such that 

( ) ( )., ε∈ yBxf nk  That is to say, there is a subsequence { ( )}∞
=0k

k xf
n

 of 

{ ( )}∞
=0n

n xf  converges to y, i.e., ( ) ., Xfxy =ω∈  This implies f is 

.transitive-ω  
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If f is ,transitive-ω  i.e., ( ) ., Xfx =ω  For any open subset U of X, 

there is a spherical-0ε  neighbourhood ( )0, εyB  of y such that 

( ) ., 0 UyBy ⊂ε∈  Since ( ),, fxXy ω=∈  there is a sequence 

{ ( )}∞
=0k

k xf
n

 which converges to y. For arbitrary ,0>ε  there is an 

00 >N  such that ( ) ( )ε∈ ,yBxf nk  for any .0N>k  

Due to the condition (C1), for the above ,0>ε  there is an 01 >N  

such that ( ( ) ( )) ε<xfxfd nn
n ,  for any 1Nn >  and any .Xx ∈  Thus there 

are infinitely many { }10 ,max NNn >k  such that ( ) ( ) ., 0 UyBxf
n
n

⊂ε∈k

k

 

This implies { { }( ) }0: /=/∈ Uxfn n
n ∩N  is infinite. 

This completes the proof. 

The following theorem has been proved (see [19] for more details), for 

the integrity of this paper, we present the theorem and give a new proof 

here. 

Theorem 3.4 ([19]). Let ( )dX ,  be a compact metric space without 

isolated points, and XXfn →:  be a sequence of continuous and 

transitive functions such that ( )nf  converges uniformly to a function f. 

And 

(C1) ( ) .0,lim =∞
∞→

nn
n

n
ffd  

Then f is syndetically transitive if and only if 

(C6) { ( ) }0: /=/∈ VUfn n
n ∩N  is syndetic for any pair of nonempty 

open subsets U and V of X. 

Proof. If { ( ) }0: /=/∈ VUfn n
n ∩N  is syndetic for some any pair of 

nonempty open subsets U and V of X. Let { ( ) =/=/∈ }0: VUfn n
n ∩N  

{ }.: 1+<∈ kkk nnn N  Take { ( ) ,}0: /=/∈∈ VUfnn n
n ∩Nk  then there is 



GUO LIU et al.  12 

an Uxn ∈
k

 such that ( ) .Vxf n
n
n

∈
k

k

k

 By the condition (C1), for a given 

N∈m  and for any ,0>ε  there is an mN >  such that 

( ( ) ( )) ,, ε<xfxfd nn
n  for any Nn >  and any .Xx ∈  For the above 

,0>N  due to the syndeticity of the set { ( ) ,}0: /=/∈ VUfn n
n ∩N  there 

is an N∈0N  such that 

{ ( ) [ ] .0,}0: 0 /=/+/=/∈ NNNVUfn n
n ∩∩N  

Thus there is an { ( ) [ ]0,}0:
0

NNNVUfnn n
n +/=/∈∈ ∩∩Nk  such that 

( ) Vxf
k

k

k
n

n

n
∈

0

0

0
 and .

0
Uxn ∈

k
 Since ,

0
Nn ≥k  it follows that 

( ) .
0

0 Vxf n
n

∈
k

k  For the above ,N∈m  there is an mNNM −+≥ 0  

such that [ ] [ ].,, 00
MmmNNNn +⊂+∈k  So 

{ ( ) [ ].,}0:
0

MmmVUfnn n
+/=/∈∈ ∩∩Nk  

This implies { ( ) }0: /=/∈ VUfn n
∩N  is syndetic. 

Similar to above argument, one can deduce that if f is syndetically 

transitive, then { ( ) }0: /=/∈ VUfn n
n ∩N  is syndetic for any pair of 

nonempty open subsets U and V of X. 

This completes the proof. 

Theorem 3.5. Let ( )dX ,  be a compact metric space without isolated 

points, and XXfn →:  be a sequence of continuous and transitive 

functions such that ( )nf  converges uniformly to a function f. Additionally, 

suppose that 

(C1) ( ) .0,lim =∞
∞→

nn
n

n
ffd  

(C7) { ( ) } ,:sup ∞==∈ XUfn n
nN  for any open subset U of X. 

Then f is exact. 
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Proof. Since { ( ) } ,:sup ∞==∈ XUfn n
nN  for any given ,N∈N  

there exists an NN >0  such that { ( ) }XUfnN n
n =∈∈ :0 N  for any 

open subset U of X. 

Due to the condition (C1), for arbitrary ,0>ε  there is an 01 >N  

such that ( ( ) ( )) ,, ε<xfxfd nn
n  for any 1Nn >  and any .Xx ∈  For the 

above ,1N  there is an 2N  such that { ( ) },:2 XUfnN n
n =∈∈ N  i.e., 

( ) .2

2
XUf

N

N
=  Due to the condition (C1), one has ( ) XUf

N
=2  for any 

open subset U of X. This implies f is exact. 

This completes the proof. 
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