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Abstract 

The current interest in meta-analysis of count data in which some studies have 

zero events (sparse data) has led to re-assessment of commonly used meta-

analysis methods to establish their validity in such scenarios. The general 

consensus is that methods which exclude studies with zero events should be 

avoided. In the family of parametric methods, random effects models come out 

highly recommended. While acknowledging the strength of this approach, one 
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of its aspects with potentially undesirable impact on the results, is often 

overlooked. The random effects approach accounts for the variation in the effect 

measure across studies by using models with random slopes. It has been shown 

that parameters associated with a random structure risk being estimated with 

biased unless the distribution of the random effects is correctly specified. In 

meta-analysis the parameter of interest, average effect measure, is associated 

with a random structure (random slope). Information on how the effect 

measure point and precision estimates are affected by misspecification of 

random effects distribution is still lacking. To fill in the information gap, we 

used a simulation study to investigate the impact of misspecification of 

distribution of random effects in this context and provide guidelines in using 

the random effects approach. Our results indicated that relative bias in the 

estimated effect measure could be as high as 30% and 95% confidence interval 

coverage as low as 0%. These results send a clear message that possible effects 

of misspecification of the distribution of random effects should not be ignored. 

In light of these findings, we have proposed a sensitivity analysis that also 

establishes whether a random slope model is necessary. 

1. Introduction 

There is an emerging interest in evaluation of methods for meta-

analysis of incidence rates data in which some of the studies have no 

events. The inverse-variance method introduced by DerSimonian & Laird 

[1] is one of the widely used approaches to meta-analysis but it breaks 

down when some studies have zero events [2, 3]. Proposed solutions 

include omitting studies with zero events or adding a correction factor. 

However, previous work has shown that such methods tend to give a 

biased estimate of the average effect measure of interest, for example, 

incidence rate ratio for rate data [4-6].  

Several approaches that avoid omitting studies with zero events or 

adding a correction factor have been proposed [2, 7-9] and out of these, 

the random effects (mixed models) approach comes highly recommended. 

Random effects are usually either used to acknowledge that event counts 

from the same study may be more similar than those from a different 

study or to account for the variation of intervention effect across different 

studies. 
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Conspicuously missing from the discussion of random effects 

approach in meta-analysis of sparse data is the need to correctly specify 

the distribution of the random effects which may result into twofold 

problems. Firstly, [10, 11] showed that fixed effects estimates for 

covariates associated with a random effects structure can be biased if the 

random effects distribution is misspecified. Further, [12] proved that if 

covariates are not associated with a random effects structure, and the 

true effect of such covariates is zero then the corresponding maximum 

likelihood estimators will estimate zero, but this is not generally true for 

covariates associated with a random effects structure. Based on these 

findings, a misspecified random effects distribution would either lead to 

biased estimates and/or concluding that there is an effect when it doesn't 

exist (inflation of type I error). 

Recall that a random effects approach avoids omitting studies with 

zero events or adding an arbitrary correction factor, making it an 

important modelling tool for sparse data. Additionally, accounting for 

potential heterogeneity across studies is an important aspect of meta-

analysis. In the random effects approach this is achieved through a mixed 

model with a random slope, implying that the covariate for treatment 

(intervention) effect is associated with a random structure. It follows that 

the a treatment fixed effect estimated from such a model is prone to bias 

and the corresponding inferences may be invalid due to inflation of type I 

error. 

A lot of work has been done in assessing the impact of 

misspecification of random effects distribution [10-15]. However most of 

this work was done in the realm of longitudinal or clustered data where 

the parameter of interest was not associated with a random effects 

structure and cluster sizes larger than two. In these scenarios, fixed 

effects estimates for parameters of interest remain unbiased and the 

inferences are valid. 
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On the other hand, the extent to which misspecification of random 

effects distribution impacts the estimates of effect measure in meta-

analysis for sparse data is not well documented. Our goal is therefore to 

assess the impact of misspecifying a random effects distribution on the 

estimate of an effect measure from meta-analysis of sparse data when 

intervention effects are suspected to vary across studies. Based on the 

findings recommendations on how to use the random effects approach will 

be provided. The suicide hot spots data, described in the next section 

motivated this work and will be used as an example. 

The rest of the paper is organized as follows; after introducing the 

motivating case study in Section 2, we will give a brief recap of popular 

random effects approaches in Section 3. The design of the simulations 

studies will be presented in Subsection 4.1 followed by results in 

Subsection 4.2. The motivating study will be analysed and discussed in 

Section 5 and we will summarize with a brief discussion in Section 6. 

2. Motivating Case Study 

Suicides from known jumping hotspots 

Our interest in this problem was initiated by the analysis of data in a 

study evaluating the effectiveness of installing barriers for reducing 

jumping deaths at known suicide hotspots [16]. Jumps from these sites 

(bridges, viaducts and cliffs) generally have high fatality rates, can cause 

significant distress or injury to bystanders and often receive prominent 

media coverage, increasing the risk of copycat acts [17]. A number of 

studies have investigated the effectiveness of structural interventions – 

such as barriers, fences or safety nets – on reducing suicide by jumping at 

these sites. This is based on the premise that restricting access to means 

is one of the few successful suicide prevention strategies [18]. Individual 

studies are therefore before-and-after designs, with the pre-intervention 

period considered the “control” group and the post-intervention the 

“intervention” group. A total of 8 studies had previously counted the 

number of suicide deaths at hotspots in the periods before and after the 
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installation of barriers and safety nets. The data from the eight studies 

that examined the number of suicides by jumping before and after the 

installation of barriers is shown in Table 1. Six of the studies had zero 

events after the introduction of barriers and exposure time ranged from 

approximately 5 months to 22 years. The data will be analysed in Section 5. 

Table 1. Suicide counts and exposure time by study 

 Pre-intervention Post-intervention 

Study no. No. of events Time (years) No. of events Time (years) 

1 19 6 0 4 

2 41 5 20 5 

3 221 14 0 0.4 

4 25 7 1 5 

5 14 22 0 22 

6 7 3 0 3 

7 96 10 0 5 

8 13 10 0 2 

3. Methods: Random Effects Models 

The Poisson-normal mixed model is commonly used for meta-analysis 

of incidence rate data due to its easy implementation in many statistical 

software packages. If we denote ijY  as the events count for the j-th group 

in the i-th study ,,,1,,1 Jjni …… ==  the model is specified as 

( )ijijY λPoi~ib  

[ ] ( ) [ ],lnln 1100 ijijiiij TXbb ++β++β=λ  (1) 

where ijT  defines the corresponding offset value, e.g., exposure time in 

our case study. ijX  is the intervention covariate which takes the value of 

1 for the intervention group, and zero for the control group, hence 1β  is 

the log of effect measure of interest, log of incidence rate ratio. The study 

specific random effects with the joint density, ( )ibf  are assumed to follow 
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bivariate normal distribution: ( ) ( )),,~, 10 D0Nbb ii  with 1ib  accounting 

for the variation in the incidence rate ratio estimates across studies. The 

marginal contribution of the i-th study to the likelihood is given by 

( ) ( ) ( ) ,

1

iii bbb dfYfYf ij

J

j

i ∏∫
=

=   (2) 

and estimation proceeds by maximising the likelihood 

( ) ( ),,,

1

10 i

n

i

YfL ∏
=

=ββ DY   (3) 

where n is the number of studies. Our interest is to assess the impact of 

assuming that ( )ibf  follows a bivariate normal distribution when the 

true distribution ( )ibg  is non-normal. A combination of Poisson and 

normal distributions in Model (1) precludes closed forms expressions in 

estimating the parameters thereby making analytical quantification of 

bias problematic. A simulation study will therefore be used to study the 

impact of misspecfying the random effects distribution by quantifying 

bias and inflation of type I error (through studying the confidence 

interval coverage). 

4. Simulation Study 

4.1. Design 

We investigated the impact of misspecification of the random effects 

distribution on the estimation of the log incidence rate ratio in meta-

analysis of sparse incidence data through two sets of simulations. First, 

we generated the data assuming  

( ),Poi~ ijijY λib  

where 

[ ] ( ) [ ],lnln 1100 ijijiiij TXbb ++β++β=λ   (4) 
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with ( )10 , ii bb  having a probability distribution density ( ).ibg  The 

density ( )ibg  was varied to represent varying levels of skewness, mean 

and variance of ,1ib  the random slope which accounts for heterogeneity 

effect measures across studies. Distributions considered for ( )ibg  

included; bivariate normal, bivariate mixtures of normal, beta, gamma, 

Poisson, and uniform distribution. These were chosen to represent a wide 

range of skewness and variability. The values of skewness ranged from     

– 1.75 to 9. Similarly, variance of 1ib  ranged from 0.04 to 7. Details of the 

distributions considered for ( )ibg  are given in Table 2. Except for 

bivariate normal and mixture of normals, 0ib  and ,1ib  were sampled 

independently due to lack of a straightforward bivariate distribution 

equivalent for the other distributions. Parameters 0β  and 1β  were set to 

1.6 and – 4.5, respectively. These were chosen based on the estimates 

from the study in Section 2, and ensured that a considerable number of 

studies have zero events for the intervention group. The average number 

of studies with zero events in the intervention group are given in Figure 

1. The follow-up time was generated as ( )5,2~0 UTi  and ( ),10,2~1 UTi  

also to correspond to the time range in the case study. 

 

 

 

 

 

 

 

 

 



 

 

Table 2. Parameter values for the studied distributions of the random effects 

 Parameter values Properties of distribution for 1ib  

( )ibg  0b  1b  ( )1Mean ib  ( )1Var ib  Skewness 

Beta Beta(2, 3) Beta(1.8, 0.3) 0.86 0.04 – 1.75 

Uniform U(– 3,0) U(– 5,1) – 2.00 3.00 0.00 

Gamma Gamma(0.01,1) Gamma(0.05,1) 0.05 0.05 8.94 

Gamma Gamma(0.4,1) Gamma(0.6,1) 0.60 0.60 2.58 

Poisson Poisson(1) Poisson(1) 1.00 1.00 1.00 

Poisson Poisson(0.4) Poisson(0.8) 0.80 0.8 1.12 
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Figure 1. Average (over all simulation runs) percent of studies with zero 

events in the intervention group) in the different scenarios. B = Beta,    

G5 = Gamma(0.05,1), MN = Mixture of normals, N = Normal, P = Poisson (0.8), 

P1 = Poisson(1), and U = Uniform. 

Further, we considered a meta-analysis with small number of studies (20), 

medium (50) and large (100) to assess the impact at different sample sizes.  

The generated data were then fitted to Model (1), which will be 

referred to as the Poisson-bivariate normal (PBVN) model. We will 

assume that ( )ibf  follows a bivariate normal distribution and thus 

misspecified when the true distribution for ib  is non-normal. Since 

previous studies have shown that fixed effects of covariates not associated 

with a random effects structure are unbiased, there may be a temptation 

to just disassociate the effect measure ( )1β  from random effects structure. 

This can be done by ignoring heterogeneity across studies, that is 

omitting 1ib  from Model (1). To assess the impact of ignoring 

heterogeneity of the effect measure across the studies when it exists, the 

generated data was also fitted to random intercept Poisson-normal model 

which is specified as 
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( )ijiij bY λPoi~  

[ ] [ ],lnln 100 ijijiij TXb +β++β=λ   (5) 

where ( ).,0~ 2
0 σNb  Finally, we fitted the data using the DerSimonian 

and Laird random effects approach [1] which does not make explicit 

assumptions about the distribution of the random effects but omits all 

studies with zero events. These two approaches represent pragmatic 

solutions that can be employed to avoid misspecification of a random 

effects distribution. 

The second set of simulations involved generating data by assuming 

( ),Poi~ ijijY λib  

where 

[ ] [ ],lnln 100 ijijiij TXb +β++β=λ   (6) 

with 0ib  having a probability distribution density ( ),ibg  with the same 

distributions considered in the first set of simulations (the case where 

( )ibg  is a gamma distribution is equivalent to a negative binomial 

model). The data was fitted to both Poisson-bivariate normal (PBVN) and 

random intercept Poisson-normal models. This is similar to simulations 

largely covered in literature but for the specific scenario of meta-analysis 

of sparse data. Results from this set of simulations will help identify 

patterns and or direction of bias, which will inform the sensitivity 

analysis developed in the later section. Each scenario was simulated a 

thousand times. The next section discusses results of the simulation study. 

4.2. Results 

Bias 

The final estimate for the log incidence rate ratio (IRR), �1β  was 

obtained as �
11

1
,

S

ssS =
β∑  where 1000=S  is the total number of 

simulations. Figure 2 summarises the percent bias obtained as 

( � )1 11100 × β − β β  for the different scenarios. 
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Figure 2. Relative bias (%) obtained as ( � )1100 4.5 4.5 .× β +  Poisson1 

refers to the scenario where the 1ib  random effects were generated from 

Poisson(1), similarly for gamma06, Gamma(0.6,1) and gamma005, 

Gamma(0.05,1). Black = Poisson random intercept and slope model,     

Red = Poisson random intercept model, Green = DL. 
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As expected, bias is non-existent for the Poisson-bivariate normal 

(PBVN) model when there is no misspecification, i.e., ( ) ( ),ii bb fg =  a 

bivariate normal distribution. 

Little or no bias was observed for the PBVN where ( )ibg  was the 

bivariate mixture of normals, and uniform probability density 

distributions. Both uniform and mixture of normals distributions are 

symmetrical just like the normal distribution. This seems to confirm 

results from [10] who observed minimal bias when both ( )ibg  and ( )ibf  

were symmetrical. However, for data generated with uniform random 

effects distribution, we correctly specified the correlation structure 

(independence) between the intercept and slope random effects. When 

random intercept and slope were allowed to be correlated, bias in the 

estimated log of IRR was as high as 26% (results not shown), suggesting 

that symmetry of a distribution is beneficial when the covariance matrix 

of the random effects is also correctly specified. 

For the scenarios where ( )1ibg  was Gamma(0.6, 1), Beta(1.8, 0.3) and 

Poisson(0.8), relative bias ranged from 15-20% for the PBVN model. All 

these distributions have skewness in excess of 1 and relatively small 

variance for .1ib  These results suggest that misspecification of the 

distribution of random effects result into considerable bias for the effect 

measure.  

Results for methods that try to elude misspecification of the random 

effects by either ignoring the heterogeneity of measures of effect across 

studies (Poisson-normal intercept (PNI) model), or omitting studies with 

zero events (inverse variance methods), reveal that such methods should 

be avoided. Relative bias of around 30% was observed when PNI model 

was fitted to data generated from PBVN model. These results agree with 

[19] who noted that ignoring the correlation between random effects and 

covariates can result into serious bias for the fixed covariates estimates. 

Average estimates of log IRR and relative bias estimated from PBVN and 

PNI models are given in Table 3. 
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Similarly, the DerSimonian and Laird models which omits studies 

with zero events had bias of greater than 30% in all scenarios which is 

also in agreement with previous findings [5], [9], [3].  

Confidence interval coverage  

We further looked at the 95% confidence interval coverage for 

scenarios that exhibited bias, that is where ( )ibg  was Beta, Poisson and 

Gamma(0.6, 1) distribution. Figure 3 shows that the coverage was close to 

0% even for PBVN model. The highest coverage observed in these 

scenarios was 50%. These results indicate that use of a random effects 

approach in the meta-analysis of sparse data is delicate and underscores 

the need to conduct a sensitivity analysis for the distribution. 

Results from the second set of simulations also in Table 3, were in 

line with the available literature where no or little bias was observed in 

the effect measure estimated both from PNI and PBVN models. 
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Figure 3. 95% Confidence interval coverage for .1β  Poisson1 refers to the 

scenario where the 1ib  random effects were generated from Poisson(1), 

similarly for gamma06, Gamma(0.6,1) and gamma005, Gamma(0.05,1). 

Black = Poisson random intercept and slope model, Red = Poisson random 

intercept model, Green= DL. 
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Table 3. The average estimates �1β  (std.err) as obtained from the 

simulation study. ( )ibg  is the true distribution of random effects. The 

column “Model” is the model that was fitted generated from the model in 

“Generating model” column. PBNV is Poisson-bivariate normal, and PNI 

is Poisson normal intercept model 

( )ibg  Model  Generating model  

  PBVN PNI 

  � ( )1 std.errβ  %bias  � ( )1 std.errβ  %bias 

Poisson(0.8)  PBVN – 3.805 (0.171)  15.4  – 4.537 (0.145) 0.83 

 PNI – 3.185 (0.068)  29.2  – 4.512 (0.127) 0.28 

Poisson(1)  PBVN – 3.575 (0.146)  20.6  – 4.508 (0.083) 0.18 

 PNI – 2.892 (0.037)  35.7  – 4.503 (0.078) 0.06 

Beta  PBVN – 3.659 (0.107)  18.7  – 4.551 (0.171) 1.14 

 PNI – 3.633 (0.094)  19.3  – 4.510 (0.144) 0.22 

Gamma(0.05,1)  PBVN – 4.571 (0.230)  1.68  – 4.584 (0.222) 1.86 

 PNI – 4.415 (0.168)  1.89  – 4.519 (0.176) 0.42 

Gamma(0.6,1)  PBVN – 4.000 (0.138)  11.1  – 4.505 (0.069) 0.11 

 PNI – 3.435 (0.038)  23.7  – 4.501 (0.063) 0.02 

Mixture of normals  PBVN – 4.526 (0.420)  0.58  – 4.549 (0.235) 1.09 

 PNI – 3.401 (0.125)  24.4  – 4.519 (0.204) 0.42 

Normal  PBVN – 4.500 (0.298)  0.00  – 4.515 (0.120) 0.34 

 PNI – 2.775 (0.050)  38.3  – 4.501 (0.109) 0.03 

Uniform  PBVN – 4.640 (0.421)  0.31  – 4.641 (0.390) 3.13 

 PNI – 4.425 (0.273)  1.67  – 4.523 (0.285) 0.51 
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5. Case Study Analysis 

5.1. Suicide spots 

The case study introduced in Section 2 was analysed in [3] and [16]. 

The latter [16] reported a pooled incidence rate ratio of 0.14 with 95% CI 

0.09 to 0.21 obtained by using the inverse variance method. The former 

used the random effects approach whose results will be replicated in this 

section and we will further propose an analysis routine that should be 

followed when meta-analysing sparse data. 

Given the impact of misspecification of the random effects 

distribution discussed in Subsection 4.2, the first step should be to 

establish if it is necessary to associate the effect measure with a random 

effect. To do this we propose to utilise the knowledge that if there is little 

or no heterogeneity in the effect measure across studies, random 

intercept only model will produce an unbiased estimate for the effect 

measure even under misspecification. In addition, the model with both 

random intercept and slope also give unbiased estimates when there is no 

heterogeneity across studies, see Table 3. We therefore propose to 

perform a sensitivity analysis by fitting the data to both random intercept 

only and random intercept and slope models, and do this assuming at 

least two different sampling distributions for the random effects. If there 

is no heterogeneity across studies, we should obtain similar estimates for 

the effect measure from all models. In such a case a random intercept 

model will suffice. This form of sensitivity analysis was performed for the 

hot suicide spots data and the random intercept only and random 

intercept and slope models were defined as 

[ ] [ ],lnln 100 ijijiij TXb +β++β=λ   (7) 

[ ] ( ) [ ],lnln 1100 ijijiiij TXbb ++β++β=λ   (8) 

where ( ),~ ii bb g  and ijX  is defined as 1 for the intervention group and 

0 for the control group. Distributions considered for ( )ibg  were normal, 
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gamma, beta, and uniform distributions. The probability integral 

transform method proposed by [20] and implemented through SAS 

NLMIXED procedure was used to fit the non-normal random effects. SAS 

codes are provided in the Appendix. 

The first four rows of Table 4 give results for Model (7) assuming the 

above mentioned distributions for the random effects and the remaining 

rows are for Model (8). It is evident that the estimates for the log of 

incidence rate ratio ( )1β  are different for the two models. This suggest 

the need to take into account heterogeneity across studies and make 

conclusions based on Model (8). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table 4. Results for fitting the models to the case study on suicides from known 

jumping hotspots 

Model   Parameter estimates  

 ( )ibg  ( )std.err0β  ( )std.err1β  ( ) ( )std.errVar 0ib  ( ) ( )std.errVar 1ib  

P-Intercept Normal 1.263 (0.390)  – 1.968 (0.229)  1.163 (0.603) – 

 Gamma 2.206 (0.057)  – 1.992 (0.226)  1.000 (0.141) – 

 Beta 2.863 (0.187)  – 1.979 (0.229)  0.417 (0.312) – 

 Uniform 1.956 (21.67)  – 2.030 (0.227)  0.799 (140.5) – 

P-Bivariate Normal 1.290 (0.370)  – 4.993 (1.942)  1.039 (0.542) 6.388 (7.585) 

 Gamma 1.797 (0.057)  – 2.551 (0.781)  1.318 (0.074) 0.150 (0.007) 

 Beta 2.876 (0.219)  – 0.440 (0.531)  0.067 (0.027) 0.042(0.028) 

 Uniform 2.457 (8.218)  – 1.639 (58.140)  0.162 (2.662) 0.261(30.298) 
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The estimate for log of incidence rate ratio ranged from – 4.5 to – 0.4 

representing a 99% to 32% reduction in suicide rates by the intervention. 

This poses the challenge of determining which model to use. It is not 

straightforward to decipher this from sensitivity results hence we 

recommend reporting point and precision estimates from all models. 

Expert opinion should also play a role in deciding on reasonable models. 

For example, results from a model with Uniform random effects seem less 

reliable due to relatively large precision estimates. Alternatively, one can 

report the more conservative result, for example, in this case we would 

report the model with the least reduction in suicide rate, the model with 

Beta random effects. 

6. Discussion 

One of the hurdles in meta-analysis of sparse event data is how to 

handle studies with zero events. A random effects approach is often used 

to avoid bias arising from omitting such studies or use of arbitrary 

correction terms. Our aim was to highlight the drawback of this approach 

in the specific yet common setting where there is suspected heterogeneity 

of the effect measure across studies. For the random effects approach 

such heterogeneity is accounted for by associating the parameter for the 

effect measure with a random effects structure. This requires correct 

specification of the distribution of random effects, otherwise an estimate 

of effect measure would be biased and its corresponding type I error 

inflated. Results from simulation studies in the context of incidence rate 

data show that the relative bias for the estimate of log of incidence rate 

ratio (IRR) could be as high as 20% when the correct model is used but 

the random effects distribution is misspecified. This could go up to 30% if 

both the model and random effects distribution are misspecified. 
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We further investigated coverage for the 95% confidence intervals 

under misspecification of the random effects distribution to assess 

inflation of type I error. The percent coverage was as low as 0% for some 

of the studied scenario. 

To this end, we have proposed a sensitivity analysis routine in meta-

analysis of sparse data where the first step is to establish whether there 

is substantial heterogeneity of the effect measure. This is achieved by 

comparing estimates of the effect measure from PNI and PBVN models, 

which based on previous results and confirmed with our simulations, 

should be similar if there is no heterogeneity of the effect measure across 

studies. 

Our recommendation is that meta-analysis for sparse data using the 

random effects approach should always be accompanied by such a 

sensitivity analysis. 
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Appendix 

SAS code for the case study 

/*Modelling: Sensitivity Analysis*/ 

 

/*Obtain starting values*/ 

 

proc nlmixed data=m.main maxiter=5000 qpoints=40; 

eta = beta0 + (beta1)*group + log(time); 

lambda = exp(eta); 

model deaths ~ poisson(lambda); 

estimate ‘rr’ exp(beta1); 

run; 

 

/*Normal distribution*/ 

 

/*Bivariate*/ 

proc nlmixed data=m.main maxiter=5000 qpoints=40; 

parms beta0=1.7 beta1=-2.5; 

eta = beta0 + b0 + (beta1+b1)*group + log(time); 

lambda = exp(eta); 

model deaths ~ poisson(lambda); 

random b0 b1 ~ normal([0,0],[d11**2,d12,d22**2]) subject=id; 

estimate ‘var1’ d11**2; 

estimate ‘var2’ d22**2; 

estimate ‘rr’ exp(beta1); 

run; 
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/*Random intercept*/ 

 

proc nlmixed data=m.main maxiter=5000 qpoints=40; 

parms beta0=1.7 beta1=-2.5; 

eta = beta0 + b0 + (beta1)*group + log(time); 

lambda = exp(eta); 

model deaths ~ poisson(lambda); 

random b0 ~ normal(0,d11**2) subject=id; 

estimate ‘var1’ d11**2; 

estimate ‘rr’ exp(beta1); 

run; 

 

/*Gamma Distribution*/ 

 

/*Bivariate*/ 

proc nlmixed data=main maxiter=5000 noad qpoints=80; 

parms beta0=1.7 beta1=-1.9; 

p_1 = CDF(‘NORMAL’,b0) ; 

p_2 = CDF(‘NORMAL’,b1) ; 

if (p_1 > 0.999999) then p_1 = 0.999999 ; 

if (p_2 > 0.999999) then p_2 = 0.999999 ; 

g_i1 = quantile(‘GAMMA’,p_1,1/bb1) ; 

g_i2 = quantile(‘GAMMA’,p_2,1/bb2) ; 

g_ia = bb1*g_i1; 

g_ib = bb2*g_i2; 
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eta=beta0 + log(g_ia) + beta1*group + log(g_ib)*group + log(time); 

lambda=exp(eta); 

model deaths ~ poisson(lambda); 

random b0 b1 ~ normal([0,0],[1,0,1]) subject=id; 

estimate ‘rr’ exp(beta1); 

estimate ‘var1’ 1/bb1; 

estimate ‘var2’ 1/bb2; 

run; 

 

/*Random intercept model*/ 

 

proc nlmixed data=main maxiter=5000 noad qpoints=80; 

parms beta0=1.7 beta1=-2.5; 

p_1 = CDF(‘NORMAL’,b0) ; 

if (p_1 > 0.999999) then p_1 = 0.999999 ; 

g_i1 = quantile(‘GAMMA’,p_1,1/bb1) ; 

g_ia = bb1*g_i1; 

eta=beta0 + log(g_ia) + beta1*group + log(time); 

lambda=exp(eta); 

model deaths ~ poisson(lambda); 

random b0 ~ normal(0,1) subject=id; 

estimate ‘rr’ exp(beta1); 

estimate ‘var1’ 1/bb1; 

run; 
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/*Beta Distribution*/ 

 

/*Bivariate*/ 

proc nlmixed data=main maxiter=5000 noad qpoints=80; 

parms beta0=1.7 beta1=-2.5; 

p_1 = CDF(‘NORMAL’,b0) ; 

p_2 = CDF(‘NORMAL’,b1) ; 

if (p_1 > 0.999999) then p_1 = 0.999999 ; 

if (p_2 > 0.999999) then p_2 = 0.999999 ; 

g_i1 = quantile(‘Beta’,p_1,a1,bb1) ; 

g_i2 = quantile(‘Beta’,p_2,a2,bb2) ; 

eta=beta0 + log(g_i1) + beta1*group + log(g_i2)*group + log(time); 

lambda=exp(eta); 

model deaths ~ poisson(lambda); 

random b0 b1 ~ normal([0,0],[1,0,1]) subject=id; 

estimate ‘rr’ exp(beta1); 

run; 

 

/*Random intercept*/ 

proc nlmixed data=main maxiter=5000 noad qpoints=80; 

parms beta0=1.7 beta1=-2.5; 

p_1 = CDF(‘NORMAL’,b0) ; 

if (p_1 > 0.999999) then p_1 = 0.999999 ; 

g_i1 = quantile(‘Beta’,p_1,a1,bb1) ; 
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eta = beta0 + log(g_i1) + beta1*group + log(time); 

lambda = exp(eta); 

model deaths ~ poisson(lambda); 

random b0 ~ normal(0,1) subject=id; 

estimate ‘rr’ exp(beta1); 

estimate ‘var1’ (a1/bb1)/(a1 + bb1)**2 * (a1 + bb1 + 1); 

run; 

 

/*Uniform Distribution*/ 

 

/*Bivariate*/ 

proc nlmixed data=main maxiter=5000 noad qpoints=80; 

parms beta0=1.7 beta1=-2.5; 

p_1 = CDF(‘NORMAL’,b0) ; 

p_2 = CDF(‘NORMAL’,b1) ; 

if (p_1 > 0.999999) then p_1 = 0.999999 ; 

if (p_2 > 0.999999) then p_2 = 0.999999 ; 

g_i1q = quantile(‘uniform’,p_1) ; 

g_i2q = quantile(‘uniform’,p_2) ; 

g_i1 = a1 + exp(log(bb1))*g_i1q; g_i2 = a2 + exp(log(bb2))*g_i2q; 

eta = beta0 + log(g_i1) + beta1*group + log(g_i2)*group + log(time); 

lambda = exp(eta); 

model deaths ~ poisson(lambda); 

random b0 b1 ~ normal([0,0],[1,0,1]) subject=id; 
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estimate ‘rr’ exp(beta1); 

estimate ‘var1’ (bb1)**2/12; 

estimate ‘var2’ (bb2)**2/12; 

run; 

 

/*Random intercept*/ 

proc nlmixed data=main maxiter=5000 noad qpoints=80; 

parms beta0=1.7 beta1=-2.5; 

p_1 = CDF(‘NORMAL’,b0) ; 

if (p_1 > 0.999999) then p_1 = 0.999999 ; 

g_i1q = quantile(‘uniform’,p_1) ; 

g_i1 = a1 + exp(log(bb1))*g_i1q; 

eta = beta0 + log(g_i1) + beta1*group + log(time); 

lambda = exp(eta); 

model deaths ~ poisson(lambda); 

random b0 ~ normal(0,1) subject=id; 

estimate ‘rr’ exp(beta1); 

estimate ‘var1’ (bb1)**2/12;  

run; 




