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Abstract 

Canonical Correlation Analysis (CCA) is a classical feature learning method, which is widely 
used in image recognition, information fusion, and affective computing and so on. However, 
it is difficult for CCA to find nonlinear local sub-manifold structure hidden in the raw 
sample space. In view of this issue, locality preserving canonical correlation analysis 
(LPCCA) is proposed, which overcomes the preservation of local geometrical structure in 
CCA. However, LPCCA still does not consider the global Euclidean structure in the raw 
sample space. To solve this problem, we propose an elastic canonical correlation analysis 
method that preserves both local geometry structure and global Euclidean structure hidden 
in the raw sample space. The method is successfully applied to image recognition, and a 
large number of experimental results have showed the superiority of the method. 
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1. Introduction 

In recent years, modal feature learning has been widely used in 
image recognition [1], image segmentation [2], pose estimation [3], gene 
analysis [4] and so on. How to learn low-dimensional features with strong 
discrimination from high-dimensional modal data has become a 
challenging subject, especially in the field of image recognition. The raw 
modal data usually possess ultra-high dimensionality in image 
recognition, which will cause the increase of computational complexity. 
Low-dimensional feature learning can be solve the issue. With the help of 
low-dimensional feature learning, the high-dimensional data can be 
transformed into more effective data with lower dimensionality in the 
recognition task. Principal component analysis (PCA) [5] and locality 
preserving projection (LPP) [6] are traditional feature learning methods 
based on single-modal data. 

PCA is a common low-dimensional feature learning method. In 
essence, PCA is to project high-dimensional data into low-dimensional 
space through linear transformation. Furthermore, the reduced 
dimensionality by PCA are noise or redundant data, so that the 
correlation between the same dimensions that are preserved is as small 
as possible and the variance is as large as possible. However, PCA does 
not consider nonlinear low-dimensional manifold structure in the raw 
high-dimensional space. In this case, LPP was proposed. Compared with 
PCA, LPP takes into account local neighbourhood structure of sample 
data, so that the neighbourhood structure of data before and after 
projection is consistent, which better shows internal structure of data. 
These dimension reduction methods are only suitable for single-mode 
data. However, in real world, one object usually has multiple data 
representations, which are usually called as multi-modal data. Compared 
with single-modal data, multi-modal data can describe one object more 
comprehensively. For instance, for a text, we write the text in Chinese 
and English. Compared with only one language, multiple languages can 
describe more accurate meaning of the text. 
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In the field of image recognition, it is more robust to extract features 
from multi-modal data of one object for fusion. As a two-modal feature 
learning method, CCA [7] aims to find a pair of projection directions to 
maximize the correlation between the two-modal data. However, CCA is 
a linear dimension reduction technique in essence, so it can only globally 
reveal the linear correlation between two sets of features. This linear 
model is not sufficient to evaluate the nonlinear correlation between 
features. For this reason, Sun et al. [8] proposed the LPCCA method. 
LPCCA embeds local structure information into CCA and uses linear 
CCA to solve the problem in the local neighbourhood, which can solve the 
global problem. LPCCA not only preserves the local geometry structure, 
but also obtains the canonical correlation between two modal datasets. 
Inspired by elastic preserving projection (EPP) [9] based on single-modal 
data, we propose an elastic canonical correlation analysis (ECCA) method 
that not only preserves local geometrical structure of the raw sample set 
but also takes into account global Euclidean structure. EPP maintains 
the local and global elastic relationships, and obtains canonical features 
with well discriminative power from a few image. Extensive experimental 
results have exhibited the effectiveness of our method. 

The rest of the paper is organized as follows. In Section 2, CCA is 
introduced briefly. In Section 3, our proposed method is introduced and 
analyzed in detail. The recognition performance of our method on two 
real-world datasets is given in Section 4. Finally, conclusions are given in 
Section 5. 

2. Review of CCA 

Suppose that [ ] nd
N xRxxxX ×∈= ,,, 21 …  and [ ]NyyyY ,,, 21 …=  

ndyR ×∈  are two-modal sample sets, where xd  and yd  denote the  

sample dimension, n is the total number of samples. CCA aims to obtain 

a pair of projection directions 1×∈ xd
x Rw  and 1×∈ xd

y Rw  by optimizing 
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correlation criterion, so that 1×∈ xd
x Rw  and 1×∈ xd

y Rw  have the 

maximum correlation. The optimization model is as follows: 
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where ( ) ( )Tii
n

i
xy yyxxnS −−= ∑
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1  is the cross-covariance matrix of the 

sample set X and the sample set Y, which reflects the correlation between the 

two modals. ( ) ( )Tii
n

i
xx xxxxnS −−= ∑

=1

1  and ( ) ( )Tii
n

i
yy yyyynS −−= ∑

=1

1  

are covariance matrices respectively corresponding to two sample sets X 
and Y, which can reflect overall scatter information of within-modal 
samples to some extent. 

To avoid the problem of infinite solutions in xw  and ,yw  the 

optimization problem in Equation (1) can be equivalently transformed 
into the following optimization problem by using scale invariance [9]: 

y
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wXYw

yx ,
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.1,1s.t. == y
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yx
TT

x wYYwwXXw  (2) 

3. Elastic Canonical Correlation Analysis 

CCA is a classical two-modal feature learning method, but it cannot 
utilize the local geometrical information and global Euclidean 
information in the raw modal data. Therefore, we construct a local 
similarity matrix and global similarity matrix and further embed them 
into the correlation theory to obtain a novel elastic correlation 
optimization model with elastic structure. 
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First of all, to show the correlation of between-modal samples more 
intuitively, we give an equivalent derivation of within-modal covariance 
matrices. We take within-modal covariance matrix xxS  as an example to 

show how to perform equivalent derivation: 

( ) ( )Tii

n

i
xx xxxxnS −−= ∑

=1

1  












−−+= ∑∑∑∑∑∑∑∑

========

T
ij

n

j

n

i

T
ji

n

j

n

i

T
jj

n

j

n

i

T
ii

n

j

n

i
xxxxxxxx

n 11111111
22

1  

.
2

1 2

11
2 ji

n

j

n

i
xx

n
−= ∑∑

==

 (3) 

Then, we further construct the elastic scatter of the sample set X: 
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xlocalxglobal XLLX −η+η=  (4) 

where η  is a balance parameter, ,xlocalxlocalxlocal WDL −=  

.xglobalxglobalxglobal WDL −=  Additionally, ( )xglobalxlocal DD or  denotes 

a diagonal matrix, and the entries on its diagonal are the sum of the 
entries on each row or column of the local similar matrix xlocalW  and the 

global similar matrix .xglobalW  The definitions of xlocalW  and xglobalW  

are as follows: 
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where ij
xlocalW  is the ( ) ( )Njiji ,,2,1,, …=  entries in the local 

similarity matrix tWxlocal ,  is a kernel parameter, and ( )ixNeik  denotes 

the first k  nearest neighbour sample sets of .ix  
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where ij
xglobalW  is the ( ) ( )Njiji ,,2,1,, …=  entries in the local 

similarity matrix .xglobalW  

Similar to the elastic scatter of the sample set X, the elastic scatter of 
the sample set Y is as follows: 

( )[ ] ,1 T
ylocalyglobalyy YLLYS −η+η=   (7) 

where yglobalylocal LL ,,η  have the same definitions as those of Equation 

(4) . 

Therefore, to preserve the elastic scatter structure in within-modal 
samples, our elastic correlation optimization model can be constructed as: 
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By using the Lagrangian multiplier method [10], we can transform 
Equation (8) into the following generalized eigenvalue problem: 
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where λ  denotes the eigenvalue. The eigenvectors { }xdx ww ,,1 …  and 

{ }ydy ww ,,1 …  corresponding to the first d maximum eigenvalues can be 

obtained by solving the Equation (9). Then projection matrices  

[ ] ddxT
xdxx RwwW ×∈= ,,1 …  and [ ] ddyT

ydyy RwwW ×∈= ,,1 …  can 

be constructed, and the low-dimensional correlation features can be 

obtained by means of XW T
x  and ,YW T

y  respectively corresponding to the 

sample set X and the sample set Y. 

4. Experiment 

In this section, we design several experiments on GT image dataset 
[11] and ORL image dataset [12] to estimate the effectiveness of ECCA. 
In essence, the real-world image datasets belongs to single-modal 
datasets. By means of a simple modal strategy [13], we can obtain two 
different modal data of each image. In detail, we employ Coiflets and 
Daubechies wavelet technology to obtain low-frequency sub-images of one 
image, i.e., two modal data of one image. Then PCA is used to reduce the 
dimensionality of each sub-image to 100, and the two modal datasets will 
be used as the sample set X and the sample set Y. Based on the fact that 
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ECCA is an unsupervised method, the ECCA method will be compared 
with CCA and LPCCA methods, and a detailed analysis is given in the 
following experiment part. For method, the balance parameter η  is fixed 

as 0.05 and the nearest neighbour parameter k  is selected as 5. The 
nearest neighbour classifier based on Euclidean distance will be used to 
determine recognition rates of each method in the final recognition tasks. 

4.1. Experiments on the GT image dataset 

In GT image data set, there are 50 objects corresponding to 15 facial 
images with color background respectively, i.e., 750 facial images in total. 
Each image has different expression and illumination. In experimental 
part, q (q  = 5, 6, 7, 8) samples per class are selected as training samples, 
the remaining samples are taken as testing samples. Table 1 reports the 
average recognition rates under ten sample random experiments. 

Table 1. Experimental results on GT image dataset 

 5Train 6Train 7Train 8Train 

ECCA 70.04 ± 1.42 72.53 ± 2.00 73.20 ± 3.00 74.69 ± 2.01 

LPCCA 45.26 ± 2.06 49.89 ± 3.68 56.17 ± 2.79 60.51 ± 3.63 

CCA 59.08 ± 1.81 61.78 ± 1.35 66.22 ± 1.66 68.14 ± 2.01 

A ± B: A denotes the average recognition rate and B represents the corresponding standard 
deviation. 

From Table 1, it can be seen that as the number of training samples 
increases, the average recognition rate of all methods increases, which 
indicates that a large number of training samples will more 
comprehensively reflect the true distribution of samples in the raw 
sample space. CCA only guarantees the maximum correlation between 
two modal datasets, but ignores the nonlinear sub-manifold structure 
and global Euclidean structure of within-modal samples. It also shows 
poor recognition performance in Table 1. LPCCA preserves the local sub-
manifold structure of within-modal samples on the basis of CCA. 
However, in high-dimensional data, a large amount of noise and 
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redundant information will make it difficult for LPCCA to truly reflect 
the local sub-manifold structure, which will still affect its recognition 
performance. On the basis of LPCCA, ECCA obtains a more robust elastic 
structure by preserving the global Euclidean structure and learns a more 
discriminative structure, and learns correlation features with better 
discriminative power. Therefore, excellent recognition performance of our 
method is shown in Table 1. 

4.2. Experiments on the ORL image dataset 

The ORL image dataset collected 400 images from 40 people. The 
images are taken at different times. Each image has different lighting 
background and expression changes. We randomly choose q (q = 4, 5, 6, 7) 
training samples from each class, and the remaining samples are used as 
testing samples. We tabulate the average recognition rates of ten sample 
random experiments in Table 2. 

Table 2. Experimental results on ORL image dataset 

 4Train 5Train 6Train 7Train 

ECCA 89.67 ± 2.51 92.85 ± 1.73 95.13 ± 1.58 96.17 ± 1.72 

LPCCA 74.21 ± 2.70 86.45 ± 2.91 92.31 ± 1.72 94.50 ± 1.58 

CCA 77.08 ±  3.04 90.40 ± 1.74 93.19 ± 1.94 93.83 ± 1.68 

A ± B: A denotes the average recognition rate and B represents the corresponding standard 
deviation. 

In the experiments of the ORL image dataset, ECCA also shows 
excellent recognition performance. For ECCA, the recognition 
performance is higher than LPCCA and CCA regardless of the number of 
training samples, which indicates that nonlinear sub-manifold structure 
and Euclidean structure hidden in the raw high-dimensional sample 
space plays a significant role. 
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5. Conclusion 

The tasks of feature learning focus on learning low-dimensional 
features from high-dimensional modal data, and the low-dimensional 
features can preserve effective information hidden in the raw modal data. 
Based on this idea, we propose an ECCA method inspired by EPP. Local 
geometry structure information and global Euclidean structure 
information are embedded in CCA to achieve the purpose of preserving 
elastic structure. Compared with LPCCA, ECCA utilizes global 
information to discover the Euclidean structure in the raw modal data, 
and preserves the structure information of the raw modal data more 
comprehensively. Encouraging experimental results on two real-world 
image datasets reveal the superior performance of our method in image 
recognition. 
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