STRONG INSERTION OF A CONTRA-BAIRE-1 (BAIRE-.5) FUNCTION

MAJID MIRMIRAN

Department of Mathematics University of Isfahan Isfahan 81746-73441 Iran e-mail: mirmir@sci.ui.ac.ir

Abstract

Necessary and sufficient conditions in terms of lower cut sets are given for the strong insertion of a Baire-.5 function between two comparable real-valued functions on the topological spaces that F_{σ} -kernel of sets are F_{σ} -sets.

1. Introduction

A generalized class of closed sets was considered by Maki in 1986 [18]. He investigated the sets that can be represented as union of closed sets and called them V-sets. Complements of V-sets, i.e., sets that are intersection of open sets are called Λ -sets [18].

© 2019 Scientific Advances Publishers

²⁰¹⁰ Mathematics Subject Classification: 26A15, 54C30.

Keywords and phrases: insertion, strong binary relation, Baire-.5 function, kernel of sets, lower cut set.

This work was supported by University of Isfahan and Centre of Excellence for Mathematics (University of Isfahan).

Received August 5, 2019; Revised October 15, 2019

MAJID MIRMIRAN

Recall that a real-valued function f defined on a topological space X is called A-continuous [24] if the preimage of every open subset of \mathbb{R} belongs to A, where A is a collection of subsets of X. Most of the definitions of function used throughout this paper are consequences of the definition of A-continuity. However, for unknown concepts the reader may refer to [5, 11]. In the recent literature, many topologists had focused their research in the direction of investigating different types of generalized continuity.

Dontchev in [6] introduced a new class of mappings called contracontinuity. A good number of researchers have also initiated different types of contra-continuous like mappings in the papers [1, 4, 8, 9, 10, 12, 13, 22].

Results of Katětov [14, 15] concerning binary relations and the concept of an indefinite lower cut set for a real-valued function, which is due to Brooks [3], are used in order to give a necessary and sufficient condition for the insertion of a Baire-.5 function between two comparable real-valued functions on the topological spaces that F_{σ} -kernel of sets are F_{σ} -sets.

A real-valued function f defined on a topological space X is called *contra-Baire-1* (*Baire-.5*) if the preimage of every open subset of \mathbb{R} is a G_{δ} -set in X [25].

If g and f are real-valued functions defined on a space X, we write $g \le f$ in case $g(x) \le f(x)$ for all x in X.

The following definitions are modifications of conditions considered in [16].

A property P defined relative to a real-valued function on a topological space is a B-.5-property provided that any constant function has property P and provided that the sum of a function with property P and any Baire-.5 function also has property P. If P_1 and P_2 are B-.5-properties,

112

the following terminology is used: (i) A space X has the weak B-.5-insertion property for (P_1, P_2) if and only if for any functions g and f on X such that $g \leq f$, g has property P_1 and f has property P_2 , then there exists a Baire-.5 function h such that $g \leq h \leq f$. (ii) A space X has the strong B-.5-insertion property for (P_1, P_2) if and only if for any functions g and f on X such that $g \leq f$, g has property P_1 and f has property P_1 and f has property P_2 , then there exists a Baire-.5 function h such that $g \leq f$, g has property P_1 and f has property P_2 , then there exists a Baire-.5 function h such that $g \leq f \leq f$ and such that if g(x) < f(x) for any x in X, then g(x) < h(x) < f(x).

In this paper, for a topological space that F_{σ} -kernel of sets are F_{σ} -sets, is given a sufficient condition for the weak B – .5-insertion property. Also for a space with the weak B – .5-insertion property, we give necessary and sufficient conditions for the space to have the strong B – .5-insertion property. Several insertion theorems are obtained as corollaries of these results.

2. The Main Result

Before giving a sufficient condition for insertability of a Baire-.5 function, the necessary definitions and terminology are stated.

Definition 2.1. Let A be a subset of a topological space (X, τ) . We define the subsets A^{Λ} and A^{V} as follows:

$$A^{\Lambda} = \bigcap \{ O : O \supseteq A, O \in (X, \tau) \},\$$

and

$$A^V = \bigcap \{F : F \subseteq A, F^c \in (X, \tau)\}.$$

In [7, 19, 21], A^{Λ} is called the *kernel* of A.

We define the subsets $G_{\delta}(A)$ and $F_{\sigma}(A)$ as follows:

$$G_{\delta}(A) = \bigcup \{ O : O \subseteq A, O \text{ is } G_{\delta} - \text{set} \},\$$

and

$$F_{\sigma}(A) = \bigcap \{F : F \supseteq A, F \text{ is } F_{\sigma} - \text{set} \},\$$

where $F_{\sigma}(A)$ is called the F_{σ} -kernel of A.

The following first two definitions are modifications of conditions considered in [14, 15].

Definition 2.2. If ρ is a binary relation in a set *S*, then $\overline{\rho}$ is defined as follows: $x \overline{\rho} y$ if and only if $y \rho v$ implies $x \rho v$ and $u \rho x$ implies $u \rho y$ for any *u* and *v* in *S*.

Definition 2.3. A binary relation ρ in the power set P(X) of a topological space X is called a *strong binary relation* in P(X) in case ρ satisfies each of the following conditions:

(1) If $A_i \rho B_j$ for any $i \in \{1, ..., m\}$ and for any $j \in \{1, ..., n\}$, then there exists a set C in P(X) such that $A_i \rho C$ and $C \rho B_j$ for any $i \in \{1, ..., m\}$ and any $j \in \{1, ..., n\}$.

(2) If $A \subseteq B$, then $A \overline{\rho} B$.

(3) If $A \rho B$, then $F_{\sigma}(A) \subseteq B$ and $A \subseteq G_{\delta}(B)$.

The concept of a lower indefinite cut set for a real-valued function was defined by Brooks [3] as follows:

Definition 2.4. If *f* is a real-valued function defined on a space *X* and if $\{x \in X : f(x) < \ell\} \subseteq A(f, \ell) \subseteq \{x \in X : f(x) \le \ell\}$ for a real number ℓ , then $A(f, \ell)$ is a *lower indefinite cut set* in the domain of *f* at the level ℓ .

We now give the following main results:

Theorem 2.1. Let g and f be real-valued functions on the topological space X, that F_{σ} -kernel sets in X are F_{σ} -sets, with $g \leq f$. If there exists a strong binary relation ρ on the power set of X and if there exist lower indefinite cut sets A(f, t) and A(g, t) in the domain of f and g at the level t for each rational number t such that if $t_1 < t_2$, then $A(f, t_1) \rho A(g, t_2)$, then there exists a Baire-.5 function h defined on X such that $g \leq h \leq f$.

Proof. Let *g* and *f* be real-valued functions defined on the *X* such that $g \leq f$. By hypothesis there exists a strong binary relation ρ on the power set of *X* and there exist lower indefinite cut sets A(f, t) and A(g, t) in the domain of *f* and *g* at the level *t* for each rational number *t* such that if $t_1 < t_2$ then $A(f, t_1) \rho A(g, t_2)$.

Define functions F and G mapping the rational numbers \mathbb{Q} into the power set of X by F(t) = A(f, t) and G(t) = A(g, t). If t_1 and t_2 are any elements of \mathbb{Q} with $t_1 < t_2$, then $F(t_1)\overline{\rho} F(t_2)$, $G(t_1)\overline{\rho} G(t_2)$, and $F(t_1) \rho G(t_2)$. By Lemmas 1 and 2 of [15], it follows that there exists a function H mapping \mathbb{Q} into the power set of X such that if t_1 and t_2 are any rational numbers with $t_1 < t_2$, then $F(t_1)\rho H(t_2)$, $H(t_1)\rho H(t_2)$, and $H(t_1)\rho G(t_2)$.

For any x in X, let $h(x) = \inf\{t \in \mathbb{Q} : x \in H(t)\}.$

We first verify that $g \le h \le f$: If x is in H(t), then x is in G(t') for any t' > t; since x in G(t') = A(g, t') implies that $g(x) \le t'$, it follows that $g(x) \le t$. Hence $g \le h$. If x is not in H(t), then x is not in F(t') for any t' < t; since x is not in F(t') = A(f, t') implies that f(x) > t', it follows that $f(x) \ge t$. Hence $h \le f$. Also, for any rational numbers t_1 and t_2 with $t_1 < t_2$, we have $h^{-1}(t_1, t_2) = G_{\delta}(H(t_2)) \setminus F_{\sigma}(H(t_1))$. Hence $h^{-1}(t_1, t_2)$ is a G_{δ} -set in X, i.e., h is a Baire-.5 function on X.

The above proof used the technique of Theorem 1 of [14].

If a space has the strong B-.5-insertion property for (P_1, P_2) , then it has the weak B-.5-insertion property for (P_1, P_2) . The following result uses lower cut sets and gives a necessary and sufficient condition for a space satisfies that weak B-.5-insertion property to satisfy the strong B-.5-insertion property.

Theorem 2.2. Let P_1 and P_2 be B-.5-property and X be a space that satisfies the weak B-.5-insertion property for (P_1, P_2) . Also assume that g and f are functions on X such that $g \leq f$, g has property P_1 and f has property P_2 . The space X has the strong B-.5-insertion property for (P_1, P_2) if and only if there exist lower cut sets $A(f - g, 2^{-n})$ and there exists a sequence $\{F_n\}$ of subsets of X such that (i) for each n, F_n and $A(f - g, 2^{-n})$ are completely separated by Baire-.5 functions, and (ii) $\{x \in X : (f - g)(x) > 0\} = \bigcup_{n=1}^{\infty} F_n$.

Proof. Suppose that there is a sequence $(A(f - g, 2^{-n}))$ of lower cut sets for f - g and suppose that there is a sequence (F_n) of subsets of X such that

$$\{x \in X : (f - g)(x) > 0\} = \bigcup_{n=1}^{\infty} F_n,$$

and such that for each *n*, there exists a Baire-.5 function k_n on X into $[0, 2^{-n}]$ with $k_n = 2^{-n}$ on F_n and $k_n = 0$ on $A(f - g, 2^{-n})$. The function k from X into [0, 1/4] which is defined by

$$k(x) = 1 / 4 \sum_{n=1}^{\infty} k_n(x)$$

is a Baire-.5 function by the Cauchy condition and the properties of Baire-.5 functions, (1) $k^{-1}(0) = \{x \in X : (f - g)(x) = 0\}$ and (2) if (f - g)(x) > 0, then k(x) < (f - g)(x): In order to verify (1), observe that if (f - g)(x) = 0, then $x \in A(f - g, 2^{-n})$ for each *n* and hence $k_n(x) = 0$ for each *n*. Thus k(x) = 0. Conversely, if (f - g)(x) > 0, then there exists an *n* such that $x \in F_n$ and hence $k_n(x) = 2^{-n}$. Thus $k(x) \neq 0$ and this verifies (1). Next, in order to establish (2), note that

$$\{x \in X : (f - g)(x) = 0\} = \bigcap_{n=1}^{\infty} A(f - g, 2^{-n}),$$

and that $(A(f - g, 2^{-n}))$ is a decreasing sequence. Thus if (f - g)(x) > 0, then either $x \notin A(f - g, 1/2)$ or there exists a smallest n such that $x \notin A(f - g, 2^{-n})$ and $x \in A(f - g, 2^{-j})$ for j = 1, ..., n - 1. In the former case,

$$k(x) = 1 / 4 \sum_{n=1}^{\infty} k_n(x) \le 1 / 4 \sum_{n=1}^{\infty} 2^{-n} < 1 / 2 \le (f - g)(x),$$

and in the latter,

$$k(x) = 1 / 4 \sum_{j=n}^{\infty} k_j(x) \le 1 / 4 \sum_{j=n}^{\infty} 2^{-j} < 2^{-n} \le (f - g)(x).$$

Thus $0 \le k \le f - g$ and if (f - g)(x) > 0 then (f - g)(x) > k(x) > 0. Let $g_1 = g + (1 / 4)k$ and $f_1 = f - (1 / 4)k$. Then $g \le g_1 \le f_1 \le f$ and if g(x) < f(x), then

$$g(x) < g_1(x) < f_1(x) < f(x).$$

Since P_1 and P_2 are B – .5-properties, then g_1 has property P_1 and f_1 has property P_2 . Since by hypothesis X has the weak B – .5-insertion property for (P_1, P_2) , then there exists a Baire-.5 function h such that $g_1 \leq h \leq f_1$. Thus $g \leq h \leq f$ and if g(x) < f(x) then g(x) < h(x) < f(x). Therefore X has the strong B –.5-insertion property for (P_1, P_2) . (The technique of this proof is by Lane [16].)

Conversely, assume that X satisfies the strong B - .5-insertion for (P_1, P_2) . Let g and f be functions on X satisfying P_1 and P_2 , respectively such that $g \leq f$. Thus there exists a Baire-.5 function h such that $g \leq h \leq f$ and such that if g(x) < f(x) for any x in X, then g(x) < h(x) < f(x). We follow an idea contained in Powderly [23]. Now consider the functions 0 and f - h. 0 satisfies property P_1 and f - h satisfies property P_2 . Thus there exists a Baire-.5 function h_1 such that $0 \leq h_1 \leq f - h$ and if 0 < (f - h)(x) for any x in X, then $0 < h_1(x) < (f - h)(x)$. We next show that

$$\{x \in X : (f - g)(x) > 0\} = \{x \in X : h_1(x) > 0\}.$$

If x is such that (f - g)(x) > 0, then g(x) < f(x). Therefore g(x) < h(x) < f(x). Thus f(x) - h(x) > 0 or (f - h)(x) > 0. Hence $h_1(x) > 0$. On the other hand, if $h_1(x) > 0$, then since $(f - h) \ge h_1$ and $f - g \ge f - h$, therefore (f - g)(x) > 0. For each n, let

$$A(f - g, 2^{-n}) = \{x \in X : (f - g)(x) \le 2^{-n}\},\$$
$$F_n = \{x \in X : h_1(x) \ge 2^{-n+1}\},\$$

and

$$k_n = \sup\{\inf\{h_1, 2^{-n+1}\}, 2^{-n}\} - 2^{-n}.$$

Since $\{x \in X : (f - g)(x) > 0\} = \{x \in X : h_1(x) > 0\}$, it follows that

$$\{x \in X : (f - g)(x) > 0\} = \bigcup_{n=1}^{\infty} F_n.$$

We next show that k_n is a Baire-.5 function which completely separates F_n and $A(f - g, 2^{-n})$, From its definition and by the properties of Baire-.5 functions, it is clear that k_n is a Baire-.5 function. Let $x \in F_n$. Then, from the definition of k_n , $k_n(x) = 2^{-n}$. If $x \in A(f - g, 2^{-n})$, then since $h_1 \leq f - h \leq f - g$, $h_1(x) \leq 2^{-n}$. Thus $k_n(x) = 0$, according to the definition of k_n . Hence k_n completely separates F_n and $A(f - g, 2^{-n})$.

Theorem 2.3. Let P_1 and P_2 be B – .5–properties and assume that the space X satisfied the weak B – .5–insertion property for (P_1, P_2) . The space X satisfies the strong B – .5–insertion property for (P_1, P_2) if and only if X satisfies the strong B – .5–insertion property for $(P_1, B$ – .5) and for (B – .5, P_2).

Proof. Assume that X satisfies the strong B - .5-insertion property for $(P_1, B - .5)$ and for $(B - .5, P_2)$. If g and f are functions on X such that $g \le f$, g satisfies property P_1 , and f satisfies property P_2 , then since X satisfies the weak B - .5-insertion property for (P_1, P_2) there is a Baire-.5 function k such that $g \le k \le f$. Also, by hypothesis there exist Baire-.5 functions h_1 and h_2 such that $g \le h_1 \le k$ and if g(x) < k(x)then $g(x) < h_1(x) < k(x)$ and such that $k \le h_2 \le f$ and if k(x) < f(x)then $k(x) < h_2(x) < f(x)$. If a function h is defined by h(x) = $(h_2(x) + h_1(x))/2$, then h is a Baire-.5 function, $g \le h \le f$, and if g(x) < f(x), then g(x) < h(x) < f(x). Hence X satisfies the strong B – .5-insertion property for (P_1, P_2) . The converse is obvious since any Baire-.5 function must satisfy both properties P_1 and P_2 . (The technique of this proof is by Lane [17].)

3. Applications

Definition 3.1. A real-valued function f defined on a space X is called contra-upper semi-Baire-.5 (resp., contra-lower semi-Baire-.5) if $f^{-1}(-\infty, t)$ (resp., $f^{-1}(t, +\infty)$) is a G_{δ} -set for any real number t.

The abbreviations usc, lsc, cusB.5 and clsB.5 are used for upper semicontinuous, lower semicontinuous, contra-upper semi-Baire-.5, and contra-lower semi-Baire-.5, respectively.

Remark 1 ([14, 15]). A space *X* has the weak *c*-insertion property for (usc, lsc) if and only if *X* is normal.

Before stating the consequences of Theorems 2.1, 2.2 and 2.3 we suppose that X is a topological space that F_{σ} -kernel of sets are F_{σ} -sets.

Corollary 3.1. For each pair of disjoint F_{σ} -sets F_1 , F_2 , there are two G_{δ} -sets G_1 and G_2 such that $F_1 \subseteq G_1$, $F_2 \subseteq G_2$, and $G_1 \cap G_2 = \emptyset$ if and only if X has the weak B – .5–insertion property for (cus B – .5, cls B – .5).

Proof. Let g and f be real-valued functions defined on the X, such that f is lsB_1 , g is usB_1 , and $g \leq f$. If a binary relation ρ is defined by $A \rho B$ in case $F_{\sigma}(A) \subseteq G_{\delta}(B)$, then by hypothesis ρ is a strong binary relation in the power set of X. If t_1 and t_2 are any elements of \mathbb{Q} with $t_1 < t_2$, then

 $A(f, t_1) \subseteq \{x \in X : f(x) \le t_1\} \subseteq \{x \in X : g(x) < t_2\} \subseteq A(g, t_2);$

since $\{x \in X : f(x) \le t_1\}$ is a F_{σ} -set and since $\{x \in X : g(x) < t_2\}$ is a G_{δ} -set, it follows that $F_{\sigma}(A(f, t_1)) \subseteq G_{\delta}(A(g, t_2))$. Hence $t_1 < t_2$ implies that $A(f, t_1) \rho A(g, t_2)$. The proof follows from Theorem 2.1.

121

On the other hand, let F_1 and F_2 are disjoint F_{σ} -sets. Set $f = \chi_{F_1^c}$ and $g = \chi_{F_2}$, then f is $\operatorname{cls} B - .5$, g is $\operatorname{cus} B - .5$, and $g \leq f$. Thus there exists Baire-.5 function h such that $g \leq h \leq f$. Set $G_1 = \{x \in X : h(x) \\ < \frac{1}{2}\}$ and $G_2 = \{x \in X : h(x) > \frac{1}{2}\}$, then G_1 and G_2 are disjoint G_{δ} -sets such that $F_1 \subseteq G_1$ and $F_2 \subseteq G_2$.

Remark 2 ([26]). A space X has the weak *c*-insertion property for (lsc, usc) if and only if X is extremally disconnected.

Corollary 3.2. For every G of G_{δ} -set, $F_{\sigma}(G)$ is a G_{δ} -set if and only if X has the weak B – .5–insertion property for (clsB – .5, cusB – .5).

Before giving the proof of this corollary, the necessary lemma is stated.

Lemma 3.1. The following conditions on the space X are equivalent:

(i) For every G of G_{δ} -set we have $F_{\sigma}(G)$ is a G_{δ} -set.

(ii) For each pair of disjoint G_{δ} -sets as G_1 and G_2 , we have $F_{\sigma}(G_1) \cap F_{\sigma}(G_2) = \emptyset$.

The proof of Lemma 3.1 is a direct consequence of the definition $F_{\rm \sigma}\text{-kernel}$ of sets.

We now give the proof of Corollary 3.2.

Proof. Let g and f be real-valued functions defined on the X, such that f is $\operatorname{cls} B - .5$, g is $\operatorname{cus} B - .5$, and $f \leq g$. If a binary relation ρ is defined by $A \rho B$ in case $F_{\sigma}(A) \subseteq G \subseteq F_{\sigma}(G) \subseteq G_{\delta}(B)$ for some G_{δ} -set g in X, then by hypothesis and Lemma 3.1 ρ is a strong binary relation in the power set of X. If t_1 and t_2 are any elements of \mathbb{Q} with $t_1 < t_2$, then

$$A(g, t_1) = \{x \in X : g(x) < t_1\} \subseteq \{x \in X : f(x) \le t_2\};\$$
$$= A(f, t_2);$$

since $\{x \in X : g(x) < t_1\}$ is a G_{δ} -set and since $\{x \in X : f(x) \le t_2\}$ is a F_{σ} -set, by hypothesis it follows that $A(g, t_1) \rho A(f, t_2)$. The proof follows from Theorem 2.1.

On the other hand, let G_1 and G_2 are disjoint G_{δ} -sets. Set $f = \chi_{G_2}$ and $g = \chi_{G_1^c}$, then f is clsB - .5, g is cusB - .5, and $f \leq g$.

Thus there exists Baire-.5 function h such that $f \leq h \leq g$. Set $F_1 = \{x \in X : h(x) \leq \frac{1}{3}\}$ and $F_2 = \{x \in X : h(x) \geq 2/3\}$, then F_1 and F_2 are disjoint F_{σ} -sets such that $G_1 \subseteq F_1$ and $G_2 \subseteq F_2$. Hence $F_{\sigma}(F_1) \cap F_{\sigma}(F_2) = 0$.

Before stating the consequences of Theorem 2.2, we state and prove the necessary lemmas.

Lemma 3.2. The following conditions on the space X are equivalent:

(i) Every two disjoint F_{σ} -sets of X can be separated by G_{δ} -sets of X.

(ii) If F is a F_{σ} -set of X which is contained in a G_{δ} -set G, then there exists a G_{δ} -set H such that $F \subseteq H \subseteq F_{\sigma}(H) \subseteq G$.

Proof. (i) \Rightarrow (ii) Suppose that $F \subseteq G$, where F and G are F_{σ} -set and G_{δ} -set of X, respectively. Hence, G^c is a F_{σ} -set and $F \cap G^c = \emptyset$.

By (i) there exists two disjoint G_{δ} -sets G_1 , G_2 such that $F \subseteq G_1$ and $G^c \subseteq G_2$. But

$$G^c \subseteq G_2 \Rightarrow G_2^c \subseteq G,$$

and

$$G_1 \cap G_2 = \emptyset \Rightarrow G_1 \subseteq G_2^c,$$

hence

$$F \subseteq G_1 \subseteq G_2^c \subseteq G,$$

and since G_2^c is a F_{σ} -set containing G_1 we conclude that $F_{\sigma}(G_1) \subseteq G_2^c$, i.e.,

$$F \subseteq G_1 \subseteq F_{\sigma}(G_1) \subseteq G.$$

By setting $H = G_1$, condition (ii) holds.

(ii) \Rightarrow (i) Suppose that F_1 , F_2 are two disjoint F_{σ} -sets of X.

This implies that $F_1 \subseteq F_2^c$ and F_2^c is a G_{δ} -set. Hence by (ii), there exists a G_{δ} -set H such that, $F_1 \subseteq H \subseteq F_{\sigma}(H) \subseteq F_2^c$.

But

$$H \subseteq F_{\sigma}(H) \Longrightarrow H \cap (F_{\sigma}(H))^{c} = \emptyset,$$

and

$$F_{\sigma}(H) \subseteq F_2^c \Rightarrow F_2 \subseteq (F_{\sigma}(H))^c.$$

Furthermore, $(F_{\sigma}(H))^c$ is a G_{δ} -set of X. Hence $F_1 \subseteq H$, $F_2 \subseteq (F_{\sigma}(H))^c$ and $H \cap (F_{\sigma}(H))^c = \emptyset$. This means that condition (i) holds.

Lemma 3.3. Suppose that X is the topological space such that we can separate every two disjoint F_{σ} -sets by G_{δ} -sets. If F_1 and F_2 are two disjoint F_{σ} -sets of X, then there exists a Baire-.5 function $h: X \to [0, 1]$ such that $h(F_1) = \{0\}$ and $h(F_2) = \{1\}$.

Proof. Suppose F_1 and F_2 are two disjoint F_{σ} -sets of X. Since $F_1 \cap F_2 = \emptyset$, hence $F_1 \subseteq F_2^c$. In particular, since F_2^c is a G_{δ} -set of X containing F_1 , by Lemma 3.2, there exists a G_{δ} -set $H_{1/2}$ such that,

$$F_1 \subseteq H_{1/2} \subseteq F_{\sigma}(H_{1/2}) \subseteq F_2^c$$

Note that $H_{1/2}$ is a G_{δ} -set and contains F_1 , and F_2^c is a G_{δ} -set and contains $F_{\sigma}(H_{1/2})$. Hence, by Lemma 3.2, there exists G_{δ} -set $H_{1/4}$ and $H_{3/4}$ such that,

$$F_1 \subseteq H_{1/4} \subseteq F_{\sigma}(H_{1/4}) \subseteq H_{1/2} \subseteq F_{\sigma}(H_{1/2}) \subseteq H_{3/4} \subseteq F_{\sigma}(H_{3/4}) \subseteq F_2^c.$$

By continuing this method for every $t \in D$, where $D \subseteq [0, 1]$ is the set of rational numbers that their denominators are exponents of 2, we obtain G_{δ} -sets H_t with the property that if $t_1, t_2 \in D$ and $t_1 < t_2$, then $H_{t_1} \subseteq H_{t_2}$. We define the function h on X by $h(x) = \inf\{t : x \in H_t\}$ for $x \notin F_2$ and h(x) = 1 for $x \in F_2$.

Note that for every $x \in X$, $0 \le h(x) \le 1$, i.e., h maps X into [0, 1]. Also, we note that for any $t \in D$, $F_1 \subseteq H_t$; hence $h(F_1) = \{0\}$. Furthermore, by definition, $h(F_2) = \{1\}$. It remains only to prove that his a Baire-.5 function on X. For every $\alpha \in \mathbb{R}$, we have if $\alpha \le 0$ then $\{x \in X : h(x) < \alpha\} = \emptyset$ and if $0 < \alpha$ then $\{x \in X : h(x) < \alpha\} = \bigcup \{H_t : t < \alpha\}$, hence, they are G_{δ} -sets of X. Similarly, if $\alpha < 0$, then $\{x \in X : h(x) > \alpha\} = X$ and if $0 \le \alpha$, then $\{x \in X : h(x) > \alpha\} = \bigcup \{(F_{\sigma}(H_t))^c : t > \alpha\}$ hence, every of them is a G_{δ} -set. Consequently h is a Baire-.5 function.

Lemma 3.4. Suppose that X is the topological space such that we can separate every two disjoint F_{σ} -sets by G_{δ} -sets. If F_1 and F_2 are two disjoint F_{σ} -sets of X and F_1 is a countable intersection of G_{δ} -sets, then there exists a Baire-.5 function h on X into [0, 1] such that $h^{-1}(0) = F_1$ and $h(F_2) = \{1\}$. **Proof.** Suppose that $F_1 = \bigcap_{n=1}^{\infty} G_n$, where G_n is a G_{δ} -set of X. We can suppose that $G_n \cap F_2 = \emptyset$, otherwise we can substitute G_n by $G_n \setminus F_2$. By Lemma 3.3, for every $n \in \mathbb{N}$, there exists a Baire-.5 function h_n on X into [0, 1] such that $h_n(F_1) = \{0\}$ and $h_n(X \setminus G_n) = \{1\}$. We set $h(x) = \sum_{n=1}^{\infty} 2^{-n} h_n(x)$.

Since the above series is uniformly convergent, it follows that h is a Baire-.5 function from X to [0, 1]. Since for every $n \in \mathbb{N}$, $F_2 \subseteq X \setminus G_n$, therefore $h_n(F_2) = \{1\}$ and consequently $h(F_2) = \{1\}$. Since $h_n(F_1) = \{0\}$, hence $h(F_1) = \{0\}$. It suffices to show that if $x \notin F_1$, then $h(x) \neq 0$.

Now if $x \notin F_1$, since $F_1 = \bigcap_{n=1}^{\infty} G_n$, therefore there exists $n_0 \in \mathbb{N}$ such that $x \notin G_{n_0}$, hence $h_{n_0}(x) = 1$, i.e., h(x) > 0. Therefore $h^{-1}(0) = F_1$.

ь.		

125

Lemma 3.5. Suppose that X is the topological space such that we can separate every two disjoint F_{σ} -sets by G_{δ} -sets. The following conditions are equivalent:

(i) For every two disjoint F_{σ} -sets F_1 and F_2 , there exists a Baire-.5 function h on X into [0, 1] such that $h^{-1}(0) = F_1$ and $h^{-1}(1) = F_2$.

(ii) Every F_{σ} -set is a countable intersection of G_{δ} -set.

(iii) Every G_{δ} -set is a countable union of F_{σ} -set.

Proof. (i) \Rightarrow (ii). Suppose that F is a F_{σ} -sets. Since \emptyset is a F_{σ} -set, by (i) there exists a Baire-.5 function h on X into [0, 1] such that $h^{-1}(0) = F$. Set $G_n = \{x \in X : h(x) < \frac{1}{n}\}$. Then for every $n \in \mathbb{N}$, G_n is a G_{δ} -set and $\bigcap_{n=1}^{\infty} G_n = \{x \in X : h(x) = 0\} = F$. (ii) \Rightarrow (i). Suppose that F_1 and F_2 are two disjoint F_{σ} -sets. By Lemma 3.4, there exists a Baire-.5 function f on X into [0, 1] such that $f^{-1}(0) = F_1$ and $f(F_2) = \{1\}$. Set $G = \{x \in X : f(x) < \frac{1}{2}\}$, $F = \{x \in X :$ $f(x) = \frac{1}{2}\}$, and $H = \{x \in X : f(x) > \frac{1}{2}\}$. Then $G \cup F$ and $H \cup F$ are two F_{σ} -sets and $(G \cup F) \cap F_2 = 0$. By Lemma 3.4, there exists a Baire-.5 function g on X into $[\frac{1}{2}, 1]$ such that $g^{-1}(1) = F_2$ and $g(G \cup F) = \{\frac{1}{2}\}$. Define h by h(x) = f(x) for $x \in G \cup F$, and h(x) = g(x) for $x \in H$ $\cup F$. h is well-defined and a Baire-.5 function, since $(G \cup F) \cap (H \cup F) = F$ and for every $x \in F$ we have $f(x) = g(x) = \frac{1}{2}$. Furthermore, $(G \cup F) \cup (H \cup F) = X$, hence h defined on X and maps to [0, 1]. Also, we have $h^{-1}(0) = F_1$ and $h^{-1}(1) = F_2$.

(ii) \Leftrightarrow (iii) By De Morgan law and noting that the complement of every F_{σ} -set is a G_{δ} -set and complement of every G_{δ} -set is a F_{σ} -set, the equivalence is hold.

Remark 3 ([20]). A space X has the strong *c*-insertion property for (usc, lsc) if and only if X is perfectly normal.

Corollary 3.3. For every two disjoint F_{σ} -sets F_1 and F_2 , there exists a Baire-.5 function h on X into [0, 1] such that $h^{-1}(0) = F_1$ and $h^{-1}(1) = F_2$ if and only if X has the strong B –.5–insertion property for (cusB –.5, clsB – .5).

Proof. Since for every two disjoint F_{σ} -sets F_1 and F_2 , there exists a Baire-.5 function h on X into [0, 1] such that $h^{-1}(0) = F_1$ and $h^{-1}(1) = F_2$, define $G_1 = \{x \in X : h(x) < \frac{1}{2}\}$ and $G_2 = \{x \in X : h(x) > \frac{1}{2}\}$. Then

 G_1 and G_2 are two disjoint G_{δ} -sets that contain F_1 and F_2 , respectively. This means that, we can separate every two disjoint F_{σ} -sets by G_{δ} -sets. Hence by Corollary 3.1, X has the weak B - .5-insertion property for (cusB - .5, clsB - .5). Now, assume that g and f are functions on X such that $g \leq f, g$ is cusB - .5 and f is clsB - .5. Since f - g is clsB - .5, therefore the lower cut set $A(f - g, 2^{-n}) = \{x \in X : (f - g)(x) \leq 2^{-n}\}$ is a F_{σ} -set. By Lemma 3.5, we can choose a sequence $\{F_n\}$ of F_{σ} -sets such that $\{x \in X : (f - g)(x) > 0\} = \bigcup_{n=1}^{\infty} F_n$ and for every $n \in \mathbb{N}, F_n$ and $A(f - g, 2^{-n})$ are disjoint. By Lemma 3.3, F_n and $A(f - g, 2^{-n})$ can be completely separated by Baire-.5 functions. Hence by Theorem 2.2, X has the strong B - .5-insertion property for (cus B - .5, cls B - .5).

On the other hand, suppose that F_1 and F_2 are two disjoint F_{σ} -sets. Since $F_1 \cap F_2 = \emptyset$, hence $F_2 \subseteq F_1^c$. Set $g = \chi_{F_2}$ and $f = \chi_{F_1^c}$. Then f is $\operatorname{cls} B - .5$ and g is $\operatorname{cus} B - .5$ and furthermore $g \leq f$. By hypothesis, there exists a Baire-.5 function h on X such that $g \leq h \leq f$ and whenever g(x) < f(x) we have g(x) < h(x) < f(x). By definitions of f and g, we have $h^{-1}(1) = F_2 \cap F_1^c = F_2$ and $h^{-1}(0) = F_1 \cap F_2^c = F_1$.

Remark 4 ([2]). A space X has the strong *c*-insertion property for (lsc, usc) if and only if each open subset of X is closed.

Corollary 3.4. Every G_{δ} -set is a F_{σ} -set if and only if X has the strong B – .5–insertion property for (clsB – .5, cusB – .5).

Proof. By hypothesis, for every G of G_{δ} -set, we have $F_{\sigma}(G) = G$ is a G_{δ} -set. Hence by Corollary 3.2, X has the weak B – .5-insertion property for (clsB – .5, cusB – .5). Now, assume that g and f are functions on X such that $g \leq f, g$ is clsB – .5 and f is B – .5. Set $A(f - g, 2^{-n}) = \{x \in X : (f - g)(x) < 2^{-n}\}$. Then, since f - g is cusB-.5, we can say that $A(f - g, 2^{-n})$ is a G_{δ} -set. By hypothesis, $A(f - g, 2^{-n})$ is a F_{σ} -set. Set $G_n = X \setminus A(f - g, 2^{-n})$. Then G_n is a G_{δ} -set. This means that G_n and $A(f - g, 2^{-n})$ are disjoint G_{δ} -sets and also are two disjoint F_{σ} -set. Therefore G_n and $A(f - g, 2^{-n})$ can be completely separated by Baire-.5 functions. Now, we have $\bigcup_{n=1}^{\infty} G_n = \{x \in X :$ $(f - g)(x) > 0\}$. By Theorem 2.2, X has the strong B - .5-insertion property for (clsB - .5, B - .5). By an analogous argument, we can prove that X has the strong B - .5-insertion property for (B - .5, cus B - .5). Hence, by Theorem 2.3, X has the strong B - .5-insertion property for (clsB - .5, cus B - .5).

On the other hand, suppose that X has the strong B - .5-insertion property for $(\operatorname{cls} B - .5, \operatorname{cus} B - .5)$. Also, suppose that G is a G_{δ} -set. Set f = 1 and $g = \chi_G$. Then f is $\operatorname{cus} B - .5$, g is $\operatorname{cls} B - .5$ and $g \leq f$. By hypothesis, there exists a Baire-.5 function h on X such that $g \leq h \leq f$ and whenever g(x) < f(x), we have g(x) < h(x) < f(x). It is clear that $h(G) = \{1\}$ and for $x \in X \setminus G$ we have 0 < h(x) < 1. Since h is a Baire-.5 function, therefore $\{x \in X : h(x) \geq 1\} = G$ is a F_{σ} -set, i.e., G is a F_{σ} -set.

Acknowledgement

This research was partially supported by Centre of Excellence for Mathematics (University of Isfahan).

References

- A. Al-Omari and M. S. Md Noorani, Some properties of contra-b-continuous and almost contra-b-continuous functions, European Journal of Pure and Applied Mathematics 2(2) (2009), 213-230.
- [2] J. Blatter and G. L. Seever, Interposition of Semicontinuous Functions by Continuous Functions, Analyse Fonctionelle et Applications (Comptes Rendus Colloque d'Analyse, Rio de Janeiro 1972), Hermann, Paris (1975), 27-51.

129

[3] F. Brooks, Indefinite cut sets for real functions, American Mathematical Monthly 78(9) (1971), 1007-1010.

DOI: https://doi.org/10.2307/2317815

- [4] M. Caldas and S. Jafari, Some properties of contra-β-continuous functions, Memoirs of the Faculty of Science: Kochi University 22 (2001), 19-28.
- [5] J. Dontchev, Characterization of some peculiar topological space via α and β -sets, Acta Mathematica Hungarica 69(1-2) (1995), 67-71.

DOI: https://doi.org/10.1007/BF01874608

[6] J. Dontchev, Contra-continuous functions and strongly S-closed spaces, International Journal of Mathematics and Mathematical Sciences 19(2) (1996), 303-310.

DOI: http://dx.doi.org/10.1155/S0161171296000427

- [7] J. Dontchev and H. Maki, On sg-closed sets and semi-λ-closed sets, Questions Answers General Topology 15(2) (1997), 259-266.
- [8] E. Ekici, On contra-continuity, Annales Universitatis Scientiarum Budapestinensis 47 (2004), 127-137.
- [9] E. Ekici, New forms of contra-continuity, Carpathian Journal of Mathematics 24(1) (2008), 37-45.
- [10] A. I. El-Magbrabi, Some properties of contra-continuous mappings, Int. J. General Topol. 3(1-2) (2010), 55-64.
- [11] M. Ganster and I. Reilly, A decomposition of continuity, Acta Mathematica Hungarica 56(3-4) (1990), 299-301.

DOI: https://doi.org/10.1007/BF01903846

- [12] S. Jafari and T. Noiri, Contra-continuous functions between topological spaces, Iranian International Journal of Science 2(2) (2001), 153-168.
- [13] S. Jafari and T. Noiri, On contra-precontinuous functions, Bulletin of the Malaysian Mathematical Sciences Society 25(2) (2002), 115-128.
- [14] M. Katětov, On real-valued functions in topological spaces, Fundamenta Mathematicae 38 (1951), 85-91.

DOI: https://doi.org/10.4064/fm-38-1-85-91

[15] M. Katětov, Correction to: On real-valued functions in topological spaces, Fundamenta Mathematicae 40 (1953), 203-205.

DOI: https://doi.org/10.4064/fm-40-1-203-205

[16] E. P. Lane, Insertion of a continuous function, Pacific Journal of Mathematics 66(1) (1976), 181-190.

DOI: https://doi.org/10.2140/pjm.1976.66.181

MAJID MIRMIRAN

[17] E. P. Lane, PM-normality and the insertion of a continuous function, Pacific Journal of Mathematics 82(1) (1979), 155-162.

DOI: https://doi.org/10.2140/pjm.1979.82.155

- [18] H. Maki, Generalized Λ-Sets and the Associated Closure Operator, The Special Issue in Commemoration of Prof. Kazusada IKEDA's Retirement (1986), 139-146.
- [19] S. N. Maheshwari and R. Prasad, on R_{Os}-spaces, Portugaliae Mathematica 34(4) (1975), 213-217.
- [20] E. Michael, Continuous selections: I, Annals of Mathematics 63(2) (1956), 361-382.

DOI: https://doi.org/10.2307/1969615

- [21] M. Mrsevic, On pairwise R_0 and pairwise R_1 bitopological spaces, Bulletin mathématique de la Société des Sciences Mathématiques de la République Socialiste de Roumanie 30(2) (1986), 141-148.
- [22] A. A. Nasef, Some properties of contra-γ-continuous functions, Chaos Solitons Fractals 24(2) (2005), 471-477.

DOI: https://doi.org/10.1016/j.chaos.2003.10.033

[23] M. Powderly, On insertion of a continuous function, Proceedings of the American Mathematical Society 81(1) (1981), 119-120.

DOI: https://doi.org/10.1090/S0002-9939-1981-0589151-7

[24] M. Przemski, A decomposition of continuity and α-continuity, Acta Mathematica Hungarica 61(1-2) (1993), 93-98.

DOI: https://doi.org/10.1007/BF01872101

[25] H. Rosen, Darboux Baire-.5 functions, Proceedings of the American Mathematical Society 110(1) (1990), 285-286.

DOI: https://doi.org/10.1090/S0002-9939-1990-1017851-9

[26] M. H. Stone, Boundedness properties in function-lattices, Canadian Journal of Mathematics 1(2) (1949), 176-186.

DOI: https://doi.org/10.4153/CJM-1949-016-5

130