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Abstract

In this paper, we study the kernel estimate of the density function of linear
processes with y-weakly dependent innovations. The asymptotic normality is
shown under general conditions and some conditions on the decay of the weak
dependence coefficients. Some numerical results based on simulations are also
presented and discussed.
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1. Introduction

Let X, Xg, ..., be an identically distributed sequence of a linear
process X; = Z:):OarZi,r, i 21, where {Z,},_, is a strictly stationary

sequence of p-weakly dependent random variables with mean zero and

finite variance, and {a, }r <IN 18 a sequence of real numbers.

Doukhan and Louhichi [4] have introduced the concept of p-weakly

dependence which generalizes the notions of mixing and association. A

sequence of random variables (Z;),_, with values in IR is called
p-weakly dependent if there exists a sequence (0,),.p decreasing to
zero at infinity such that, for any k-tuple(s;, ..., s;) and any [-tuple
(¢, ..., 87) with s; <...< s, <s, +r =1 <...<¢ and for any bounded
Lipschitz functions g : R¥ > R and A: R' > R with |jg|,_ <1 and

|A],, <1, one has

|COV(g(Z31, ey Zsk )7 h(Zt17 ey Ztl ))| < w(k7 l7 Llp(g)7 Llp(h))er

Here Lip(g) denotes the Lipschitz modulus of g, that is,

k
, g(x) - g(y) k
L1p(g):sup| , Xl = x for x = (x1, ..., x;,) € R",
R, 2 b

and p : IN? x ]R% — IR, is an appropriate function.

In order to consider a large families of dependent random variables
including associated, mixing, Gaussian and Markov processes (we refer to

Doukhan and Louhichi [4] for more examples), we will suppose that
¥(u, v, Lip(f), Lip(g)) < cu v max(Lip(f)Lip(g), Lip(f), Lip(g), 1),

where c is a positive constant. Notice that if (Z;),_, is a sequence of
associated or Gaussian random variables, then (Z;),_, is y-weakly

dependent with
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0, = sup Z |Cov(Z;, Z;)| and p(u, v, Lip(f), Lip(g)) = min(z, v)

t Jii=jp>r

x Lip(f)Lip(g).

If the sequence (Zi)ieZ 1s o strongly mixing, then it is p-weakly

dependent with
0, =a, and ¥, v, Lip(f), Lip(g)) = 4/].,]el..-

The strong mixing coefficients, (o, ),y of (Z;),., are defined by

o, = sup sup |COV(1A’ lB)l’
keZ (A, B)e ApxBj 4 p

where
Ak = G(Zi, i < k) and Bk = G(Zi, P> k)
1,4 denotes the indicator function of the event A.

Assume that X; has a probability density f and, for any 1 < i, j < n,
(X;, X;) has a probability density f; ;. Further, let {h,},., be a
sequence of positive constants such that, as n — o, h, > 0 and

nh, — o. The classical kernel estimator of fis defined as

n
_ 1 x-X;
£(x) = nhn;K[ = ) v e R,

where the kernel K is a bounded function with compact support such that

J'IR K(u)du = 1.

In this paper, we present the asymptotic normality of the kernel
density estimators. The asymptotic normality depends on both the

coefficients of linear processes and the behaviour of (8, ), . For linear

processes with independent innovations, Chanda [2] and Hallin and Tran
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[6] have obtained the asymptotic normality of f,(x) under some
conditions on {a,} and {h,}. The asymptotic normality of the kernel

density estimators was studied by Lu [11] for linear processes with
o -mixing innovations. Several authors considered the asymptotic
properties of kernel density estimators for linear processes with short
memory or long memory by using the martingale approach initiated by
Ho et al. [8]. We cite, for example, Honda [9], Mielniczuk and Wu [14]
and Schick and Wefelmeyer [12]. Mielniczuk and Wu [14] improved

Hallin and Tran’s results by imposing Zjo: Olail < o and only the natural

conditions on {h,}. For other works on density estimation for linear

processes, we can refer to Honda [10], Wu et al. [15] and Hamdad et al.
[7]. It should be pointed that our result is obtained under the same
general conditions on the density function f and the kernel K, and the

coefficients {a,} as in Hallin and Tran [6] and Lu [11]. Some additional

conditions on the bandwidth and the dependence coefficients are

assumed.
2. Notation, Assumptions and Main Result

Divide the set {l,...,n} into k large p-blocks, I;, and small

g-blocks, J;, j=1,..., k, as follows:
I ={-D+g)+1 ..., -1)(p+q)+p},

Ji={i-Dp+a)+p+1, ..., jlp+9),

where p = p,, ¢ = q,, are positive integers tending to « as n — o« and
k =k, 1is defined by k = [n/(p + q)], where [x] stands for the integral
part of x. We suppose that

k k
9 5,0 and £ 51 asn-o
n n
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Define

S
Xi=) aZi,, iz1,
r=0

where s = s, < g is a positive integer tending to « as n — o.

Consider the kernel estimator g,,(x) defined by

n ~
— 1 X _Xi
gn(X) = m i_El K{ hn J, x € R.

For x € R, set

s g () =5

and

Sy = iy (80 (x) ~ E 82(x) = > Zyi().
=1

For j =1, ...,k let nj, &; and ;. be defined as follows:

n

= ) Zn®), &= D Zul®), = ) Zyl),

iEIj LEJJ i:k(p+q)+l

so that
k k
Snzznj+ §j+C, =T, +T, +T,.
j=1 Jj=1

In order to formulate our main result, we now list some assumptions.
Denote by C (different) constants whose values are allowed to change.

Through this paper we consider that all limits are taken as n — .
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Assumptions

(Al) Forall x, y € R,
sup|f; j(x, ¥) - fx)f(y)| < C.
i#]

(A2) The kernel K satisfies a Lipschitz condition of order 1, that is, for
all x, y e R,

[K(x) - K(y)] < Clx - 3.

(A3) The sequence {a,}._ satisfies the condition |a,| = O(r™*), for

some a > 4.

(Ad) 0, = O(k™), for some b > 2 + a-2 (a+2

3
2a-1)\a-3 +§+3(a‘1)j-
(A5) ’Lhr(zmz)/(a%)(log n)_6 — oo, for some & > 0.

(A6) (log n)@=3/4p20-2)/(@-2)-3](a-1)-3/2 _,

Notice that if x is a Lebesgue point of f and (x, x) is a Lebesgue point

of all functions f ,,, v > 2, by applying Theorem 3 in Chapter 2 of

Devroye and Gyorfi [3], the condition (Al) can be replaced by the

condition supv22|]‘1,U (x, x)| < C. The condition (A2) is a mild condition on

the kernel K. The conditions (A5) and (A6) hold if the values of @ and b
are big enough.

Theorem 1. Assume that assumptions (Al)-(A6) hold. Then, for all
Lebesgue points x of f such that f(x) > 0,

iy (£ (5) = B £, ) V0, %),

where

o2(x) = f(x) j . K2(u)du,

1

d . . .
‘*—” denotes convergence in distribution.
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We introduce the following lemmas which we need in the proof of the

theorem. The first lemma shows that, for all x € R, f,(x) and g, (x)

have the same asymptotic distribution.

Lemma 1. Assume that assumptions (A2) and (A3) hold. Then, for

any ¢ >0 and forall x € R,

Pk, |f,(x) - g,(x)| > €] - 0.

Proof. Using (A2), we get

Sy lfa() - g0 < (nhy) 2
=1

x—Xi x—)?i
K% jK[m ]

< Cn_1/2h53/2zn:|Xi - }?l|
i=1

Then
n _ 1/2,3/2
PW%WM—&@W%FPII&—&Pn 58]
=1
2 < B3
< P||X: - n
|l - % - 22

" 2
< Cnh;3s_2iE( Z a,Zi_,J
r

i=1

© 2
< Cn?h,3c2EZ} [ Z |ar|J .

r=s+1
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Choose s = [(log n)s(a_?’)/2n2h;3]1/2(a_1). Thus, by (A3),

P |\Jnh, |f,(x) — gn(x)| > s] < Cn2h53872372(071) = O((log n)_s(a_?’)/2 )
O

Lemma 2. Assume that assumptions (Al)-(A2) hold. Then, for all
v>2andforall x e R,

%) (x-R.
Proof. For all v > 2, by (A1),

gloor (<5 105

n?

< c[h,% +hl—n > |a,,|]. 1)

r=s+1

= URZK(LL)K(w) [fLU(x - hyu, x = hyw) = f(x = hyu)f(x - hnw)dwa]‘

<C.

By (A2), for all v > 2,

- X x—-X x-X x - X
Cov (K(x 1), K( v D _Cov| K Ll K v

n

< % [Ex, - %+ E|x, - %]

I}

IA

o0
:E: |arL
r=s+1

>

n
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(e )

Lemma 3. Assume that assumptions (Al)-(A6) hold. Then, for all

x e R,
1 < x—)?l x-X,
— ) |Cov| K , K| < (|| - 0. (2)
i 2o [E5 ) {5 )

Proof. For 2 < v < 2s, define

Then

<C

2. 1 N
hn+EZ|ar|}. O

r=s+1

Observe that

o[ 50 )
o[- (5 |
oo [i{=58) =55 ”

Using (A2) and the boundedness of K, we obtain

el )

C *
<o HX - X
C 0
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For n large enough such that h, <1, by the p» weak dependence of

(Zt)teZ’
x —)?1 x - X,
collm o

Now, for v > 2s,

ol )

Let m = m(n) = [hY7'] with 6 is an arbitrary number such that

1 a+2 3
_2 <1-0 <m(m+§). By (A5), we have, for n

=)

<C Zg v—[v/2]-1- (6

n

82
<Cg 0 6)

n

0<06<1 and

large enough, m < s. Then

ol o

0

2,

S 58 52§ o558
5 ol )

Using (A3) and (A4), by (1), (3), (4), (5), and (6), we get, for n large
enough,

e A5

noy=2

< C{h,? 4 B30 i la |+ omy?| i i la,| + skt i ue,u[,u/z]l]]

r=s+1 v=m+lr=[v/2]+1 v=m+1

|

o0
+Chy%s Y 0,

v=2s+1
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< C (R + hy®*057@ D) 4 2y (@-2) gy Bgpybe2 | o Bobed)
< C(hg + (nhr?z/.?—e)’l N h;2+(1—9)(a—2)

N ((log n)é(a—S)/4nhr[l(1e)(b2)3](a1)3/2)1/(a—1)j‘
Then, by (A5) and (A6),

X—Xl x—}N(U
ol 5525, {255 0

This completes the proof of (2).

3

=2

Lemma 4. Assume that assumptions (Al)-(A6) hold. Then, for all
Lebesgue points x of f,

nh,Varg,(x) > o2(x).
Proof. We will show that
E(T,) - o), )
and
E(T,)? + E(T})? - 0. (8)

First, consider (7). By using the strict stationarity of the sequence

{Z,},.,, we have

E(Tn)2 =kVar(n;)+ 2 Z Cov(n;, n;).

1<i<j<k
Let us establish that
kVar(n;) - o2(x), )
and
Z Cov(n;, nj) - 0. (10)

1<i<j<k
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By the strict stationarity of the sequence {Z,},_,, we get

_x _% -X.
kVar(n;) = %Varl{x hX1J+ nz}f Z Cov{K[x hX’], K[x - ]D
n n

" 1<i<j<p n n

By Theorem 3 in Chapter 2 of Devroye and Gyorfi [3], for all Lebesgue

points x of f,

% Var K(x ;lnle N f(x)jR K2 (u)du. 11)

By stationarity and (2), we obtain

_X - X,
> on{d255) {552
1<i<j<p n n

Cov (K(x ;Lle K{x ;LX“ m 0. (12)

On the other hand, by (A2) and (A5),

x—X1 x—)?l
VarK[ h } VarK[ h, J

k
nh,

0

S 2

ny=2

1
P

4|K]|,, x - X x-X;
< _
< EK[th i

C
< -7 Z la,| - o. (13)

The proof of (9) is completed by (11), (12), and (13).
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Now, we will establish (10). Using stationarity and (6), we get

k-1

D [Cov(ni, mj)| < kY |Coving, nps )|
=1

1<i<j<k

k-1 l(p+q)+p-1
<pk

_nhnl

ol o5

=1 r=l(p+q)-p+1 hn P
x—)?l x—)?r

ol o5

2 o0
pks
<C s Z 0, .. (14)

n r=q+l

< Dk
nh,

r=q+1

Then, by (A4) and (A6), and by choosing g = 2s, we obtain

Z |Cov (m;, m;)| > 0. (15)

1<i<j<k

Now we turn to (8). Observe that

E(T,)? < kVar (&) + 2 Z Cov (&, &;)|.

1<i<j<k
Once again, by stationarity,

_% _x -X,
kVar(g;) = %VarK[xh—le + nzhk Z Cov [K[x thj’ K{x - / ]]
n

n " 1<i<j<q

By (2), (11), and (13), it follows that

k Var (£,) — 0.
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Then, by the same arguments in (14) and (15), we obtain, for n large

enough,
qks
Z |COV(§“§J)|SC 3 Zer S
1<i<j<k n r=p
coth S
- 3 r—s
n r=q
Therefore

E(T,)? - 0.

Now, by stationarity,

N2 . P+q x-Xp ], 2
E(T)" < e Var K W i

X — )?i X - }N(j
COV[K[ 7, J, K( h D‘
By (2), (11), and (13), we get E(T, )2 — 0, which completes the proof of
(8).

" 1<i<j<p+q

Proof of Theorem 1. To finish the proof of the theorem, we will
establish the asymptotic normality of g, (x). By (8), it suffices to show

that
7, % N0, o%() (16)

The proof of convergence in (16) consists in using Theorem 7.2 of

Billingsley [1], (9) and showing the following two results:

itzk ) k )
E( f=1“f] ) -
j=1

0, Vie R, am

and

kLE (T]%Jl{m>8m}) — 0, Ve > 0. (18)
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Let us begin by establishing (18). Since |n;| < Cp / y/nh,,, it follows that

k p*
kE (n%l{npg ’7kVar(n1)}) <C T P(nl > gk Var(nl))

n

2
<C
2 nh

n

Choose p = [(log n)_s(a_3)/4(a_1)(nhn )1/2]. Then, we get

k E(nfl{mx\/W}) -0

Now, let us establish (17).
E[eitzl;ﬂ le] [ ”Zj -1 "j ] ltl’]k )

Ele j=1]]— E(e f)s
j=1
k-1
{ ztz] 1“]] E(eitnj)
j=1

k-1
iy . on; :
= Cov[e 2ja !, em"f] +

+

By a repetition of this argument, inequality (19) becomes

ok k k-1 R
i) . .mj in wy . o mj : wy . - mj :
E[e 2ja ]]—l IE(e 11]) < Cov[e 2ja ! em“f] + Cov[e 2js ’ em“f‘lj
Jj=1

+oe ‘Cov (emu, e'tm )‘

Thus, by the same arguments as in (14) and (15), we obtain

.k k
iy mj it ; pks?t?
E(e f“]—”E(e‘”J) C——— e > 0,5 > 0. m
j=1

r>q+1
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3. Simulations
Let (U;) be the AR(1) process defined by
Uy =aU; +g, t=21,

where (g;) is an identically independent sequence of centered random
variables with distribution AN(0,1) and |af <1.(U;) is a Gaussian

process, so it is p-weakly dependent. Now let

X, =bX;_ 1 +U;_;, t20,

where |b| < 1. The variables X; may be expressed in the following form:
X; = Z;O:lbj U;_j. To illustrate our result, we simulate the AR(1)

process (X;) and compute the kernel density estimator f, (x) for some

value x. Then we compare the density, F, (x), of
Z (%) = by (£ (%) = E f(x)) / 0, (x),  on(x) = Efn(x)jRK2(u)du,

with the density of N(0, 1).

We consider a = 0.8, b = 0.5 and x =1, and two values of n, 100

and 500. We choose h, = 2.5n"1/5 which seems optimal and verifies
assumptions (A5) and (A6) (since the sequences (a,) and (0;) decrease
geometrically to 0). The graphs below show that the distribution of Z,(x)

1s Gaussian when n is big enough.
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n=100
— Fnix)
= o -- densityofND.1
o |
(=]
*
= o
£ o 7
- ]
o
Qo
o
1 ] 1 1 I
-2 1] 2 4 6
x
n=500

Fnix)
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4. Conclusion

In this paper, we established the asymptotic normality of the kernel

density estimate for linear process with p-weakly dependent processes.

The linear processes with weakly dependent innovations are of great

importance in econometrics. We cite for example The ARMA process with
ARCH errors discussed in Weiss [13] and Engle [5].

Our method of proof is based on Bernstein’s block technique. For this

reason we have supposed some conditions on the bandwidth A,. For

further work, we will check whether other methods allow to suppose

weaker conditions on the bandwidth.
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