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Abstract 

In this paper, we study the kernel estimate of the density function of linear 
processes with weakly-υ/  dependent innovations. The asymptotic normality is 
shown under general conditions and some conditions on the decay of the weak 
dependence coefficients. Some numerical results based on simulations are also 
presented and discussed. 
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1. Introduction 

Let ,,, 21 …XX  be an identically distributed sequence of a linear 

process ,1,0 ≥= −
∞
=∑ iZaX rirri  where { } Z∈ttZ  is a strictly stationary 

sequence of weakly-υ/  dependent random variables with mean zero and 

finite variance, and { } NI∈rra  is a sequence of real numbers. 

Doukhan and Louhichi [4] have introduced the concept of weakly-υ/  

dependence which generalizes the notions of mixing and association. A 
sequence of random variables ( ) Z∈iiZ  with values in RI  is called 

weakly-υ/  dependent if there exists a sequence ( ) NI∈θ rr  decreasing to 

zero at infinity such that, for any ( )kk ss ,,tuple- 1 …  and any l-tuple 

( )ltt ,,1 …  with lttrsss ≤≤=+<≤≤ …… 11 kk  and for any bounded 

Lipschitz functions RIRI: →kg  and RIRI: →lh  with 1g ≤∞  and 

,1≤∞h  one has 

( ) ( )( ) ( ) ( )( ) .Lip,Lip,,,,,,,Cov 11 rttss hglZZhZZg l θ/≤ k
k

υ……  

Here Lip(g) denotes the Lipschitz modulus of g, that is, 

( ) ( ) ( ) ( ) ,RI,,for,supLip 1
1

1
1

k
k

k
∈==

−
−

= ∑
=≠

xxxxxyx
ygxgg s

syx
…  

and ++ →×/ RIRINI: 22υ  is an appropriate function. 

In order to consider a large families of dependent random variables 
including associated, mixing, Gaussian and Markov processes (we refer to 
Doukhan and Louhichi [4] for more examples), we will suppose that 

( ) ( )( ) ( ) ( ) ( ) ( )( ),1,Lip,Lip,LipLipmaxLip,Lip,, gfgfucgfu υυυ ≤/  

where c is a positive constant. Notice that if ( ) Z∈iiZ  is a sequence of 

associated or Gaussian random variables, then ( ) Z∈iiZ  is weakly-υ/  

dependent with 
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( ) ( ) ( )( ) ( )υυυ ,minLip,Lip,,and,Covsup
:

ugfuZZ ji
rjiji

r =/=θ ∑
>−

 

( ) ( ).LipLip gf×  

If the sequence ( ) Z∈iiZ  is α  strongly mixing, then it is  weakly-υ/  

dependent with 

( ) ( )( ) .4Lip,Lip,,and ∞∞=/α=θ gfgfurr υυ  

The strong mixing coefficients, ( ) ,NI∈α rr  of ( ) Z∈iiZ  are defined by 

( )
( ) ,,Covsupsup

,
BA

BA
r

r
11

+×∈∈
=α

kkk BAZ
 

where 

( ) ( ).,and, kk kk ≥σ=≤σ= iZiZ ii BA  

A1  denotes the indicator function of the event A. 

Assume that 1X  has a probability density f and, for any ,,1 nji ≤≤  

( )ji XX ,  has a probability density ., jif  Further, let { } 0≥nnh  be a 

sequence of positive constants such that, as 0, →∞→ nhn  and 

.∞→nnh  The classical kernel estimator of f is defined as 

( ) ,RI,1:
1

∈





 −

= ∑
=

xh
XxKnhxf

n
i

n

in
n  

where the kernel K is a bounded function with compact support such that 

( ) .1
RI

=∫ duuK  

In this paper, we present the asymptotic normality of the kernel 
density estimators. The asymptotic normality depends on both the 
coefficients of linear processes and the behaviour of ( ) .NI∈θ rr  For linear 

processes with independent innovations, Chanda [2] and Hallin and Tran 
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[6] have obtained the asymptotic normality of ( )xfn  under some 

conditions on { }na  and { }.nh  The asymptotic normality of the kernel 

density estimators was studied by Lu [11] for linear processes with        
α -mixing innovations. Several authors considered the asymptotic 
properties of kernel density estimators for linear processes with short 
memory or long memory by using the martingale approach initiated by 
Ho et al. [8]. We cite, for example, Honda [9], Mielniczuk and Wu [14] 
and Schick and Wefelmeyer [12]. Mielniczuk and Wu [14] improved 

Hallin and Tran’s results by imposing ∞<∑∞
= ii a0  and only the natural 

conditions on { }.nh  For other works on density estimation for linear 

processes, we can refer to Honda [10], Wu et al. [15] and Hamdad et al. 
[7]. It should be pointed that our result is obtained under the same 
general conditions on the density function f and the kernel K, and the 
coefficients { }na  as in Hallin and Tran [6] and Lu [11]. Some additional 

conditions on the bandwidth and the dependence coefficients are 
assumed. 

2. Notation, Assumptions and Main Result 

Divide the set { }n,,1 …  into k  large p-blocks, ,jI  and small              

q-blocks, ,,,1, k…=jJ j  as follows: 

( ) ( ) ( ) ( ){ },1,,11 pqpjqpjI j ++−++−= …  

( ) ( ) ( ){ },,,11 qpjpqpjJ j ++++−= …  

where nn qqpp == ,  are positive integers tending to ∞  as ∞→n  and 

nkk =  is defined by ( )[ ],qpn +=k  where [x] stands for the integral 

part of x. We suppose that 

.as1and0 ∞→→→ nn
p

n
q kk
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Define 

,1,:~

0
≥= −

=
∑ iZaX rir

s

r
i  

where qss n <=  is a positive integer tending to ∞  as .∞→n  

Consider the kernel estimator ( )xgn  defined by 

( ) .RI,
~1:

1
∈







 −
= ∑

=

xh
XxKnhxg

n
i

n

in
n  

For ,RI∈x  set 

( ) ,
~~1: 















 −
−







 −
=

n
i

n
i

n
ni h

XxEKh
XxK

nh
xZ  

and 

( ) ( )( ) ( ).:
1

xZxgExgnhS ni

n

i
nnnn ∑

=

=−=  

For ,,,1 k…=j  let jj ξη ,  and kζ  be defined as follows: 

( ) ( )
( )

( ),:,:,:
1

xZxZxZ ni

n

qpi
ni

Ji
jni

Ii
j

jj
∑∑∑

++=∈∈

=ζ=ξ=η
k

k  

so that 

.:
11

nnnj
j

j
j

n TTTS ′′+′+=ζ+ξ+η= ∑∑
==

k

kk
 

In order to formulate our main result, we now list some assumptions. 
Denote by C (different) constants whose values are allowed to change. 
Through this paper we consider that all limits are taken as .∞→n  
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Assumptions 

(A1) For all ,RI, ∈yx  

( ) ( ) ( ) .,sup , Cyfxfyxf ji
ji

<−
≠

 

(A2) The kernel K satisfies a Lipschitz condition of order 1, that is, for 
all ,RI, ∈yx  

( ) ( ) .xK yxCyK −≤−  

(A3) The sequence { } NI∈rra  satisfies the condition ( ),a
r ra −= O  for 

some .4>a  

(A4) ( ),b−=θ kk O  for some ( ) ( ) .132
3

3
2

12
22 





 −++

−
+

−
−+> aa

a
a

ab  

(A5) ( ) ( )( ) ,log32 ∞→δ−−+ nnh aa
n  for some .0>δ  

(A6) ( ) ( ) ( ) ( )[ ] ( ) .0log 231322243 →−−−−−−δ aab
n

a nhn  

Notice that if x is a Lebesgue point of f and ( )xx,  is a Lebesgue point 
of all functions ,2,,1 ≥υυf  by applying Theorem 3 in Chapter 2 of 

Devroye and Györfi [3], the condition (A1) can be replaced by the 
condition ( ) .,sup ,12 Cxxf <≥ υυ  The condition (A2) is a mild condition on 

the kernel K. The conditions (A5) and (A6) hold if the values of a and b 
are big enough. 

Theorem 1. Assume that assumptions (A1)-(A6) hold. Then, for all 
Lebesgue points x of f such that ( ) ,0>xf  

( ) ( )( ) ( )( ),,0 2 xxfExfnh d
nnn σ→− N  

where 

( ) ( ) ( ) ,2
RI

2 duuKxfx ∫=σ  

”d→“  denotes convergence in distribution. 
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We introduce the following lemmas which we need in the proof of the 
theorem. The first lemma shows that, for all ( )xfx n,RI∈  and ( )xgn  

have the same asymptotic distribution. 

Lemma 1. Assume that assumptions (A2) and (A3) hold. Then, for 
any 0>ε  and for all ,RI∈x  

( ) ( )[ ] .0→ε>− xgxfnhP nnn  

Proof. Using (A2), we get 

( ) ( ) ( ) 






 −
−






 −

≤− ∑
=

−

n
i

n
i

n

i
nnnn h

XxKh
XxKnhxgxfnh

~

1

21  

.~

1

2321
ii

n

i
n XXhCn −≤ ∑

=

−−  

Then 

( ) ( )[ ]










 ε
>−≤ε>− ∑

=
C
hnXXPxgxfnhP n

ii

n

i
nnn

2321

1

~  











 ε
>−≤ ∑

=
21

23

1

~
Cn
hXXP n

ii

n

i
 

2

1

23 ~
ii

n

i
n XXEnhC −ε≤ ∑

=

−−  

2

11

23













ε≤ −

∞

+==

−− ∑∑ rir
sr

n

i
n ZaEnhC  

.
2

1

2
1

232













ε≤ ∑

∞

+=

−−
r

sr
n aEZhnC  
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Choose ( ) ( )[ ] ( )
.log

1213223 −−−δ=
a

n
a hnns  Thus, by (A3), 

( ) ( )[ ] ( ) ( ) ( )( ).log 2312232 −δ−−−−− =ε≤ε>− aa
nnnn nshnCxgxfnhP O  

 

Lemma 2. Assume that assumptions (A1)-(A2) hold. Then, for all 
2≥υ  and for all ,RI∈x  

.1~
,

~
Cov

1

21











+≤















 −







 − ∑
∞

+=
r

srn
n

nn
ahhCh

XxKh
XxK υ  (1) 

Proof. For all ,2≥υ  by (A1), 















 −







 −

nnn h
XxKh

XxK
h

υ,Cov1 1
2  

( ) ( ) ( ) ( ) ( )[ ]dudwwhxfuhxfwhxuhxfwKuK nnnn −−−−−= ∫ ,,1
RI 2 υ  

.C≤  

By (A2), for all ,2≥υ  
















 −







 −
−














 −







 −

nnnn h
XxKh

XxKh
XxKh

XxK υυ
~

,
~

Cov,Cov 11  
















 −
−






 −

+






 −
−






 −

≤ ∞ nnnn h
XxKh

XxKEh
XxKh

XxKEK υυ
~~

2 11  

[ ]υυ XXEXXEh
C
n

~~
11 −+−≤  

.
1

r
srn

ah
C ∑

∞

+=

≤  
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Then 

.1~
,

~
Cov

1

21











+≤















 −







 − ∑
∞

+=
r

srn
n

nn
ahhCh

XxKh
XxK υ   

Lemma 3. Assume that assumptions (A1)-(A6) hold. Then, for all 
,RI∈x  

.0
~

,
~

Cov1 1

2
→















 −







 −∑
∞

= nnn h
XxKh

XxKh
υ

υ
 (2) 

Proof. For ,22 s≤≤ υ  define 

[ ]
.:

2

0
rr

r
ZaX −

=

∗ ∑= υ

υ

υ  

Observe that 
















 −







 −

nn h
XxKh

XxK υ
~

,
~

Cov 1  































 −
−







 −















 −
−







 −
=

∗

nnnn h
XxKh

XxKh
XxEKh

XxKE υυ
~~~

11  

.,
~

Cov 1



















 −







 −
+

∗

nn h
XxKh

XxK υ  (3) 

Using (A2) and the boundedness of K, we obtain 































 −
−







 −















 −
−







 − ∗

nnnn h
XxKh

XxKh
XxEKh

XxKE υυ
~~~

11  

∗−≤ υυ XXEh
C
n

~  

[ ]
.

12
r

rn
ah

C ∑
∞

+=

≤
υ

 (4) 
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For n large enough such that ,1≤nh  by the υ/  weak dependence of 

( ) ,Z∈ttZ  

[ ] .,
~

Cov 122
1

−−

∗
θ≤



















 −







 −
υυ

υ υ

nnn h
sCh

XxKh
XxK  (5) 

Now, for ,2s≥υ  

.
~

,
~

Cov 12

2
1

−−θ≤














 −







 −
s

nnn h
sCh

XxKh
XxK υ

υ  (6) 

Let ( ) [ ]1−θ== nhnmm  with θ  is an arbitrary number such that 

10 <θ<  and .2
3

3
2

1
112

2





 +

−
+

−
<θ−<

− a
a

aa  By (A5), we have, for n 

large enough, .sm <  Then 
















 −







 −∑
∞

= nn h
XxKh

XxK υ

υ

~
,

~
Cov 1

2
 
















 −







 −
+















 −







 −
= ∑∑

+== nn

s

mnn

m

h
XxKh

XxKh
XxKh

XxK υ

υ

υ

υ

~
,

~
Cov

~
,

~
Cov 1

2

1

1

2
 

.
~

,
~

Cov 1

12















 −







 −
+ ∑

∞

+= nns
h

XxKh
XxK υ

υ
 

Using (A3) and (A4), by (1), (3), (4), (5), and (6), we get, for n large 
enough, 
















 −







 −∑
∞

= nnn h
XxKh

XxKh
υ

υ

~
,

~
Cov1 1

2
 

] [
[ ]

[ ]


















θ+++≤ −−

+=

−
∞

+=+=

−
∞

+=

θ+−θ ∑∑∑∑ 12

2

1

1

12

2

1

2

1

3
υυ

υυυ
υ

s

m
nr

r

s

m
nr

sr
nn shaChahhC  

1
12

23
−−

∞

+=

− θ+ ∑ s
s

n sCh υ
υ
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( ) ( )( )33232213 +−−+−−−−−−−θ+−θ ++++≤ b
n

b
n

a
n

a
nn shsmhmhshhC  

( ) ( ) ( )


 ++≤ −θ−+−−θ−θ 212123 a

nnn hnhhC  

( ) ( ) ( ) ( )[ ] ( )( ) ( )
.log

1123132143 

+

−−−−−θ−−δ aab
n

a nhn  

Then, by (A5) and (A6), 

.0
~

,
~

Cov1 1

2
→















 −







 −∑
∞

= nnn h
XxKh

XxKh
υ

υ
 

This completes the proof of (2). 

Lemma 4. Assume that assumptions (A1)-(A6) hold. Then, for all 
Lebesgue points x of f, 

( ) ( ).Var 2 xxgnh nn σ→  

Proof. We will show that 

( ) ( ),22 xTE n σ→   (7) 

and 

( ) ( ) .022 →′′+′ nn TETE  (8) 

First, consider (7). By using the strict stationarity of the sequence 
{ } ,Z∈ttZ  we have 

( ) ( ) ( ).,Cov2Var
1

1
2

ji
ji

nTE ηη+η= ∑
≤<≤ k

k  

Let us establish that 

( ) ( ),Var 2
1 xσ→ηk   (9) 

and 

( ) .0,Cov
1

→ηη∑
≤<≤

ji
ji k

  (10) 
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By the strict stationarity of the sequence { } ,Z∈ttZ  we get 

( ) .
~

,
~

Cov2~
VarVar

1

1
1 



















 −







 −
+







 −
=η ∑

≤<≤ n

j

n
i

pjinnn h
Xx

Kh
XxKnhh

XxKnh
p kkk  

By Theorem 3 in Chapter 2 of Devroye and Györfi [3], for all Lebesgue 
points x of f, 

( ) ( ) .Var1 2
RI

1 duuKxfh
XxKh nn ∫→






 −  (11) 

By stationarity and (2), we obtain 




















 −







 −∑
≤<≤ n

j

n
i

pjin h
Xx

Kh
XxKnh

~
,

~
Cov

1

k  

.0
~

,
~

Cov 1

2
→















 −







 −
≤ ∑

∞

= nnn h
XxKh

XxKnh
p υ

υ

k  (12) 

On the other hand, by (A2) and (A5), 








 −
−






 −

≤






 −
−






 − ∞

nnnnnn h
XxKh

XxKEh
K

h
XxKh

XxKh
1111

~4~
VarVar1  

112
~XXE

h
C

n
−≤  

212

1
1

2





























≤ −

∞

+=
∑ rr

srn
ZaE

h
C  

.0
1

2 →≤ ∑
∞

+=
r

srn
a

h
C  (13) 

The proof of (9) is completed by (11), (12), and (13). 
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Now, we will establish (10). Using stationarity and (6), we get 

( ) ( )11

1

11
,Cov,Cov +

−

=≤<≤

ηη≤ηη ∑∑ l
l

ji
ji

k

k
k  

( )

( )
















 −







 −
≤ ∑∑

−++

+−+=

−

= n
r

n

pqpl

pqplrln h
XxKh

XxKnh
p ~

,
~

Cov 1
1

1

1

1

k
k  
















 −







 −
≤ ∑

∞

+= n
r

nqrn h
XxKh

XxKnh
p ~

,
~

Cov 1

1

k  

.
1

3

2
sr

qrnnh
spC −

∞

+=

θ≤ ∑k  (14) 

Then, by (A4) and (A6), and by choosing ,2sq =  we obtain 

( ) .0,Cov
1

→ηη∑
≤<≤

ji
ji k

 (15) 

Now we turn to (8). Observe that 

( ) ( ) ( ) .,Cov2Var
1

1
2

ji
ji

nTE ξξ+ξ≤′ ∑
≤<≤ k

k  

Once again, by stationarity, 

( ) .
~

,
~

Cov2~
VarVar

1

1
1 



















 −







 −
+







 −
=ξ ∑

≤<≤ n

j

n
i

qjinnn h
Xx

Kh
XxKnhh

XxKnh
q kkk  

By (2), (11), and (13), it follows that 

( ) .0Var 1 →ξk  
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Then, by the same arguments in (14) and (15), we obtain, for n large 
enough, 

( ) sr
prn

ji
ji nh

sqC −

∞

=≤<≤

θ≤ξξ ∑∑ 3

2

1
,Cov k

k
 

.03

2
→θ≤ −

∞

=
∑ sr

qrnnh
sqC k  

Therefore 

( ) .02 →′nTE  

Now, by stationarity, 

( ) .
~

,
~

Cov2~
Var

1

12



















 −







 −
+







 −+≤′′ ∑
+≤<≤ n

j

n
i

qpjinnn
n h

Xx
Kh

XxKnhh
XxKnh

qpTE  

By (2), (11), and (13), we get ( ) ,02 →′′nTE  which completes the proof of 

(8). 

Proof of Theorem 1. To finish the proof of the theorem, we will 
establish the asymptotic normality of ( ).xgn  By (8), it suffices to show 

that 

( )( ).,0 2 xNT d
n σ→  (16) 

The proof of convergence in (16) consists in using Theorem 7.2 of 
Billingsley [1], (9) and showing the following two results: 

( ) ,RI,0
1

1 ∈∀→−








 η

=

η ∏∑ = teEeE jjj it

j

it kk

 (17) 

and 

( ){ }( ) .0,0
11 Var

2
1 >ε∀→η ηε>η kk 1E  (18) 
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Let us begin by establishing (18). Since ,1 nnhCp≤η  it follows that 

( ){ }( ) ( )( )11
2

Var
2
1 Var

11
ηε>η≤η ηε>η kkk k Pnh

pCE
n

1  

.
2

2 nnh
pC

ε
≤  

Choose ( ) ( ) ( )( )[ ].log 21143
n

aa nhnp −−δ−=  Then, we get 

( ){ }( ) .0
11 Var

2
1 →η ηε>η kk 1E  

Now, let us establish (17). 

( ) ( )k
kkk k

ηηηη

=

η











−










≤−









 ∑∑∑ −
=== ∏ itititit

j

it
eEeEeEeEeE jjjjjjj

1
111

1
 

( )jjj it

j

it
eEeE η

−

=

η ∏−








+

∑ −
=

1

1

1
1

kk

  

( ) .,Cov
1

1

1
1

1
1 jjjjj it

j

ititit
eEeEee η

−

=

ηηη ∏−








+










=

∑∑ −
=

−
=

kk
k

k

 

(19) 

By a repetition of this argument, inequality (19) becomes 

( ) 









+










≤−










−

−
=

−
== ηηηηη

=

η ∑∑∑ ∏ 1
2
1

1
11 ,Cov,Cov

1

k
k

k
kk k

ititititit

j

it
eeeeeEeE jjjjjjj  

( ) .,Cov 12 ηη++ itit ee"  

Thus, by the same arguments as in (14) and (15), we obtain 

( ) .0
1

3

22

1

1 →θ≤−









−

+≥

η

=

η ∑∏∑ =
sr

qrn

it

j

it

nh
tspCeEeE jjj k

kk
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3. Simulations 

Let ( )tU  be the AR(1) process defined by 

,1,1 ≥ε+= − taUU ttt  

where ( )tε  is an identically independent sequence of centered random 

variables with distribution ( )1,0N  and ( )tUa .1<  is a Gaussian 

process, so it is weakly-υ/ dependent. Now let 

,0,11 ≥+= −− tUbXX ttt  

where .1<b  The variables tX  may be expressed in the following form: 

.1 jt
j

jt UbX −
∞
=∑=  To illustrate our result, we simulate the AR(1) 

process ( )tX  and compute the kernel density estimator ( )xfn  for some 

value x. Then we compare the density, ( ),xFn  of 

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ,,: 2
RI

2 duuKxfExxxfExfnhxZ nnnnnnn ∫=σσ−=  

with the density of ( ).1,0N  

We consider 5.0,8.0 == ba  and ,1=x  and two values of n, 100   

and 500. We choose 515.2 −= nhn  which seems optimal and verifies 

assumptions (A5) and (A6) (since the sequences ( )ra  and ( )kθ  decrease 

geometrically to 0). The graphs below show that the distribution of ( )xZn  

is Gaussian when n is big enough. 
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4. Conclusion 

In this paper, we established the asymptotic normality of the kernel 
density estimate for linear process with weakly-υ/ dependent processes. 

The linear processes with weakly dependent innovations are of great 
importance in econometrics. We cite for example The ARMA process with 
ARCH errors discussed in Weiss [13] and Engle [5]. 

Our method of proof is based on Bernstein’s block technique. For this 
reason we have supposed some conditions on the bandwidth .nh  For 

further work, we will check whether other methods allow to suppose 
weaker conditions on the bandwidth. 
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