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Abstract

We consider in this paper, a new a posteriori residual type error estimators for
the Stokes-Darcy coupled problem analyzed in [1] on isotropic meshes. Our
analysis covers two-and three-dimensional domains, conforming discretizations
as well as different elements. We derive a reliable and efficient residual-based a
posteriori error estimator for this coupled problem. The proof of reliability
makes use of suitable auxiliary problems, continuous inf-sup conditions
satisfied by the bilinear forms involved, and local approximation properties. The
a posteriori error estimate is based on a suitable evaluation on the residual of
the finite element solution. It is proven that the a posteriori error estimate
provided in this paper is both reliable and efficient.
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1. Introduction

The coupling of Stokes and Darcy flow problems has received
significant attention over the past several years due to its importance in
modelling problems such as surface fluid flow coupled with flow in porous
media, see [6]-[9] and the references therein. Mathematical justification
for the interface boundary condition was derived in Jager and Mikelic [7]
and Mardal et al. [8] for the robust finite element constructions. Well-
posedness and convergence of the finite element method can be found in
[1]. A posteriori error estimates are computable quantities in terms of the
discrete solution of data that measure the actual discrete errors without
the knowledge of exact solutions. They are essential for designing
algorithms with adaptive mesh refinement which equidistribute the
computational effort and optimize the approximation efficiency. It
ensures a higher density of nodes in a certain area of the given domain,
where the solution is more difficult to be approximated, using an a
posteriori error indicator. Ever since the pioneering work of Bieterman
and Babuska [10], the adaptive finite element method based on a
posteriori error estimates has been extensively investigated. In [4], two a
posteriori error estimators for the mini-element discretization of the
Stokes equations were presented. Recently, a residual-based a posteriori
error estimator for the Stokes-Darcy coupled problem was presented in
[11], where Bernardi-Raugel and Raviart-Thomas elements for the
velocity and piecewise constants for the pressures were considered. A
posteriori error estimates for the finite element approximation of the
distributed optimal control problems governed by the Stokes equations
was derived in [12, 35, 36].

The purpose of this work 1is to derive a reliable and efficient residual-
based a posteriori error estimator for the Stokes-Darcy coupled problem
analyzed in [1]. Though one might think a priori that this should follow
simply by combining the corresponding approaches already available for
the Stokes and Darcy problems, the analysis below will show that this
idea works only partially since further difficulties and several technical

issues arise along the way. In this respect, it is important to remark that,
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on one hand, the transmission conditions stop us from splitting the
analysis into the Stokes and Darcy parts, and, on the other hand, these
conditions cannot be neglected since they also have to be incorporated

into the resulting a posteriori error estimate.

The remainder of the paper is organized as follows: in Section 2, we
recall from [1] the Stokes-Darcy coupled problem and its continuous and
discrete mixed variational formulations. The kernel of the present work
is given by Section 3, where we develop the a posteriori error analysis.
We employ auxiliary problem, suitable continuous inf-sup conditions, and
local approximation properties for to derive a reliable residual-based a

posteriori error estimator (Theorem 3.1).

Next, we apply inverse inequalities, triangular inequality, Cauchy-
Schwartz inequality, and the localization technique based on simplex-
bubble and face-bubble functions to show the efficiency of the error

estimator (Theorem 3.2).

In a forthcoming paper, we present the results of numerical tests
with the finite element methods. Throughout the rest of the paper, we
utilize the standard terminology for Sobolev spaces. In particular, if S is

an open set, its closure, or a Lipschitz continuous curve, and r € R, then

||, g and |-, g stand for the seminorm and norm in the Sobolev spaces

H'(S), [H"(S)]?, and [H'(S)]™?. Hereafter, given any normed space

U, U d and U9 denote, respectively, the space of vectors and square
matrices of order d with entries in U. Also, we employ 0 as a generic null
vector.

Finally, let P, be the space of polynomial of total degree not larger
than k. In order to avoid excessive use of constants, the abbreviations

x < y and x ~ y stand for x < ¢y and ¢;x < y < c9x, respectively, with

positive constants independent of x, y or Th.
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2. The Stokes-Darcy Coupled Problem

2.1. The model problem
The model we consider consists of Stokes flow in the fluid region
Q; c R? and Darcy’s law in the porous medium domain Qy R4

(where d = 2, 3). These are separated by an interface I';. Here Q i< Rd,
(j =1,2) are bounded domains with outward unit normal vectors
n;, j=1,2. Let [ = an \T7. Each interface and boundary is

assumed to be polygonal.

The fluid velocities and pressures in Q7 and Qs are denoted by:
u; 1 Q; - RY, fluid velocity in Q,
pj : Q; > R, fluid pressure in Q;.

It is important to keep in mind that the velocities and pressures play
different mathematical (and physical) roles in the fluid region and in the
porous medium.

Recall that the deformation rate tensor D and stress tensor @

associated with (u;, p;) are defined by:

ouy; aljlljj
ox; | ox;
xj Yi Jijen,.. d)

D(u,) = %[ in Q, (1)

®(uy, pr) = - pil+2pD(wy) in Q, (&)
where p is the viscosity of fluid. Assuming Stokes flow, (u;, p;) satisfies
on Qq :
-V -®(uy, p;)=1f in Q (conservation of momentum),
V.ouy =0 n O (conservation of mass),

u, =0 on I (no slip),
3

where f; is a data which belongs to the space [L?(Q;)]%.
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Assuming Darcy’s law and no flow through Ty, (ug, py) satisfies on

Q :
uy = - KVpy in Qg (Darcy’s law),
V- uy = fa in Qo (conservation of mass),
Uy - Ng = 0 on Iy (no flow),

“

where K is a symmetric and uniformly positive definite tensor
representing the rock permeability divided by the fluid viscosity. The

source fo is assumed to satisfy the solvability condition:
f2dx = Oa (5)
Qg

which makes physical sense due to the no-flow boundary condition on

0Qg and to (6) below. The mixed formulation (4) is the most natural one

for computations in the porous medium region since it leads to direct

approximation of the velocity.
Interface conditions

The problem (3)-(4) must be coupled across I'; by the correct

interface conditions. Mass conservation across I'; is expressed by:
uj; -ng +ug -ng =0 on I7y. ©6)
The second interface condition is balance of normal forces across I’y :
p1 - 2uny -D(uy)-n; = py on I'7. (7

The back interface condition is now know as the Beavers-Joseph-Saffman

law whose that:

2un; -D(uy)-7; = —%ul -1jon T, where j=1,...,d - 1. (8)
j
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The T; are the tangentials vectors on I'y, s == 75 -uK-7; >0 1is the

friction constant, and the Beavers-Joseph-Saffman law that the slip

velocity along I’y is proportional to the shear stress along I'; (assuming

also, based on experimental evidences, that uy - 7; is negligible).
Remark 2.1. We remark that on Ty :

ny - CD(ul, pl) Ry =—-pp + 2pn1 . D(ul) ‘R, and (9)

Tj - ®(uy, pr)-ny :—%ul"rj- (10)
j

I'y

& (21: Fluid Region 7
T ny F[
—_
Tj 'I'Ill
& ()5: Porous Medium )

I'y

Figure 1. A sketch of the geometry of the problem (case: 0Qg # I'y).
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()1: Fluid Region

LT ~ |25 : Porous Medium
e
i
—_—
Tj

Figure 2. A sketch of the geometry of the problem (case: 0Qg4 = I'y).

2.2. Weak formulation of the coupled problem

In order to introduce the weak formulation of coupled problem, we

define the spaces

H = H; x H,, (11)
M = L§(Q) x L§(Qy), (12)
A= HY2(1y), (13)

where
H, = {v; e [H(@Q)]?:v; =0on Ty},
H, = {vy € H(div, Qy): vg -ng = 0 on Iy }.
The space H is equipped the product norm: |v|g = "v1”1791 +

"V2”H(div,Q2)’ for all v = (vq, vo) e H.
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For a connected open subset of the boundary I  6Q; U dQq, we
write (., ) for the L2(T') inner product (or duality pairing), that is, for

scalar valued functions A, 1 € L2(I'), one defines
(o My o= j Msn(s)ds. (14)

Also, we denote the global unknowns u := (uj, us), p := (p;, p9)
and introduce the Lagrange multiplier A := py on Ij. Hence, we

proceeding in the usual way (see [1], for example), we find that the mixed
variational formulation of coupled problem reads as follows: Find
(u, p, \) e Hx M x A such that

a(u, v) + b(v, p)+ b7(v, 1) = I(v), vv e H,
b(u, q) = g(q), Vg e M, (15)
br(u, p) = 0, Vi e A,
where
br(v,A) =< vy -nj + vy -ng, A >t Hx A - R;
2
a(u, v) := Zai(ui, v;): HxH > R;
i=1
2
b(v, q) = Zbi(vi, q;):HxM - R;
1=1
l(V) = (f]_a Vi )Ql, g(Q) = (fZ’ qo )Q2 5
with

d-1
ar(ug, vi) = QMJ.Ql D(u;) : D(vy) + ;%In(ul’ i) (Vi 7)),

-1
ag(ug, vg) = J.Q K uy - vy,
2

bi(vi, q1) = —J q1V v, by(vy, q9) = —I qoV - vy.
] Qg
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Here, we use the standard notation for the contraction of two matrices A

and B, i.e.,

The reason for keeping Hl/z(FI) as the right space for the Lagrange
multiplier A which differs from choice of Hééz (T7) = [L2(T}), H} T2

adopted in [1], is that A represents the trace of the porous pressure on

I';, and hence there is no physical reason to assume that A vanishes in

Iy, belong to H1/2(6Qz). The present choice of H1/2(FI) is also justified
in Subsection 4.1 of [22]. We now recall that, given vy € Hy, the

boundary condition vy -ng = 0 on I'; means:

(Vg my, Hog(&))aq, =0, VE € Hy)X(Ty), (16)
where Ey(&) denotes the extension by zero in I'; of each £ € H 1/2(1y),
and (., '>592 stands for the duality pairing of H™Y/ 2(6Qy) and

H1/2(692) with respect to the L2(6Q, )-inner product.

As a consequence, it is not difficult to show (see ([22], Section 2)) that

the restriction of vg -ng to I'y can be identified with an element of
HY2(ry) -

(Ve mg, &), = (vo g, EE)yq , VEe HYX (), (17)
where E : H'/? () —> H1/2(6Q2) is the bounded linear operator defined
by E(£) := y(z) for each z e H1/2(F1), v HY(Qy) - HI/Z(OQZ) is the
usual trace operator, and z € H'(Qy) is the unique solution of

Az =01in Qqg; 2 =& on I'7 and Vz-ngy = 0 on Iy. 18)
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Moreover, thanks to (16) and (17), we may also write (v - ng, &)FI = (vgy -
ny, E)aQ2, with & e H1/2(6Q2) such that & = & on I7.

In fact, one can prove the following result ([1], Theorem 3.1 and
Lemma 3.4).

Theorem 2.1. There exists a unique solution (u, p, ) to the problem

(15).
2.3. Finite element discretization

This under section considers the finite element discretization of the

coupled problem. We let (TJh Jh-0(J =1, 2) be members of shape-regular

families of triangulations, that 1is, satisfying the minimum angle

condition, of 51 and 52, respectively, by simplex 7T of diameter Ap (that
is T = triangle if d = 2 and T = tetrahedral if d = 3). Next, we assume

that the vertices of 7- 1h and 7. Zh coincide on the interface I';. We define
(" Jhso @ family regular of triangulation on Q =0, UT; U Qy, by
Th =7/ UTY, where h:=max{h;i=12 which & =max

{hp, T e Tih} for each i € {1, 2}. We use the notation

g, (T') == the set of all faces of the elements K,

g, (1) == the set of all element faces E with E c I7y.

We now consider H{L, HQL, Mlh, M éL and A" be finite dimensional
subspaces of Hy, Hy, L3(Q), IZ(Qy), and A, respectively. Then, we
denote the products spaces as follow H" = H{‘ X Hé‘ and

M" = MP < M.
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In this way, the Galerkin schemes of (15) is given by: Find (uh, ph ,

W) e H" x M" x A" such that

a(u, v )+ b(v", p")+ b (vh, W) = I(vh), vvh e H”,
b(u”, ¢") = s@"),  v¢"eMm
by(uh, £M) = 0, vel e AR

(19)

Throughout the rest of the subsection, we assume the following
hypotheses on the subspaces:

(G.1): For the discretization of the fluid’s variables we choose finite
element spaces H{l, Mlh which are assumed to be div-stable (also called

LBB-stable) i.e., there exists B; > 0 independent of the A, such that for
each q{L € Mlh there holds

bl(V{L7 QJ}_l)

h
7 > Byl g1 "0,9 ) (20)
v{leH{‘ "Vl ”LQl '

and to satisfy a discrete Korn inequality: there exists o7 >0

independent of the A, such that,

JQ D(v}): D(vl)> oc1|v{l|l’Ql. (21)
1

In addition, the space of constant functions on Q; is contained in M 1h .

(G.2): For the discretization of the porous medium problem in Q,, we
choose finite element spaces H}QL, M él which are assumed to be stable,
that is, there exists Py > 0, independent of h, such that for each

qg € Mél there holds

hoh
sup by(vg, q7)

h
sup = >Ballaz 5,0, - (22)
vyeH, "V2 ”H(div,Q2)
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(G.3): With (G.1) and (G.2), we assume that the space A" satisfies

the inf-sup condition, that is, there exists B4 > 0 such that for each

£ e A" there holds

bI(Vyé)
sup W > [34||§||1/2,FI : =

veH"
(G.4): Finally, we assume that, there exists an operator
1" = (1, 13), with 1! : H; — [H'(Q;)]? such that
I"H,))c H!, i=12, (24)
satisfying the local approximation properties:

Ivi -1z < Cohrlviloary VT € T i=1,2 (25)

1

Ivi =T, < Cohif*Ivilo, sy YE < e 26)

[v2 -y ~T5(va)-maly 5 < Cshif*Ivaly gy YE € TS, vy e [H'(@y)]%,
27
where A(T'):=U{T" e ’Tih :T'NT #0} and AE) := U{T" € Tih :T'NE =0}.
Theorem 2.2. Assume that the hypotheses (G.1), (G.2) and (G.3) hold.
Then the Galerkin scheme (19) has a unique solution (uh, ph, kh)
e H" x M" x A",
Proof. Cf. [1, 22]. U

2.4. Examples of subspaces satisfying the hypotheses

There is a large variety of stable Stokes elements available in the
literature: The Table 1 below provides a list of stable elements covered by

our analysis. The first line gives alternative references where some
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equivalences between the error and the residual error estimator have
been proved (over kinds of estimators are omitted). In Table 1, the space
Sy is Stokes local space, Dy is Darcy local space, and Ly is Lagrange
multiplier space. BDM 1is Brezzi-Douglas-Marini element, BDFM is

Brezzi-Douglas-Fortin-Marini element, BDDF is Brezzi Douglas-Duran-

Fortin element and CD is Chen-Douglas element.



Table 1. Stable isotropic elements covered

Examples
Example 1 Example 2 Example 3 Example 4
Spaces
References [3] [25, 30, 31] [33] [21]

Mini-Element Bernardi-Raugel Taylor-Hood Bernardi-Raugel

Sy (ABF): (BR): (TH): ) (BR): N

[P! - bulle]? /P! | [P;]* ® Enrichi [Py ]? /P! [P," ® Enrichi

Raviart-Thomas BDM, BDFM Raviart-Thomas Raviart-Thomas

RT): or RT): RT):

or BDDE.CD | gy (1)@ @ py(T)e | Bo(1) @ By (T

PL(T) ® Pp(T)x

ke N

keN

keN

Lp

P; — Lagrange

P; — Lagrange

P; — Lagrange

P; — Lagrange
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3. Error Estimators

Here we present our main results, namely reliable and efficient error
estimation on isotropic meshes. We will discuss the a posteriori error
estimates for finite element approximations of the Darcy-Stokes systems.
The upper error bound is derived in Subsection 3.3, whereas the lower

error bound is proven in Subsection 3.4. We begin with some notations.

3.1. Notations

Given i e {1, 2} and T € Tih, we let ¢,(T") be the set of faces of T

and denote by g;, let the set of all faces of T". Then we write
ep =ep () Uen(@Q)Uen(Tr)Uep(Qz)Uey(Tz), where e,(I;) = {E € ¢y

IECFi},Sh(Qi):I {EESh :ECQi},i=1,2 and ah(FI):: {EGSh
IECF[}.

Now, let g € L2(Q;) such that qr € C(T) for each T e Tih, and let

E € ¢,(T)Nep(Q;), we denote by [¢]g the jump of g across E, that is,

lalg = (qr - a1 )\E’ where T' is the other element of Tih having E as

face. Also, the jump of some (scalar or vector valued) function v e [L2

@))%, i e {1, 2} such that VT € [C(T)) defined as [vlg=(vi7 - v )\E-

In this next following, we denote by (u, p, 1), with u = (u;, ug) and
p = (p;, py) the unique solvability of continuous problem (15). Also, we
denote by (u”, p, A), with u” = (uf, uf) and p" = (p]', p%) the

unique solvability of approach problem (19).
3.2. Residual error estimators

The general philosophy of residual error estimators is to estimate an
appropriate norm of the correct residual by terms that can be evaluated

easler, and that involve the data at hand.
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Definition 3.1 (Residual error estimator). For each 7 € 7 h we

define the based-residual errors indicator ©; p, i € {1, 2} by:
O, 7 =hp|fl +V- @ V-ul
L1 = hr|fi* + Lallo, 7 + 1V -wt'lo 7

+ Z h};/zll(nl A lo,
Eesh(T)ﬂsh(FI)

+ Z h}g/Z
Eeep,(T)Nep(Ty)

d-1
woh
n -o T+ — U T .
Z( 1%L T T oW T]]Tl
j=1 J

0,E

+ Z Juf -y +ud - ny lo, £
Eecep(T)Nep(Ty)

d-1

(@1, -1 + 2HZ(T]‘ Dy om )T E
=

VT e TP,
0,FE

1 1/2
+ 5 z hE
Eeep(T)Nep ()

(28)
where ®@; 5 is defined by
Dy 5 = —pM +2uD(uf) on T e T, (29)
and

Oy p = hp|Vph + K ul g o+ f5 -V by

T s - sl g
Eeep,(T)Nep(Ty)

1
2 Z h,lg/Qll [phns g lo,
Eeep(Q9)Nep(T)

£ m phngl g VT € TS (30)
Eeep,(T)Nep(T)
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Then, we introduce the global a posteriori error estimator

1/2

©={> olr+ > O35 . (31)

h h
TeT1 TE’T2

Remark 3.1. The residual character of each term on the right-hand
sides of (28) and (30) is quite clear (see, the consistance property (38) and
the residual equation (39) below).

3.3. Proof of the upper error bound
Global upper error bound is given by the theorem:

Theorem 3.1 (Global upper error bound). The following global

upper error bound holds:

R P e P A ] P R e (82)
with
1/2
Cim| 2 WA A+ X BEIA - Bloe | - @3
TeTh TeTy

The constant intervenying in this inequality (i.e., (32)) depends of

parameter of regularity of the triangulation.
Proof. For all U =(u, p,A)e Y and V = (v, q, &) € Y, we define
the continuous bilinear form A : YxY — R by:
AU, V) = a(u, v)+b(v, p)+ b7(v, ) + b(u, q) + by(u, &). (34)
Hence, the problem (P) is equivalent to problem (Q) : Find U € Y such
that

AU, V)=G(V), AV € Y, where G(V) = I(v) + g(q). (35)
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Thus, approach problem (Qh) : Find Uj, € Y” such that

AU, VY =Ggw)h vt e YI (36)

Then, (cf. [5], Theorem 2.4, pp. 32): the bilinear form A satisfy the inf-sup
condition on Y x Y, i.e., there exists a constant f > 0 such that:
AU, V)

sup —w—— > B|U|y, VU €Y. 37
Vey "V"Y " "Y

And, we have the consistance property or Galerkin orthogonality

relation
AU -U", viy=0, vV Y (38)

Applying the definition of residual, the consistance property (38) and
proceeding by integration by parts on each element of meshes, we obtain

the residual equations which is given by:

AU-Up V)= 3 4] -t (v =vh)e [ (V@10 (vi-vE)
TeTlh

h h
+J-TQ1V'11{L— Z _[ (ng - @y p -10q +2" 0y - (vy - v7)
Eeep(T)Nep(Ty)

d-1

h h
- Z J.EZ(Tj'q)l,h'n1+%u1'Tj)Tj'(Vl_Vl)
Eeep(T)Nep(Ty)” ™ j=1 J

d-1

1 h

-5 Z I [®7 pmy + QHZ(’U‘ @y ny )7 ]g (v - V7))
Beep@TNen () =

- Z <u{1-n1+ug-n2,&>E}
Eeah(T)ﬂah(FI)

> {jT (fo = gz = [ (Vph + Kl (vy = vh)

h
TeT,
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e[ AV > [ k=i ny (v - )

Eesh(T)ﬂsh(FI)
1
+§ JE[pgnz]E'(Vz—V}zl)Jr Z '[ PQHZ'(VZ—VQ)},
Eeep(Q9)Nep(T) Eeep(To)Nep(T)
(39)
additionally, we have

b(u—uh,q):J Q1V'u{t+J. (V- ub — fo)qs, (40)

O Qg

_ h h

br(u-uy, &) =-<ul n; +uy - ny, &>, (41)

£/ is the approximation of the data f; in [L*(Q;)]% space of functions

polynomial on each element T € 7 lh and fzh 1s the approximation of the

data fo in LZ(QQ) spaces polynomial on each element T < T%‘ .

We apply respectively the triangular inequality and Cauchy-
Schwartz inequality to the residual equation (39). Next, we use

respectively the interpolation operators of the assumption (G.4) and the
inf-sup condition (37), replacing Uby U — U h . We omit the details. O
3.4. Proof of the lower error bound

In order to derive the upper bounds for the remaining terms defining
the a posteriori error indicator ®; p i € {1, 2}, we proceed similarly as in

[19] and [20] (see also [21]), and apply inverse inequalities, and the
localization technique based on simplex-bubble and face-bubble

functions. To this end, we now recall some notation and introduce
further preliminary results. Given 7 € T h and E e ep(T), we let by
and by be the usual simplex-bubble and face-bubble functions,
respectively (see (1.5) and (1.6) in [3]). In particular, by satisfies
by € P3(T), supp(by ) = T,by =0over 6T, and 0<bp <1 on T.
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Similarly, bg € Py(T), supp(bg) € Wg == U{T": E € ¢,(T")}, by =0 on
OT'\E and 0<byp <1 in Wg. We also recall from [4] that, given
k € N, there exists an extension operator L : C(E) — C(T') that satisfies
L(p) € P,(T) and L(p)‘E = p, Vp € P,(E). A corresponding vectorial
version of L, that is, the componentwise application of L, is denoted by L.
Additional properties of by, by and L are collected in the following

lemma [4].

Lemma 3.1. Given k € N*, there exist positive constants depending

only on k and shape-regularity of the triangulations (minimum angle
condition), such that for each simplex T and E e g (T') there hold

lalo. 7 < 12632l 7 <laly - Va < BL(T), (42)
lal,r < hi‘lllq"o,T’qupk(T)’ (43)
Il 5 < 162Dl zslplo 5 VP € Pu(E),  (49)

1/2
Lo,z + PelL(P) 7 < h Iplo, - V€ PL(E).  (45)
3.4.1. Lower error bound in
The lower error bound in Q; is given by the following proposition:

Proposition 3.1 (Local lower error bound in Q;). For each

T e Tlh, the following local lower error bound holds:
Onr {"ul ~uf l,wir + g - ul lo,wr + 11 = P{l”o,WlT

h h h
+ Z (% = 2" o ryuon + e —ut'ly 5, + |21 = 1 o 4
kerT

IV - Gy = o + I — Ao )b (46)
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where WlT is defined as follow:
W =T eT] 0T NOT" € ¢,(Oy)}. (47)
Proof. We begin by bounding each term of the residuals separately.
e To estimate hT||f1h +V @y |, - For each T e T{, we choose in

residual equation (39), V = (vT, 0,0) and vh = (0,0), with vl = (V%F, vg)

and vg =0 on Qo,

(48)

B (€SS A e on TeT],
vy =
0 on Q\T.

We have well V € Y and the residual equation (39) becomes:

AU -0 V)= [ (8 -] + (8 +v-0,)],
because the bubble-function by is vanish on 07
[ @ evoou) v =aw-vnv)-[ @ - @
On the other hand, using the definition of operator A, we have
[ (e v o) vl = 2uf Dy —ul): D)= [ (o1 ol o]
S MCE - ORCRNCY

Applying respectively the triangular inequality and the Cauchy-Schwartz
inequality to (50), we have

[ (g evoou) vl < (o =g o - ol )

T h T
Vi |, + 11 = £ o 7 X 91 o, 7
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Next, we use the inverse inequality (43), we have

I(#f + v - ch,h)b%/le?),T S {hflq“l - “{LH,T +p1 - JD{Z"o,T)Jr I, - flhllo,T}

X "VlT ||0,T'
Applying the inverse inequality (42), we have the estimation
| (£ + v <1>1,h)||3,T < {hp' (|l - u{lll,T +|py - pf lo,7)
el -l rxIvT g 6D

Finally, the property 0 < by <1 and the inequality (51), lead to
hy £ +V - N RS (|“1 - “{l|1,T + 1 —P{l”o,T +hr|f; - flh"o,T)'
(52)
e To estimate |V - uf lo.7-

||V'“{l||o,T s |“1—“?|1,T- (53)

: 1/2 h
e To estimate ZEesh(T)ﬂsh(FI)hE/ [(ny - @15 -0y + 2" )y ly . For

each T e T" and for each E e ¢,(T)Ne,(T';7), we choose in residual

equation (39), V = (vE, 0, 0), vh = (0, 0), with vE - (vf, 0), where

Vi (54)

E _ L(n; - ®; p.m; + W nibg) on T,
0 on QNT.

We noted that the tangential component of le on E are vanish. In this

case, the residual equation become:

AU-Up V)= [ (5 —o) vl o | (v o)l - [ ooy,

-n1+kh)n1 ij
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Hence,
h E hy _E h E
J.E(n1 @1 pong +AT Ny VY = J.T(f1 -fi')-vq +J.Tf1 + V- 5).vy

— AU -U,, V).

On the other hand, by definition of the operator A, we have

IE(D1 “ Dy p o1y + )0, - vf = J‘T(fl — £y vE + J‘T(flh +V‘(D1,h)-V{E
v 2uf Dlwy —uf): D)~ [ (py - pl V- f

—evE a5y (55)

We apply respectively the triangular inequality and the Cauchy-
Schwartz inequality to (55):

h E h h E
R L O (I P A AL W A Y e

h h E E h
(2ufu; - uf |1,T +[lp1 - p1 ||0,T)X |vi |1,T +[vi 'nlllo,E x| =2 "1/2,E'
(56)

We apply the inverse inequality (45) to le , 1t comes

1/2 h E h h
hy IE(H1 @y pony A0y v < Chglfy — £ g p + el + V@ 2

h h
+ | p1 - p1 ||o,T +[uy -y |1,T
+ hyn - A "1/2,T x|y - @qp -my + A ny lo.z- 57
Also, by definition of the operator L, we have
(ng - @y p -1y + My v = (g Dy omy Wmy x L(ny - Dy p -y

+ Mnybg] = [(ng @y oMy Wb P
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We use the inverse inequality (44), and we have
hle/2|| (ng - @y p -my + Ay lo,z kel - £l lo,q + hg|f +V - D1 nllo, 7
+|p1 - P{L"o,T +ug - “{l|o,T
+ byl -2 ||1/2,T |l (g - @y pmy + 2y lo,z- 58
Using estimation (52) and the fact that hx < Ay in (58), we lead to

1/2 h h h
hE/ [ (0@ g + 2" )0yl 5 < {|u1 —urly gr + A =2 arar,
Eeep(T)ep(Tr)

oy ol lowr+ D el 1o, )59
kerT

' 12 a1 . Mo T
e To estimate ZEesh(T)ﬂsh(rI)hE ||Z:j:1 (TJ @y 5 oMy + " u; TJJ

Tjlo g For each T e T" and for each E e &, (T)N e, (T';), we choose in
residual equation (39), V = (vE, 0, 0), v = 0 with vF = (vfj, 0) and
L Y (0 - b T
VlE = z]‘:l Tj- l,h'nl+/€_ju1"r] TiOFE on s
on QN\T.
(60)

We noted that the normal component of V{E on E are vanish. Hence, the

residual equation (39) become:

AU -V V)= [ (8-t~ o [ (8 70y )-f

d-1
Lo h E
- ZJ.E(T] 'cbl,h - nq +7u1 . TjjTle .
j=1 J
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Then,
d-1

h E h E
ZJ. (*rjo(DLh-nl +L‘U1'T]‘j‘|’j.vl :J. (fl—fl).vl
e K j T

+I (Eh +v.@, ) vE - AU -U,, V),
, ,

AU -U,, V) = 2ujTD(u1 —ul): D(vf)—jT@l _ppw o vE

d-1

+<vE on,a-a sp +Z%J‘E(u1 —uf)r(vE ).
— J
]7

Thus,
d-1 u
h E h E h
Ti-®yp Ny +—uy T |TV :J. f;]-f]")-v +J- f
;J.E( jr P oMy p 1 ]j Vi T( 1 —f1)-vq T( 1

#Ve@y ) vf - 2] Dlug —uf): D)+ [ (o pf v vf

d-1
+ LJ (u1—u{l)-Tj(v{E~Tj)+<V{E~n1,k—kh >g-
—d i JF

=17

We apply respectively the triangular inequality and the Cauchy-

Schwartz inequality:

d-1
ZJE[TJ- @y g+ ouf .Tj}j VT < (Ig 5 + 8+ VO 4] )
= j

E h h E
x [[v1 ”O,E + (21 vy — uyf |1,T +|p1 - Pt "0,T x|vi |1,T

d-1

h E £ h
" Z%” (uy —uy)rjlo v’ - il m + v maly g x 1% = 2" lho &
j:
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[l onnm e oo vF < - g 169 @1 )
J

X "V{E lo,z + (2uluy - uf b +llp - ! lo, 7 ) |V1E|1,T

d-1

h h E

* {Z :j Iy = wy )'Tj||0,E +[|% = ||1/2,E x || vi ”0,E-
i

Next, we apply the inverse inequalities (44) and (42) to V{E , 1t comes:

d-1
ZIE[Tj R -Tj}j v S hp|fy - £ + Pyl +V
J=1 !

h h A
@1 pllo, gz + =2 g, + 20w —ui'ly g+ 21 = P2 g 7

QU

-1
LNk

_h
; hrlag —uf |y 7

J

Il
—

Using the estimation (52), we deduce finally:

d-1
1/2 u
hyl "Z(Tj -Gy a0 o 'Tjjlelo,E
Eeep(T)Nen(Tr) j=1 J

h h h
S {”Pl = Di'llo,wr + [wr —ug'ly e + =27y s oy

0 il - f gy - ud o @D
kerT
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. 1
e To estimate EZEE% (T)Nen (@1) E || @y pny + 2},12 T ®yp
ny )7 lglly g- For each T e T and for each E e ¢, (T)Nep(Q;), we

choose in residual equation (39), V = (VE, 0, 0) and vh = (0, 0), with

vg =0 on Qg and
E ((Dl h-7 + 2“2 CDI hﬂl ] bEj on ke {T, T’}, (aT' n oT = E),
vy =
on Q\TUT,

AU-U V) = [ -t [ v v
TUT' TUT"

d-1
1 E
) [ch a0y + 2HZ(T Dy oy )il vy
Jj=1

Hence,
1 d-1

E h E
= O, pnq +2 T; Dy Ny )i lp-v :I f; -f') v
2IE[ 1,AM1 H]Zl:(] 1,h 1)]]E 1 TUT’(l 1) vi

+ITUT'(f1h +V0 ) vE - AU -Uy, V).
By definition of operator A, we have:
AU Uy, V)=2uf Dy —ul):DOE) [ (o1 pf et
lj. [®) png +2 (g( Dy ong )T -vE:J. (f, - £) - vF
2E1,h1 [ Tj LA 1)Tjlg - V1 TUT’l 1 1

Jj=1

+ £+ V.o ~VE—2J D(u; - ul): D(vE
JTUT'(I 1,h) 1 n TUT (n 1) (v1')

+ J (py - PP W - vE. (62)
TUT'
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We apply respectively triangular inequality and Cauchy-Schwartz
inequality:

d-1
1
§IE[CD1,hn1 +20) (1 @y pmy )i lg - vE S I8 = £ pup < IVE o, rur
=i

h E
+ £+ V@ ally pur < IVT o, 7UT
h E
+ 2wy —at'y pyp X VUL, pur

h E
+ v = pi'llo, 7y * YTk, U

d-1
1
EJ‘E[(Dl,hnl + 2HZ(TJ‘ @y ) lp v S Z {|f1 - £ "0,k"V1E lo.x
fEsi kelT, T}

h E
+E" + V@1l g < IVT Mo, &

+2ujuy - u{L|1,k X |V1E|1,k +p1 - bl ”0, B |V1E|1,k J-
The inverse inequality (45) gives:

d-1

1
37 [ (@1 pmy 2w () 0y ) lpf < {Z }{hEllfl - £lo,4
= kelT, T"

+hg E V-0l g+l —ully + - ol )

d-1
x || [@1, 11 + ZHZ(T]' @y )T glo g
=1

Next, we apply the inverse inequality (44) and the definition of the
operator L:

d-1

1,1/2
ghg [[@1,pm1 + 20 (1) @1 m)rlglo g S| D, i1 — £y
= kelTTT)

+ hy|ff + V- D1, plo, j, + w1 - u{lh,k + P _p{lno,k})'
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We use the estimation of A, ||f1h +V @y pl, . (cf. (52)), and we have the

estimation:
1 d-1
1/2
o B [y pmy + 20" (7 - @1 my )7 g,
Eeep(T)Nep () j=1

<oy =l <oy - Pl + > Al — £, |
kWil

where WlT 1s given by (47).
e The following estimation holds for each T e Th (cf. [1], Lemma

4.7, pp. 519):

B2 af ny +ub ngy < g —ul o +us - ub o g
Eeep,(T)Nep (1)

+ Z hlug —ul'ly , + Z [V (ug -~ ul Mo, wy

kerT keWZT

Thus, the Proposition 3.1 is proved.

3.4.2. Local error bound in Q,

The local error bound in Q4 is given by the following proposition:
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Proposition 3.2 (Local lower error bound in Qi). For each

T e ’Tzh, the following local lower error bound holds:

h h
Oy 1 < |[ug —ug "H(div,WQT) +|pe - p2 ”0,W2T

-1 h h h h
+ Z R (K™ (ug —ug )"0, r +1p2 - p2 "o, p I =12 "0, P "o,rlﬂak) .
keWZT

(63)

Proof. We begin also by bounding each term of the residuals

separately.
e To estimate Ay |Vph + K_lug"0 p- For each T e T}, we choose

in the residual equation (39), V = (vT, 0, 0), with vl = (0, vg) and

v = (0, 0)
h -1__h h
Vps + K "uy )b on TeT,,
o (Vpy 9 )by e Ty 64)
0 on QN\T.
Hence,
AU-U,, V)= - j (vph + K lul). V1.
T
Thus

— 2112
| (Vo + KMl i/ 2|2 = - AU - Uy, V),
— 212 —
vk + KWy = = | Ky —wd)wd o+ [ (p =PV -]

- h T h T
<K N(ug - uj )”0,T x|va ||o,T +[p2 - p2 "0,T x|V vy ||o,T-
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We apply the inverse inequality (42) and we get the estimation (65), i.e.,

the estimate
hr| Vo5 + Kb o p < hy|K T (ug —u)o 4 + P2 - P5 o o (65)

e To estimate |f2 —V~u§‘||0 p- For each T e T}, we choose in

the residual equation (39), V =(0,¢”,0) and v” =(0,0), with

q7 = (0, ¢3) and

q3 : (66)

T (—f2h+V~u}21)bT on TeTzh,
0 on QN\T.

Then, we have
AU-Un V)= [ (7 - + [ (-7 +v-ubaf.
Let

[ (-f+v-ubid - aw-vpv)-[ (A -f)d
T T

- [ afv-uy—ul)- [ (f-fad
T T

h h T
<(Iv- (g =uz)ly 7 + 2 = £'llo,7)llaz o 7
Hence,

h hoyl/2 )2 h h h
I(-f" + Vg )bT/ lo,7 < (laz = w2l g, 1) + 1o = £2'llo, 7 < IC= 72

+ Vb o)y 7

The inverse inequality (42) and the property 0 < by <1 give estimation

(67), 1.e.,

A h h A
I =V -uzlyr < (lwg —wzlg@,r) + I = £l 7)- (67)
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. 2 h h

e To estimate ZEeah(T)ﬂah(rI)h}E/ I (pg = 2" nglly - For each

T eT" and for each E e ¢,(T)N¢,(T;), we choose in the residual

equation (39), V = (VE, 0, 0), and vh = (0, 0), with vE - (0, VZE),

E_ {L«p;’ ~Jngbg) on T, )

V2 B
0 on QN\T.

Then

AU -Up V)== [ (o + K ab)vF o [ (oh -2y - vE,

Let

IE(p2 Wy vE - AU -U,, V) + '[T(fo’g TK b)) vE. (69)

On the other hand,

AU-U,, V)= - IT(p2 B Sy N W Y N (1)
Combining (69) and (70), we have
IE(pQ ~ g - vE = - IT(Pg ~ PRV vy + <vh ong, A= >
+ J'T(Vpg +Klul) v
We use the triangular inequality and the Cauchy-Schwartz inequality:

[ A S W A W 7 R St

E h E
x [ vz ||0,T +[r - ||1/2,E x vz "0,E‘
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Next, we apply the inverse inequality (45) and ( pé‘ Y Jng, it comes
1/2 h E h h
n?[ (o 2 mg - vE < {lpo — Pl #1021

+ g Vs + K gl ) |(p5 — 2" gy - (71)

We combine the inverse inequality (44) with (71), and we get the

estimation (72), 1.e.,

1/2 h h h h
hE/ I(pz = 2" gy g < [p2 - P2 ||0,W2T +[r - "1/2,6Tﬂr1
Eecep(T)Nep(Ty)

+ D WK (g —ud)ly , + b2 — o )-
]CEW2T

e To estimate pé‘nz]E lo. - For each T e T

1
5 2eop@mnanl |

and for each E € ¢;,(Qg)N¢y(T), we choose in the residual equation

(39), V = (vF,0,0) and v" = (0, 0) with v¥ = (0, v&) and

Vg — L([pélng ]EbE) on ke {T, T’}, (Where oT N oT' = E),
0 on  Q\TUT.

(72)

Then, we have
_ 1
A(U—Uh,V)z—j (Vp§l+K1ug)-vg+—J. [anZ]E-vf.
TUT 2)E

Hence

1J‘ h E J‘ h 1.k E
= n vy =AU -U,, V) + Vpy + K "ug ) vy
D) E[p2 9lg v ( n V) TUT,( §2) 9)- V3
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Using the definition of the operator A, we have

1 h E h -1..h E
EI [pgng]g - v =I (Vpy + K ug ) - vy
E TUT

- K (u, - u’ 'VE+I vpl + K ul ). vE. 73
JTUT’ (ug —ugz)- vy TUT’( D2 2) Vs (73)

We apply respectively to (73), the triangular inequality and the Cauchy-

Schwartz inequality:

1 _
EJ‘E [PQHQ]E-VJZE <|K 1(“2 - “g )"O,TUT’ x ||Vg||0,TUT'

h E B o1k E
+ b2 = p2llo, rur * V2 lo, 7y + VP2 + K "ug lo. 7ur > I¥2 o, 70Uz

(74)
Let

1 -
3] pinalp vE < > (K (wy - g < IVE g,
kel{T, T'}

bz = 8 lo 1 vE o +1VP5 + K Mub ]y x[vE ], 3. (75)

We apply inverse inequality (45):

1 _
Eh}ﬂmj. [PSHZ]E ) V2E S E {hk"K 1(“2 - uizl )"0 k
E , )
ke{T,T'}

+ b2 = 8lo i + PilVEE + KNG 3 [Pong gl 5o (76)

On the other hand, [pgnz]E v = [pgnQ]%bE. Hence

1 _
SN PEna gl 5 5 <€ D K (wg = wh)ly . + P2 = Pl
ke{T, T"

+ hy|VpE + K 'ub lo, 3 [phn; g lo,g- (7D
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Next, we apply inverse inequality (44):

1 _
ShlPIPSnslplo g < Y (K (g =)y, +lp2 - P2y
ke{T, T}

+ hkllvlvéZ + K_luizl "0,1{ . (78)

Finally, we use (65) and adding on E € g;,(Q3)Ney(T), we get the

estimation (79), i.e.,

1
5 I [pgnQ % ||0,ES | po — pg ||0,W2T
Eeep(Q2)Nep(T)

+ D (K (g = ad)lg  + 2 = D5l ) fs (79
keWgT
where WZT is defined as follow:
WY = {T" e Th 0T NoT' e e,(Qy)}. (80)

e To estimate ZEeeh(T)ﬂsh(r2)hflE'/2”p2n2"0,E' For each T e T4 and

for each E € ¢,(T)N¢gp(Iy), we choose in the residual equation (39),

vV =(vF,0,0), v = (0, 0), with v¥ = (0, v&), where

L(pinyb on T,
vg - (pz 2 E) (81)
0 on Q\T.
Then, the residual equation becomes:
AU-U,, V) = —JT(Vpg FK Wl vE o IEpgn2 vE. (82)

Hence,

IEanz ~v2E =AU -U, V)+ IT(VpS + K_lug)~v§.
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We use the definition of the operator A:

h E 1 hy E h E
J pangy - vy =—J K™ (ug —uy)-v3 +J (p2 — 3 )V - vy
E T T
+J. (vl + K ub) ol
T

We apply respectively, the triangular inequality and the Cauchy-

Schwartz inequality:
[P8naby*[5 5 < 1K (wg = w7 > [0F o 7
bz = PE Lo, < IV -0 o, 1
+ ||Vp£‘ + K_lug "(),T X ||v§ ||0,T' (83)
Next, we apply inverse inequality (45) to (83):
hif I pAmabif[6 < hif 1K (wg ~uh) g
x ||U2E "0,T +|p2 - P} ”O,T x ||p§n2bE ||0,E
+ iyl |} + K ub o < o | -
The inverse inequality (45) gives:
hif?|phngbif [ < (hp|K ™ (ug — k) o + hel Pk + K ud,
+1pz = P3 lo, 1) % |P5n2bE o -
The inverse inequality (44) and inequalities 0 < by < 1, hy < hp lead to:
hid*1pbnslly < hrl K (ag —ud) g g+ hrl Vol + K udly 7 + 2o — 04 o 7

(84)
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We combine the inequalities (84) and (65), and we have (85), i.e.,

1/2 - h 5
i panalo g < D helK s = wi ), + 122 = Pl g -
Eeep(T)Nep(Ts) k€W2T

(85)
Thus, the Proposition 3.2 is proved. O

Theorem 3.2 (Global lower error bound). The following
estimation holds:

h h h
0 < fu-ulg+]p=p"p +I2 =2 iz, + G
where C is defined by (33).

Proof. Follows directly from the Proposition 3.1 and the Proposition
3.2. O

Corollary 3.1 (Main result).

E _
[Error — 6] _ 5y (86)
C
where
Error :=|u - uh||H +|p - p" | +x - AP ||H1/2(1_I). (87

4. Conclusion and Further Works

In this paper, we have proposed and rigorously analyzed a new a
posteriori residual type error estimators for the Stokes-Darcy coupled
problem on isotropic meshes. Our investigations cover conforming
discretization in 2D and 3D domains. The residual type a posteriori error
estimator is provided. It is proven that the a posteriori error estimate
provided in this paper is both reliable and efficient. There are many
issues to be addressed in this area such as the other types of a posteriori
error estimates, extend the residual error estimator methods to
anisotropic meshes [34] and related implementation of the adaptive finite
element methods.
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