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Abstract 

Raw data from real-world applications are usually high-dimensional data with noise and 
redundancy information. How to obtain low-dimensional features of raw data is crucial to 
pattern recognition. In this paper, we propose a simple and effective discriminant feature 
construction (DFC) method, which exploits class labels and nonlinear similarity information 
to directly construct discriminant similarity features of training samples. The features keep 
the discriminating power of class labels and similarity information as much as possible. 
Extensive experiments on several real-world image datasets have demonstrated the 
superior performance of our proposed method. 

Keywords: feature construction, discriminant similarity feature, image 
recognition. 
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1. Introduction 

Feature learning is a prevalent research field in pattern recognition 
and machine learning. Typical feature learning algorithms include 
principal component analysis (PCA) [1], linear discriminant analysis 
(LDA) [2, 3], locality preserving projections (LPP) [4], etc. The algorithms 
focus on finding a set of projection directions using a certain criterion to 
extract low-dimensional features from high-dimensional data. 

PCA is an unsupervised linear method for seeking a subspace where 
the projections of data possess maximum variance. Generally, linear PCA 
may have difficulty catering complex nonlinear data in many real-world 
applications, and thus kernel PCA (KPCA) [5] was proposed to solve the 
problem. KPCA firstly maps original data into a higher (even infinite) 
dimensional kernel space, and then implements linear PCA in the kernel 
space. LDA is a supervised feature learning method, which can obtain a 
discriminant subspace where within-class scatter of data is minimized 
and at the same time between-class scatter is maximized. In [6], kernel 
discriminant analysis (KDA) was proposed to extract nonlinear low-
dimensional face features. In addition, LPP preserves local information 
hidden in data. Likewise, kernel-based LPP algorithms [7] have also been 
presented for better capturing nonlinear relationships among data. 

In this paper, we propose a simple and effective discriminant feature 
construction (DFC) method. Different from traditional feature learning 
methods, DFC directly employs class labels and nonlinear similarity 
information to construct discriminant similarity features of training 
samples. Since the discriminating power of supervised and similarity 
information is kept as much as possible, our discriminant similarity 
features are well discriminative. Due to the lack of out-of-sample class 
label information, discriminant similarity features of out-of-sample data 
are difficultly constructed. For the issue, we employ an existing method, 
i.e., kernel propagation strategy (KPS) [8], and the key idea of KPS is 
that discriminant similarity features of an out-of-sample data should be 
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similar to ones of its nearest neighbour data in kernel spaces. By means 
of KPS, we can obtain discriminant similarity features of out-of-sample 
data. Moreover, extensive experiments have been implemented on 
several real-world image datasets, and the promising experimental 
results have demonstrated the effectiveness of our proposed method. 

The rest of the paper is organized as follows. In Section 2, we briefly 
review linear discriminant analysis (LDA). We give a detailed description 
of DFC in Section 3. In Section 4, extensive experiments are designed to 
evaluate our algorithm. We conclude the paper in Section 5. 

2. Linear Discriminant Analysis 

LDA seeks to find a linear subspace such that the projections of within-
class samples become more compress and the projections of between-class 

samples become far apart. Suppose [ ] nd
n RxxxX ×∈= ,,, 21 …  is a 

training sample set with c different classes, where d denotes the 
dimensionality of samples and n is the number of samples. The within-
class and between-class scatter matrices wS  and bS  are defined by 
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where iC  is a set of samples belong to the i-th class, im  denotes the 

sample mean of ii qC ,  denotes the number of samples in the i-th class, 

and 0m  represents the total mean of X. 
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Conventional LDA aims to find an optimal projection matrix 

[ ] ( ),,,, 1
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c RpppP …  and the optimal projection matrix can 

be obtained by maximizing the following objective function: 
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where ( )⋅Tr  denotes the trace of a matrix. 

If wS  is nonsingular, the optimal projection matrix P can be gained 

by computing the eigenvectors of bw SS 1−  corresponding to the ( )1−c  

largest eigenvalues. But in many applications, the algorithm has to be 
confronted with the difficult problem that wS  is singular, because the 

number of training samples is often much lower than the dimensionality 
of samples. One popular method of overcoming the problem is to utilize 
PCA as a preprocessing step to reduce the dimensionality of samples. 

3. The Discriminant Feature Construction Method 

For the training samples X, we can directly construct a discriminant 

similarity feature [ ] 1
21 ,,, ×∈= nT

iniii Ryyyy …  for any ix  
( ).,,2,1 ni …=  In DFC, we utilize Gaussian scheme to compute 

similarities among samples, and thus ijy  can be obtained by 
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where ijy  denotes the j-th element of ,iy  and ( ) ( ( ))ji xx labelorlabel  is 

the class label of ( ).or ii xx  
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We use the first three samples of X, i.e., ,, 21 xx  and 3x  to intuitively 

exhibit how to construct their discriminant similarity features. Suppose 

1x  and 2x  belong to the first class, and 3x  comes from the second class, 

and discriminant similarity features of the three samples are as 
following: 
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Our discriminant similarity features directly employ class labels and 
nonlinear similarity information, and the discriminating power of 
supervised and similarity information can be kept as much as possible. 
Therefore, then on linear discriminant similarity features have well 
discriminating power. 

Due to the lack of out-of-sample class label information, discriminant 
similarity features of out-of-sample data are difficultly computed. For the 
issue, we employ an existing method, KPS based on sample distribution 
similar principle. More concretely, suppose the testing samples are 

{ } ,~,,~,~~
21

Nd
N RxxxX ×∈= …  and [ ] Nn

N RyyyY ×∈= ~,,~,~~
21 …  denotes 

the corresponding discriminant similarity features. For the sample set 
l [ ] ( ), ,d n NX X X R × += ∈�  we firstly construct a neighbour weight graph G 

by the following Gaussian weighting scheme: 
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where tsw  is the ( )st,  element in the weight matrix W of �, tG x  and � sx  are 

respectively, the t-th and s-th samples of l,X  and ( � ) ( ( � ) )ork ks tNei x Nei x  

is a sample set whose samples belong to the k  nearest neighbours of 
� ( � )or .s tx x  

The main idea of KPS is that the discriminant similarity feature of 
� tx  is similar to discriminant similarity features of the k  nearest 

neighbours of � ,tx  and the similarities are quantified by the neighbour 

weights of G. Note that the k  nearest neighbours contain not only 
training samples but also testing samples. Based on the idea, we give an 

iterative propagation criterion of Y~  at time :1+r  
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where [ ] nn
n RyyyY ×∈= ,,, 21 …  is the discriminant similarity 

features of X, and ( )rY~  is the r-th iterative result of WDLY 1.~ −=  is a 

stochastic matrix, in which D is a diagonal matrix whose elements on 
diagonal are the row sum of W. Then, we rewrite L as a partitioned 

matrix ,
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and  uuL  of size NN ×  corresponds to .~X  Via the iteration equation (6), we 

can obtain: 
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where ( )0~Y  is the initial matrix of ( ) ( ( ) )ν
uu

r
uu LLY or,~  denotes the r-th 

(or v-th) power of .uuL  Due to ,1WDL −=  every element of the matrix L 

is a non-negative real number that is less than one. By the limit 
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operation for ( )rY~  of Equation (7), we can easily observe that the 

iteration process converges to 
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where I is the NN ×  identity matrix. Although KPS is an iterative 
process, we obtain an analytical convergent solution by means of the 

limit operation, i.e., Y~  can be directly obtained by Equation (8). In 

addition, the discriminant similarity features Y~  obtained by KPS not 
only include the integral sample distribution information from the graph 
G, but also further inherit supervised information from Y. 

In order to clearly exhibit DFC, its brief steps are given as follows: 

Step 1. Construct the discriminant similarity features Y of training 
samples by Equation (4). 

Step 2. Compute the discriminant similarity features Y~  of out-of-sample 
data by Equation (8). 

Step 3. A classifier is used for final image recognition tasks. 

4. Experiments 

In this section, DFC is compared to two typical supervised feature 
extraction algorithms, i.e., LDA and KDA. In addition, all the algorithms 
are implemented in three real-world image datasets, i.e., COIL20 object 
dataset [9], Sheffield face dataset [10], and ORL face dataset [11]. To 
avoid the singular problem of LDA and reduce the time complexity of all 
the algorithms, we employ PCA to reduce the dimensionality of every 
image, where 99 percent energy is kept. Since the neighbour weight 
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graph of DFC is constructed by the Gaussian weighting scheme [12], DFC 
unavoidably contains two parameters, i.e., the neighbour parameter k  
and the Gaussian parameter .σ  In the experiments, the parameter k  is 

empirically set to 10 to avoid exhaustive search, and the Gaussian 
parameter σ  is selected from the range of {0.2r, 0.4r, 0.6r, 0.8r, r, 2r, 4r, 
6r, 8r, 10r}, and r is set as the averaged Euclidean distance from each 
sample to its ten nearest neighbours. Moreover, KDA is based on an 
empirical kernel method with Gaussian kernel function, and the 
Gaussian parameter σ  is assigned according to the above way. For all 
the algorithms, the nearest neighbour classifier with Euclidean distance 
metric is taken in final recognition tasks, and the best recognition rates 
of the two contrastive algorithms will be reported on all possible 
dimensions. 

On the COIL20 and Sheffield datasets, we randomly choose q(q = 3, 
4, 5) samples from each class for training and the rest are treated as the 
testing samples. To guarantee the randomness of the experiments, every 
random experiment is repeatedly performed 10 times, and Table 1 and 
Table 2 exhibit the average recognition rates. On ORL face dataset, the 
first q (q = 2, 3, 4, 5, 6) samples from each class are treated as the 
training samples, and the rest are used for testing, and we tabulate the 
recognition rates of all the algorithms in Table 3. 

Table 1. The average recognition rates (%) on the COIL-20 object dataset 

 3Train 4Train 5Train 

DFC 94.04 ± 1.72 96.10 ± 3.02 97.37 ± 1.73 

LDA 72.95 ± 2.3 77.63 ± 2.86 78.69 ± 2.02 

KDA 79.23 ± 1.99 83.59 ± 2.40 85.42 ± 1.61 

A ± B: A denotes the average recognition rate and B denotes the 
corresponding standard deviation. 
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Table 2. The average recognition rates (%) on the Sheffield face dataset 

 3Train 4Train 5Train 

DFC 90.54 ± 3.36 94.73 ± 2.26 95.09 ± 1.37 

LDA 59.44 ± 2.54 67.33 ± 3.68 69.92 ± 4.65 

KDA 79.83 ± 2.75 87.54 ± 2.34 91.75 ± 1.67 

A ± B: A denotes the average recognition rate and B denotes the 
corresponding standard deviation. 

Table 3. The recognition rates (%) on the ORL face dataset 

 2Train 3Train 4Train 5Train 6Train 

DFC 89.38 91.43 94.17 96.50 97.50 

LDA 83.13 85.36 89.58 91.00 91.88 

KDA 89.06 91.07 95.00 96.00 96.88 

From all the experimental results, it can be seen that DFC obviously 
outperforms the other algorithms on recognition rates. We employ 
discriminant and nonlinear similarity information to directly construct 
discriminant similarity features of training samples, and thus these 
features are more discriminative for recognition tasks, which are 
underlying reasons why DFC possesses the highest recognition rates. For 
LDA and KDA, the class label information is also utilized. However, 
unlike our method, the two methods do not directly take supervised 
information into account in the feature extraction process of training 
samples and out-of-sample data. Compared to LDA that only exploits 
label information, KDA further considers nonlinear relationships of 
samples and always has higher recognition rates, which reveals the 
importance of nonlinear information in image recognition to some extent. 
In addition, KDA even outperforms DFC when each class has four 
training samples on the ORL datasets. 

Compared to the other algorithms, DFC is relatively robust for the 
sample randomness, which can be clearly seen from the standard 
deviation of Tables 1 and 2. For all the datasets, the superiority of DFC is 
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most outstanding on the COIL20 object dataset. By analyzing all the 
experimental results, we also make two interesting observations. The 
smaller the ratios of training samples in all the samples are, the more 
obvious the advantages of our algorithm in recognition rates are. In 
addition, with the increase of training samples, the recognition rate 
differences between our algorithm and the other algorithms have a 
tendency to decrease, but our algorithm always has excellent recognition 
rates. In summary, the experimental results in the three real-world 
image datasets give a reasonable observation that DFC is an effective 
and relatively robust method for image recognition tasks. 

5. Conclusion 

Different from conventional feature learning methods, our DFC 
directly constructs discriminant similarity features of training samples 
by means of class labels and similarity information among samples, and 
the discriminating power of discriminant and similarity information is 
kept as much as possible. Although the discriminant similarity features 
process well discriminating power, we difficultly construct discriminant 
similarity features of out-of-sample data due to the lack of out-of sample 
class label information. With the help of KPS, this issue is solved and 
discriminant similarity features of out-of-sample data are obtained, 
which makes DFC can be utilized in image recognition tasks. To evaluate 
our DFC, we design extensive experiments on the three real-world image 
datasets, which reveal that our DFC is an effective and relatively robust 
method for image recognition. 
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