OPTIMIZATION OF MANUFACTURING OF LOGICAL CMOP VOLTAGE DIFFERENCING INVERTING BUFFERED AMPLIFIER MANUFACTURED BY USING FIELD-EFFECT HETEROTRANSISTOR TO DECREASE THEIR DIMENSIONS

E. L. PANKRATOV

Nizhny Novgorod State University
23 Gagarin Avenue
Nizhny Novgorod, 603950
Russia

Nizhny Novgorod State Technical University
24 Minin Street
Nizhny Novgorod, 603950
Russia

e-mail: elp2004@mail.ru

Abstract

In this paper, we introduce an approach to decrease dimensions of CMOP voltage differencing inverting buffered amplifier based on field-effect heterotransistors by increasing density of elements. Dimensions of the elements will be decreased due to manufacture heterostructure with specific structure, doping of required areas of the heterostructure by diffusion or ion implantation and optimization of annealing of dopant and/or radiation defects.

Keywords and phrases: CMOP voltage differencing inverting buffered amplifier, increasing integration rate of field-effect heterotransistors, optimization of manufacturing.

Received June 12, 2019

© 2019 Scientific Advances Publishers
1. Introduction

Currently, density of elements of integrated circuits and their performance intensively increasing. Simultaneously with increasing of the density of the elements of integrated circuit, their dimensions decreases. One way to decrease dimensions of these elements of these integrated circuit is manufacturing of these elements in thin-film heterostructures [1-4]. An alternative approach to decrease dimensions of the elements of integrated circuits is using laser and microwave types annealing [5-7]. Using these types of annealing leads to generation inhomogeneous distribution of temperature. Due to Arrhenius law the inhomogeneity of the diffusion coefficient and other parameters of process. The inhomogeneity gives us possibility to decrease dimensions of elements of integrated circuits. Changing of properties of electronic materials could be obtain by using radiation processing of these materials [8, 9].

In this paper, we consider CMOP voltage differencing inverting buffered amplifier based on field-effect transistors described in [10] (see Figure 1). We assume, that the considered element has been manufactured in heterostructure from Figure 1. The heterostructure consist of a substrate and an epitaxial layer. The epitaxial layer includes into itself several sections manufactured by using another materials. The sections have been doped by diffusion or ion implantation to generation into these sections required type of conductivity (n or p). Framework this paper we analyzed redistribution of dopant during annealing of dopant and/ or radiation defects to formulate conditions for decreasing of dimensions of the considered amplifier.
Figure 1a. Structure of considered amplifier. View from top.

<table>
<thead>
<tr>
<th>Source</th>
<th>Gate</th>
<th>Drain</th>
</tr>
</thead>
</table>

Figure 1b. Heterostructure with two layers and sections in the epitaxial layer.
2. Method of Solution

We determine spatio-temporal distribution of concentration of dopant by solving the following boundary problem:

$$\frac{\partial C(x, y, z, t)}{\partial t} = \frac{\partial}{\partial x} \left[D_C \frac{\partial C(x, y, z, t)}{\partial x} \right]$$

$$+ \frac{\partial}{\partial y} \left[D_C \frac{\partial C(x, y, z, t)}{\partial y} \right] + \frac{\partial}{\partial z} \left[D_C \frac{\partial C(x, y, z, t)}{\partial z} \right]$$

(1)

with boundary and initial conditions

$$\left. \frac{\partial C(x, y, z, t)}{\partial x} \right|_{x=0} = 0, \quad \left. \frac{\partial C(x, y, z, t)}{\partial x} \right|_{x=L_x} = 0, \quad \left. \frac{\partial C(x, y, z, t)}{\partial y} \right|_{y=0} = 0,$$

$$\left. \frac{\partial C(x, y, z, t)}{\partial y} \right|_{x=L_y} = 0, \quad \left. \frac{\partial C(x, y, z, t)}{\partial z} \right|_{z=0} = 0, \quad \left. \frac{\partial C(x, y, z, t)}{\partial z} \right|_{x=L_z} = 0,$$

$$C(x, y, z, 0) = f(x, y, z).$$

(2)

Here \(C(x, y, z, t)\) is the spatio-temporal distribution of concentration of dopant; \(T\) is the temperature of annealing; \(D_C\) is the dopant diffusion coefficient. Value of dopant diffusion coefficient depends on properties of materials, speed of heating and cooling of heterostructure (with account Arrhenius law). Dependences of dopant diffusion coefficients could be approximated by the following function [9, 11, 12]:

$$D_C = D_L(x, y, z, T) \left[1 + \xi \frac{C^T(x, y, z, t)}{P^T(x, y, z, T)} \right] \left[1 + \zeta_1 \frac{V(x, y, z, t)}{V^*} + \zeta_2 \left(\frac{V^*}{V^*} \right)^2 \right],$$

(3)

where \(D_L(x, y, z, T)\) is the spatial (due to existing several layers with different properties in heterostructure) and temperature (due to Arrhenius law) dependences of dopant diffusion coefficient; \(P(x, y, z, T)\) is the limit of solubility of dopant; parameter \(\gamma\) could be integer
framework the following interval $\gamma \in [1, 3, 9]$; $V(x, y, z, t)$ is the spatio-temporal distribution of concentration of radiation vacancies; V^* is the equilibrium distribution of concentration of vacancies. Concentrational dependence of dopant diffusion coefficient have been discussed in details in [9]. It should be noted, that using diffusion type of doping did not leads to generation radiation defects and $\zeta_1 = \zeta_2 = 0$. We determine spatio-temporal distributions of concentrations of point defects have been determine by solving the following system of equations [11, 12]:

$$\frac{\partial I(x, y, z, t)}{\partial t} = \frac{\partial}{\partial x} \left[D_I(x, y, z, T) \frac{\partial I(x, y, z, t)}{\partial x} \right]$$

$$+ \frac{\partial}{\partial y} \left[D_I(x, y, z, T) \frac{\partial I(x, y, z, t)}{\partial y} \right]$$

$$+ \frac{\partial}{\partial z} \left[D_I(x, y, z, T) \frac{\partial I(x, y, z, t)}{\partial z} \right]$$

$$- k_{I, V}(x, y, z, T) I(x, y, z, t)V(x, y, z, t)$$

$$- k_{I, I}(x, y, z, T)I^2(x, y, z, t),$$

$$\frac{\partial V(x, y, z, t)}{\partial t} = \frac{\partial}{\partial x} \left[D_V(x, y, z, T) \frac{\partial V(x, y, z, t)}{\partial x} \right]$$

$$+ \frac{\partial}{\partial y} \left[D_V(x, y, z, T) \frac{\partial V(x, y, z, t)}{\partial y} \right]$$

$$+ \frac{\partial}{\partial z} \left[D_V(x, y, z, T) \frac{\partial V(x, y, z, t)}{\partial z} \right]$$

$$- k_{I, V}(x, y, z, T) V(x, y, z, t)V(x, y, z, t)$$

$$- k_{V, V}(x, y, z, T)V^2(x, y, z, t)$$ \hspace{1cm} (4)
with boundary and initial conditions

\[\frac{\partial \rho(x, y, z, t)}{\partial x} \bigg|_{x=0} = 0, \quad \frac{\partial \rho(x, y, z, t)}{\partial x} \bigg|_{x=L_x} = 0, \quad \frac{\partial \rho(x, y, z, t)}{\partial y} \bigg|_{y=0} = 0, \quad \frac{\partial \rho(x, y, z, t)}{\partial y} \bigg|_{y=L_y} = 0, \quad \frac{\partial \rho(x, y, z, t)}{\partial z} \bigg|_{z=0} = 0, \quad \frac{\partial \rho(x, y, z, t)}{\partial z} \bigg|_{z=L_z} = 0, \]

\[\rho(x, y, z, 0) = f_p(x, y, z). \]

(5)

Here \(\rho = I, V; I(x, y, z, t) \) is the spatio-temporal distribution of concentration of radiation interstitials; \(D_p(x, y, z, T) \) is the diffusion coefficients of radiation interstitials and vacancies; terms \(V^2(x, y, z, t) \) and \(I^2(x, y, z, t) \) correspond to generation of divacancies and diinterstitials; \(k_{I,V}(x, y, z, T) \) is the parameter of recombination of point radiation defects; \(k_{\rho,p}(x, y, z, T) \) are the parameters of generation of simplest complexes of point radiation defects.

We determine spatio-temporal distributions of concentrations of divacancies \(\Phi_V(x, y, z, t) \) and diinterstitials \(\Phi_I(x, y, z, t) \) by solving the following system of equations [11, 12]

\[\frac{\partial \Phi_I(x, y, z, t)}{\partial t} = \frac{\partial}{\partial x} \left[D_{\Phi_I}(x, y, z, T) \frac{\partial \Phi_I(x, y, z, t)}{\partial x} \right] \\
+ \frac{\partial}{\partial y} \left[D_{\Phi_I}(x, y, z, T) \frac{\partial \Phi_I(x, y, z, t)}{\partial y} \right] \\
+ \frac{\partial}{\partial z} \left[D_{\Phi_I}(x, y, z, T) \frac{\partial \Phi_I(x, y, z, t)}{\partial z} \right] \\
+ k_{I,I}(x, y, z, T)I^2(x, y, z, t) \\
- k_I(x, y, z, T)I(x, y, z, t), \]
\[
\frac{\partial \Phi_V(x, y, z, t)}{\partial t} = \frac{\partial}{\partial x} \left[D_{\Phi_V}(x, y, z, T) \frac{\partial \Phi_V(x, y, z, t)}{\partial x} \right] \\
+ \frac{\partial}{\partial y} \left[D_{\Phi_V}(x, y, z, T) \frac{\partial \Phi_V(x, y, z, t)}{\partial y} \right] \\
+ \frac{\partial}{\partial z} \left[D_{\Phi_V}(x, y, z, T) \frac{\partial \Phi_V(x, y, z, t)}{\partial z} \right] \\
+ k_{V,V}(x, y, z, T) V^2(x, y, z, t) \\
- k_V(x, y, z, T) V(x, y, z, t)
\] (6)

with boundary and initial conditions

\[
\left. \frac{\partial \Phi_p(x, y, z, t)}{\partial x} \right|_{x=0} = 0, \left. \frac{\partial \Phi_p(x, y, z, t)}{\partial x} \right|_{x=L_x} = 0, \left. \frac{\partial \Phi_p(x, y, z, t)}{\partial y} \right|_{y=0} = 0, \left. \frac{\partial \Phi_p(x, y, z, t)}{\partial y} \right|_{y=L_y} = 0, \\
\left. \frac{\partial \Phi_p(x, y, z, t)}{\partial z} \right|_{z=0} = 0, \left. \frac{\partial \Phi_p(x, y, z, t)}{\partial z} \right|_{z=L_z} = 0,
\]

\[
\Phi_I(x, y, z, 0) = f_{\Phi_I}(x, y, z), \Phi_V(x, y, z, 0) = f_{\Phi_V}(x, y, z).
\] (7)

Here \(D_{\Phi_p}(x, y, z, T)\) are the diffusion coefficients of complexes of radiation defects; \(k_p(x, y, z, T)\) are the parameters of decay of complexes of radiation defects.

We determine spatio-temporal distributions of concentrations of dopant and radiation defects by using method of averaging of function corrections [13] with decreased quantity of iteration steps [14]. Framework the approach we used solutions of Equations (1), (4), and (6) in linear form and with averaged values of diffusion coefficients \(D_{0L}, D_{0I}, D_{0V}, D_{0\Phi L}, D_{0\Phi I}, D_{0\Phi V}\) as initial-order approximations of the required concentrations. The solutions could be written as

\[
C_1(x, y, z, t) = \frac{F_{0C}}{L_x L_y L_z} + \frac{2}{L_x L_y L_z} \sum_{n=1}^{\infty} F_{nC} c_n(x) c_n(y) c_n(z) e_{nC}(t),
\]

\[
I_1(x, y, z, t) = \frac{F_{0I}}{L_x L_y L_z} + \frac{2}{L_x L_y L_z} \sum_{n=1}^{\infty} F_{nI} c_n(x) c_n(y) c_n(z) e_{nI}(t),
\]
\[V_1(x, y, z, t) = \frac{F_{0C}}{L_x L_y L_z} + \frac{2}{L_x L_y L_z} \sum_{n=1}^{\infty} F_n c_n(x)c_n(y)c_n(z)e_n^V(t), \]

\[\Phi_{I1}(x, y, z, t) = \frac{F_{0\Phi I}}{L_x L_y L_z} + \frac{2}{L_x L_y L_z} \sum_{n=1}^{\infty} F_n \Phi_I c_n(x)c_n(y)c_n(z)e_n^\Phi_I(t), \]

\[\Phi_{V1}(x, y, z, t) = \frac{F_{0\Phi V}}{L_x L_y L_z} + \frac{2}{L_x L_y L_z} \sum_{n=1}^{\infty} F_n \Phi_V c_n(x)c_n(y)c_n(z)e_n^\Phi_V(t), \]

where \(e_{np}(t) = \exp\left[-\pi^2 n^2 D_0 t \left(\frac{1}{L_x^2} + \frac{1}{L_y^2} + \frac{1}{L_z^2} \right) \right], \]

\[F_{np} = \int_0^{L_x} c_n(u) \int_0^{L_y} c_n(v) \]

\[\times \int_0^{L_z} c_n(w) du dv dw, \]

\[c_n(\chi) = \cos(\pi n \chi / L_x). \]

The second-order approximations and approximations with higher orders of concentrations of dopant and radiation defects we determine framework standard iterative procedure \([13, 14]\). Framework this procedure to calculate approximations with the \(n \) order, one shall replace the functions \(C(x, y, z, t), I(x, y, z, t), V(x, y, z, t), \Phi_I(x, y, z, t), \) and \(\Phi_V(x, y, z, t) \) in the right sides of the Equations (1), (4) and (6) on the following sums \(\alpha_{np} + \rho_{n-1}(x, y, z, t) \). As an example we present equations for the second-order approximations of the considered concentrations

\[\frac{\partial C_2(x, y, z, t)}{\partial t} = \frac{\partial}{\partial x} \left[1 + \xi_1 \frac{V(x, y, z, t)}{V^*} + \xi_2 \frac{V^2(x, y, z, t)}{(V^*)^2} \right] \]

\[\times \left[1 + \xi \left[a_{2C} + C_1(x, y, z, t) \right] \right] D_L(x, y, z, T) \frac{\partial C_1(x, y, z, t)}{\partial x} \]

\[+ \frac{\partial}{\partial y} \left[D_L(x, y, z, T) \left[1 + \xi_1 \frac{V(x, y, z, t)}{V^*} + \xi_2 \frac{V^2(x, y, z, t)}{(V^*)^2} \right] \right] \]
\[
\left. + \frac{1}{\xi} \left[\frac{\partial C_1(x, y, z, t)}{\partial y} \right] \right) \\
+ \frac{\partial}{\partial z} \left(D_L(x, y, z, T) \frac{\partial C_1(x, y, z, t)}{\partial z} \right) \\
\times \left[1 + \xi \left(\frac{V(x, y, z, t)}{V^*} \right) + \xi_2 \left(\frac{V^2(x, y, z, t)}{V^*} \right) \right] \left(1 + \xi \left[\frac{\partial C_1(x, y, z, t)}{\partial y} \right] \right) \right),
\]

(8)

\[
\left. \frac{\partial I_2(x, y, z, t)}{\partial t} = \frac{\partial}{\partial x} \left[D_L(x, y, z, T) \frac{\partial I_1(x, y, z, t)}{\partial x} \right] \\
+ \frac{\partial}{\partial y} \left[D_L(x, y, z, T) \frac{\partial I_1(x, y, z, t)}{\partial y} \right] \\
+ \frac{\partial}{\partial z} \left[D_L(x, y, z, T) \frac{\partial I_1(x, y, z, t)}{\partial z} \right] \\
- \left(\alpha_{2I} + I(x, y, z, t) \right) \left(\alpha_{2V} + I(x, y, z, t) \right) \\
\times k_{I, V}(x, y, z, T) - k_{I, I}(x, y, z, T) \\
\times \left[\alpha_{2I} + I(x, y, z, t) \right]^2; \\
\right) \\
\frac{\partial V_2(x, y, z, t)}{\partial t} = \frac{\partial}{\partial x} \left[D_L(x, y, z, T) \frac{\partial V_1(x, y, z, t)}{\partial x} \right] \\
+ \frac{\partial}{\partial y} \left[D_L(x, y, z, T) \frac{\partial V_1(x, y, z, t)}{\partial y} \right] \\
+ \frac{\partial}{\partial z} \left[D_L(x, y, z, T) \frac{\partial V_1(x, y, z, t)}{\partial z} \right] \\
- \left(\alpha_{2I} + I(x, y, z, t) \right) \\
\times \left[\alpha_{2V} + I(x, y, z, t) \right] \\
\times k_{I, V}(x, y, z, T) - k_{V, V}(x, y, z, T) \\
\times \left[\alpha_{2V} + I(x, y, z, t) \right]^2,
\right)
\]

(9)
Integration of the left and right sides of Equations (8)-(10) gives us possibility to obtain relations for the second-order approximations of concentrations of dopant and radiation defects in final form

\[
C_2(x, y, z, t) = \frac{\partial}{\partial x} \left(\int_0^t \left[1 + \zeta_1 \frac{V(x, y, z, \tau)}{V^*} + \zeta_2 \frac{V^2(x, y, z, \tau)}{(V^*)^2} \right] \right) \cdot D_L(x, y, z, T) \frac{\partial C_1(x, y, z, \tau)}{\partial x} d\tau \n\]

\[
+ \frac{\partial}{\partial y} \int_0^t \left[1 + \zeta_1 \frac{V(x, y, z, \tau)}{V^*} + \zeta_2 \frac{V^2(x, y, z, \tau)}{(V^*)^2} \right] \cdot D_L(x, y, z, T) \frac{\partial C_1(x, y, z, \tau)}{\partial y} d\tau \n\]
\begin{align*}
 &+
 \frac{\partial}{\partial z}
 \int_{0}^{t}
 D_L(x, y, z, T) \left[1 + \xi_1 \frac{V(x, y, z, \tau)}{V^*} + \xi_2 \frac{V^2(x, y, z, \tau)}{(V^*)^2} \right] \\
 \times \left\{ 1 + \xi \left[\alpha_{2C} + C_1(x, y, z, \tau) \right] \right\} \\
 \frac{\partial C_1(x, y, z, \tau)}{\partial z} d\tau + f_C(x, y, z),
\end{align*}

(8a)

\begin{align*}
 &I_2(x, y, z, t) = \frac{\partial}{\partial x} \left[\int_{0}^{t}
 D_I(x, y, z, T) \frac{\partial I_1(x, y, z, \tau)}{\partial x} d\tau \right] \\
 + \frac{\partial}{\partial y} \left[\int_{0}^{t}
 D_I(x, y, z, T) \frac{\partial I_1(x, y, z, \tau)}{\partial y} d\tau \right] \\
 + \frac{\partial}{\partial z} \left[\int_{0}^{t}
 D_I(x, y, z, T) \frac{\partial I_1(x, y, z, \tau)}{\partial z} d\tau \right] \\
 - \int_{0}^{t}
 k_{I, I}(x, y, z, T)[\alpha_{2I} + I_1(x, y, z, \tau)]^2 d\tau + f_I(x, y, z) \\
 - \int_{0}^{t}
 k_{I, V}(x, y, z, T)[\alpha_{2I} + I_1(x, y, z, \tau)] [\alpha_{2V} + V_1(x, y, z, \tau)] d\tau,
\end{align*}

(9a)

\begin{align*}
 &V_2(x, y, z, t) = \frac{\partial}{\partial x} \left[\int_{0}^{t}
 D_V(x, y, z, T) \frac{\partial V_1(x, y, z, \tau)}{\partial x} d\tau \right] \\
 + \frac{\partial}{\partial y} \left[\int_{0}^{t}
 D_V(x, y, z, T) \frac{\partial V_1(x, y, z, \tau)}{\partial y} d\tau \right] \\
 + \frac{\partial}{\partial z} \left[\int_{0}^{t}
 D_V(x, y, z, T) \frac{\partial V_1(x, y, z, \tau)}{\partial z} d\tau \right].
\end{align*}
\[-\int_{0}^{t} k_{V, V}(x, y, z, T)[\alpha_{2I} + V_{1}(x, y, z, \tau)]^{2} d\tau + f_{V}(x, y, z)\]

\[-\int_{0}^{t} k_{I, V}(x, y, z, T)[\alpha_{2I} + I_{1}(x, y, z, \tau)][\alpha_{2V} + V_{1}(x, y, z, \tau)] d\tau,\]

\[\Phi_{I_{2}}(x, y, z, t) = \frac{\partial}{\partial x} \left[\int_{0}^{t} D_{\Phi I}(x, y, z, T) \frac{\partial \Phi_{I_{1}}(x, y, z, \tau)}{\partial x} d\tau \right] + \frac{\partial}{\partial y} \left[\int_{0}^{t} D_{\Phi I}(x, y, z, T) \frac{\partial \Phi_{I_{1}}(x, y, z, \tau)}{\partial y} d\tau \right] + \frac{\partial}{\partial z} \left[\int_{0}^{t} D_{\Phi I}(x, y, z, T) \frac{\partial \Phi_{I_{1}}(x, y, z, \tau)}{\partial z} d\tau \right]
+ \int_{0}^{t} I_{I_{2}}(x, y, z, T) I^{2}(x, y, z, \tau) d\tau
- \int_{0}^{t} k_{I}(x, y, z, T) I(x, y, z, \tau) d\tau + f_{\Phi I}(x, y, z), \quad (10a)\]

\[\Phi_{V_{2}}(x, y, z, t) = \frac{\partial}{\partial x} \left[\int_{0}^{t} D_{\Phi V}(x, y, z, T) \frac{\partial \Phi_{V_{1}}(x, y, z, \tau)}{\partial x} d\tau \right] + \frac{\partial}{\partial y} \left[\int_{0}^{t} D_{\Phi V}(x, y, z, T) \frac{\partial \Phi_{V_{1}}(x, y, z, \tau)}{\partial y} d\tau \right] + \frac{\partial}{\partial z} \left[\int_{0}^{t} D_{\Phi V}(x, y, z, T) \frac{\partial \Phi_{V_{1}}(x, y, z, \tau)}{\partial z} d\tau \right].\]
OPTIMIZATION OF MANUFACTURING OF ...

\[+ \int_{0}^{t} k_{V,V}(x, y, z, T)V^2(x, y, z, \tau)d\tau \]

\[- \int_{0}^{t} k_{V}(x, y, z, T)V(x, y, z, \tau)d\tau + f\Phi_{V}(x, y, z). \]

We determine average values of the second-orders approximations of the considered concentrations by using the following standard relations [13, 14]:

\[\alpha_{2p} = \frac{1}{\Theta L_{x}L_{y}L_{z}} \int_{0}^{\Theta} \int_{0}^{L_{x}} \int_{0}^{L_{y}} \int_{0}^{L_{z}} [\rho_{2}(x, y, z, t) - \rho_{1}(x, y, z, t)]dzdydxdt. \] (11)

Substitution of relations (8a)-(10a) into relation (11) gives us possibility to obtain relations for the required average values \(\alpha_{2p} \)

\[\alpha_{2C} = \frac{1}{L_{x}L_{y}L_{z}} \int_{0}^{L_{x}} \int_{0}^{L_{y}} \int_{0}^{L_{z}} f_{C}(x, y, z)dzdydx, \] (12)

\[\alpha_{2I} = \frac{1}{2A_{II00}} \left\{ (1 + A_{IV01} + A_{II10} + \alpha_{2V}A_{IV00})^{2} - 4A_{II00} \right\}^{1/2} \]

\[\left[\alpha_{2V}A_{IV10} - A_{II20} + A_{IV11} - \frac{1}{L_{x}L_{y}L_{z}} \int_{0}^{L_{x}} \int_{0}^{L_{y}} \int_{0}^{L_{z}} f_{I}(x, y, z)dzdydx \right]^{1/2} \]

\[- \frac{1 + A_{IV01} + A_{II10} + \alpha_{2V}A_{IV00}}{2A_{II00}}, \] (13a)

\[\alpha_{2V} = \frac{1}{2B_{4}} \sqrt{\frac{(B_{3} + A)^{2}}{4} - 4B_{4}\left(\frac{B_{3}y - B_{1}}{A} \right)} - \frac{B_{3} + A}{4B_{4}}, \] (13b)
where \(A_{abij} = \frac{1}{\Theta L_x L_y L_z} \int_0^\Theta \int_0^{L_x} \int_0^{L_y} \int_0^{L_z} k_{a,b}(x, y, z, T) I_i^j(x, y, z, t) \)
\[\times V_i^j(x, y, z, t) dz dy dx dt, \]

\[B_4 = A_{IV00}^2 A_{IV00}^2 - 2 \left[A_{IV00}^2 - A_{IV00} A_{IV00} \right]^2, \]

\[B_3 = A_{IV00} A_{IV00}^2 + A_{IV01} A_{IV00}^3 + A_{IV00} A_{II0} A_{IV00}^2 \]

\[- 4 \left(A_{IV00}^2 - A_{IV00} A_{IV00} \right) \left[2 A_{IV01} A_{IV00} + 2 A_{IV00}(1 + A_{IV01} + A_{II0}) \right] \]

\[- 2 A_{IV00}(A_{IV10} + A_{IV10} + 1) - 4 A_{IV10} A_{II0} A_{IV00}^2 \]

\[+ 2 A_{IV00} A_{IV01} A_{IV00}^2, B_2 = A_{IV00}^2 \left\{ (1 + A_{IV01} + A_{II0})^2 + A_{IV00}^2 A_{IV01}^2 + A_{IV00}^2 A_{IV01} \right\} \]

\[+ A_{IV00} 2 A_{IV00}(A_{IV00} + A_{IV00} A_{IV01} + A_{IV00} A_{II0} - 4 A_{IV10} A_{II0} \right) \]

\[- 4 A_{II00} \left[A_{IV11} - A_{II20} - \frac{1}{L_x L_y L_z} \int_0^{L_x} \int_0^{L_y} \int_0^{L_z} f_I(x, y, z) dz dy dx \right] \left\{ [2 A_{IV01} A_{IV00} \right. \]

\[+ 2 A_{IV00}(1 + A_{IV01} + A_{II0}) - 2 A_{II00}(A_{IV10} + 1 + A_{IV10}) \right] \}

\[+ 2 \left[A_{IV01}(1 + A_{IV01} + A_{II10}) + \frac{2}{L_x L_y L_z} \int_0^{L_x} \int_0^{L_y} \int_0^{L_z} f_I(x, y, z) dz dy dx \right. \]

\[- 2 A_{II00}(A_{IV20} - A_{IV11}) + A_{IV01}(1 + A_{IV01} + A_{II10}) \}

\[\times [2 A_{IV00}(1 + A_{IV01} + A_{II10}) + 2 A_{IV01} A_{IV00} - 2 A_{II00}(A_{IV10} + 1 + A_{IV10}) \right] \}

\[B_1 = 2 A_{IV00} A_{IV01}^2 \left(1 + A_{IV01} + A_{II10} \right)^2 - 8 \left[A_{IV11} - \frac{1}{L_x} \int_0^{L_x} \int_0^{L_y} \int_0^{L_z} \right. \]

\[\times \left[A_{IV00} + A_{IV01} + A_{II10} \right] \]
\[f_I(x, y, z)dzdydx \left(\frac{1}{L_xL_yL_z} - A_{II20} \right) + A_{IV00}A_{IV01}A_{II00} + A^2_{IV01}(A_{IV00} + A_{IV00}A_{IV01} + A_{IV00}A_{II10} - 4A_{IV10}A_{II00}) \]

\[- 2 \left[\frac{2A_{II00}}{L_xL_yL_z} \int_0^{L_x} \int_0^{L_y} \int_0^{L_z} f_I(x, y, z)dzdydx + A_{IV01}(1 + A_{IV01} + A_{II10}) \right] \]

\[- 2A_{II00}(A_{VV20} - A_{IV11}) + A_{IV01}(1 + A_{IV01} + A_{II10}) \]

\[\times [2A_{IV00}(1 + A_{IV01} + A_{II10}) - 2(A_{IV10} + A_{VV10} + 1)A_{II00} + 2A_{IV01}A_{IV00}]. \]

\[B_0 = 4A_{II00}A^2_{IV01} \left[A_{II20} + \frac{1}{L_xL_yL_z} \int_0^{L_x} \int_0^{L_y} \int_0^{L_z} f_I(x, y, z)dzdydx - A_{IV11} \right] \]

\[+ A^2_{IV01}(A_{IV01} + A_{II10} + 1)^2 - \left[\frac{2A_{II00}}{L_xL_yL_z} \int_0^{L_x} \int_0^{L_y} \int_0^{L_z} f_I(x, y, z)dzdydx \right] \]

\[+ A_{IV01}(1 + A_{IV01} + A_{II10}) - 2A_{II00}(A_{VV20} - A_{IV11}) \]

\[+ A_{IV01}(1 + A_{IV01} + A_{II10})]^2, y = \frac{3}{\sqrt[3]{q^2 + p^3}} - q - \frac{3}{\sqrt[3]{q^2 + p^3}} + q + \frac{B_2}{6}, \]

\[q = (2B_1B_3 - 8B_0) \frac{B_2}{48} + \frac{B_2^3}{216} + B_0(4B_2 - B_3^2) - B_1^2, \]

\[p = [3(2B_1B_3 - 8B_0) - 2B_2^2]/72, A = \frac{\sqrt{8y + B_3^2 - 4B_2}}, \]

\[\alpha_{2\Phi} = A_{II20} - \frac{1}{\Theta L_xL_yL_z} \int_0^\Theta \int_0^{L_x} \int_0^{L_y} \int_0^{L_z} k_I(x, y, z, T)I(x, y, z, t)dzdydxdt \]

\[+ \frac{1}{L_xL_yL_z} \int_0^{L_x} \int_0^{L_y} \int_0^{L_z} f_{\Phi I}(x, y, z)dzdydx, \quad (14) \]
The considered substitution gives us possibility to obtain equation for parameter α_2C. Solution of the equation depends on value of parameter γ. Analysis of spatio-temporal distributions of concentrations of dopant and radiation defects has been done by using their second-order approximations framework the method of averaged of function corrections with decreased quantity of iterative steps. The second-order approximation is usually enough good approximation to make qualitative analysis and obtain some quantitative results. Results of analytical calculation have been checked by comparison with results of numerical simulation.

3. Discussion

In this section, we analyzed the spatio-temporal distribution of concentration of dopant in the considered heterostructure during annealing. Figure 2 shows spatial distributions of concentrations of dopants infused (Figure 2a) or implanted (Figure 2b) in epitaxial layer. Value of annealing time is equal for all distributions framework every Figures 2a and 2b. Increasing of number of curves corresponds to increasing of difference between values of dopant diffusion coefficients in layers of heterostructure. The figures show that presents of interface between layers of heterostructure gives us possibility to increase absolute value of gradient of concentration of dopant in direction, which is perpendicular to the interface. We obtain increasing of absolute value of the gradient in neighbourhood of the interface. Due to the increasing one can obtain decreasing dimensions of transistors, which have been used in the amplifier. At the same time with increasing of the gradient homogeneity of concentration of dopant in enriched area increases.
To choose annealing time it should be accounted decreasing of absolute value of gradient of concentration of dopant in neighbourhood of interface between substrate and epitaxial layer with increasing of annealing time. Decreasing of value of annealing time leads to decreasing of homogeneity of concentration of dopant in enriched area (see Figure 3a for diffusion doping of materials and Figure 3b for ion doping of materials). Let us determine compromise value of annealing time framework recently introduced criteria [15-20]. Framework the criteria we approximate real distributions of concentration of dopant by ideal rectangle distribution $\psi(x, y, z)$. Farther we determine compromise value of annealing time by minimization of the mean-squared error.

Figure 2a. Distributions of concentration of infused dopant in heterostructure from Figures 1 and 2 in direction, which is perpendicular to interface between epitaxial layer substrate. Increasing of number of curve corresponds to increasing of difference between values of dopant diffusion coefficient in layers of heterostructure under condition, when value of dopant diffusion coefficient in epitaxial layer is larger, than value of dopant diffusion coefficient in substrate.
Figure 2b. Distributions of concentration of implanted dopant in heterostructure from Figures 1 and 2 in direction, which is perpendicular to interface between epitaxial layer substrate. Curves 1 and 3 corresponds to annealing time $\Theta = 0.0048(L_x^2 + L_y^2 + L_z^2) / D_0$.

Curves 2 and 4 corresponds to annealing time $\Theta = 0.0057(L_x^2 + L_y^2 + L_z^2) / D_0$. Curves 1 and 2 corresponds to homogeneous sample. Curves 3 and 4 corresponds to heterostructure under condition, when value of dopant diffusion coefficient in epitaxial layer is larger, than value of dopant diffusion coefficient in substrate,

$$U = \frac{1}{L_x L_y L_z} \int_0^{L_x} \int_0^{L_y} \int_0^{L_z} [C(x, y, z, \Theta) - \psi(x, y, z)] dz dy dx.$$
Figure 3a. Spatial distributions of dopant in heterostructure after dopant infusion. Curve 1 is idealized distribution of dopant. Curves 2-4 are real distributions of dopant for different values of annealing time. Increasing of number of curve corresponds to increasing of annealing time.

Figure 3b. Spatial distributions of dopant in heterostructure after ion implantation. Curve 1 is idealized distribution of dopant. Curves 2-4 are real distributions of dopant for different values of annealing time. Increasing of number of curve corresponds to increasing of annealing time.
Dependences of optimal annealing time are presented on Figures 4 for diffusion and ion types of doping, respectively. It should be noted, that it is necessary to anneal radiation defects after ion implantation. One could find spreading of concentration of distribution of dopant during this annealing. In the ideal case distribution of dopant achieves appropriate interfaces between materials of heterostructure during annealing of radiation defects. If dopant did not achieves any interfaces during annealing of radiation defects, it is practicably to additionally anneal the dopant. In this situation optimal value of additional annealing time of implanted dopant is smaller, than annealing time of infused dopant. At the same time ion type of doping gives us possibility to decrease mismatch-induced stress in heterostructure [21].

Figure 4a. Dependences of dimensionless optimal annealing time for doping by diffusion, which have been obtained by minimization of meansquared error, on several parameters. Curve 1 is the dependence of dimensionless optimal annealing time on the relation a/L and $\xi = \gamma = 0$ for equal to each other values of dopant diffusion coefficient in all parts of heterostructure. Curve 2 is the dependence of dimensionless
optimal annealing time on value of parameter ε for $a/L = 1/2$ and $\xi = \gamma = 0$. Curve 3 is the dependence of dimensionless optimal annealing time on value of parameter ξ for $a/L = 1/2$ and $\varepsilon = \gamma = 0$. Curve 4 is the dependence of dimensionless optimal annealing time on value of parameter γ for $a/L = 1/2$ and $\varepsilon = \xi = 0$.

Figure 4b. Dependences of dimensionless optimal annealing time for doping by ion implantation, which have been obtained by minimization of mean-squared error, on several parameters. Curve 1 is the dependence of dimensionless optimal annealing time on the relation a/L and $\xi = \gamma = 0$ for equal to each other values of dopant diffusion coefficient in all parts of heterostructure. Curve 2 is the dependence of dimensionless optimal annealing time on value of parameter ε for $a/L = 1/2$ and $\xi = \gamma = 0$. Curve 3 is the dependence of dimensionless optimal annealing time on value of parameter ξ for $a/L = 1/2$ and $\xi = \gamma = 0$. Curve 4 is the dependence of dimensionless optimal annealing time on value of parameter γ for $a/L = 1/2$ and $\varepsilon = \xi = 0$.
4. Conclusion

In this paper, we model redistribution of infused and implanted dopants during manufacture CMOP voltage differencing inverting buffered amplifier based on field effect heterotransistors. Several recommendations to optimize manufacture the heterotransistors have been formulated. Analytical approach to model diffusion and ion types of doping with account concurrent changing of parameters in space and time has been introduced. At the same time the approach gives us possibility to take into account nonlinearity of doping processes.

References

DOI: https://doi.org/10.1134/S1063782609070070

DOI: https://doi.org/10.1134/1.1393038

DOI: https://doi.org/10.1063/1.2364834

DOI: https://doi.org/10.1063/1.2120893

DOI: https://doi.org/10.1023/B:RAQE.0000025008.97954.1c

DOI: https://doi.org/10.4236/cs.2017.81002

DOI: https://doi.org/10.1103/RevModPhys.61.289

DOI: https://doi.org/10.1140/epjb/e2007-00173-8

DOI: https://doi.org/10.1134/S1063739707010040

DOI: https://doi.org/10.1142/S0219568108005328

DOI: https://doi.org/10.1166/jctn.2010.1361

DOI: https://doi.org/10.1166/jctn.2013.2785

DOI: https://doi.org/10.1142/S0219581X12500287

DOI: https://doi.org/10.1166/jctn.2014.3322