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Abstract 

In this paper we show, by a new approach called SCD (surjectivity by compact-
ness and density), the exact border controllability of the 1D heat equation by the 
use of strategic zone actuators. 

1. Motivations and Statement of Problem 

The exact controllability of distributed systems has in recent years a 
net renewed interest, thanks to the development by Lions [9, 10] of the 
HUM method (Hilbert Uniqueness Methods). It is essentially based on 
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the uniqueness of properties suitable for the homogeneous equation by a 
particular choice of controls, building a Hilbert space and a continuous 
linear mapping of this space into its dual Hilbert which is, in fact, an 
isomorphism which establishes the exact controllability. 

For hyperbolic problems this method has yielded important results 
(Lions [9, 10], Seck et al. [3], Lebeau [7], Fursikov and Imanuvilov [6], ...); 
Although when the checks are supporting small (Niane [8], Jai [5]), it 
seems little operative, as well as for technical reasons, the multiplier 
method does not lead to. 

As for parabolic equations any result (to our knowledge) has been 
prepared by this method. Also, the harmonic method is ineffective for 
such equations. 

This work is the logical sequence of the publications (see Seck et al. 
[1, 2]) where a new method has been developped to solves some of these 
problems types. This method is based on criteria of surjectivity of a linear 
continuous operator a Hilbert space in another builds directly from the 
exact controllability problem. 

The criteria are of two types: 

(1) A density criterion which is a consequence of the uniqueness 
properties (Lions [9, 10]). 

(2) A compactness criterion which follows from the parabolic nature 
of the operator or the regularity of control. 

In both cases these criteria are easier to verify than HUM method of 
Lions. 

This method which we call exact controllability by compactness and 
density opens up broad prospects for the theory of the exact controllability 
and allows for parabolic equations of Schrödinger, plates, Navier Stokes 
linearized solve many issues and opening up many perspectives. 
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2. Notations and Reminders 

2.1. Functional analysis reminders 

Let Ω  be a regular nonempty bounded domain of NR  of border ,Γ  of 

outer unit normal ( )σν  at point .Γ∈σ  

We denote A the unbounded operator of ( )Ω2L  defined by 

( ) { ( ) ( )},21
0 Ω∈∆−Ω∈= LuHuAD  (2.1) 

( )., ADuuAu ∈∀∆−=  (2.2) 

The operator A has a Hilbert base of eigenfunctions ( ) 1≥kkw  such that 

the sequence of associated eigenvalues ( ) 1≥λ kk  is decreasing. 

Let ,0>T  we consider the following Hilberts spaces and their 

respective dual. Let { }.1,0,1, −∈β∈α R  
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We equip βα,
TF  with the natural scalar product 
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and, the associated norm is .. ,βα
TF  

The dual of βα,
TF  is ., β−α−

TF  If βα∈ ,
TFx  and ,, β−α−∈ TFy  we have: 
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Remark 2.1. We can notice that: 

(i) ( ),20,0 Ω= LFT  

(ii) ( ),1
0

0,1 Ω= HFT  

(iii) ( ).10,1 Ω= −− HFT  

2.2. Case 1-D 

Let ] [1,0=I  an open interval of .R  We set the operator A defined 
by 

( ) ( ) ( ) ( ) .,; 2

2
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dx
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According to the spectral theory (Brezis [11], Hörmander [12]), A admits 
a Hilbert base of ( )IL2  of eigenfunctions ( ) 1≥kkw  whose associated 

eigenvalues are ( ) 1≥λ kk  rows in the decreasing direction where 

( )
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See also Lebeau [7] and Fursikov and Imanuvilov [6]. 

Definition 2.2. An integrable square function R→Ω⊂µ I:  is 
called strategic (see Jai [4, 5]) if it satisfies, 

for all ( ),2
0 IL∈φ  the solution +φ  of heat equation 

( ) ( ) ] [

( ) ] [
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 (2.6) 

satisfies: 

( ) ( ) .0then0,,0 0 =φ=φµ>∀ +∫ dxxtxt
I

 (2.7) 
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Remark 2.3. (1) In 1 dimension (see Seck et al. [2]), it has been 
proved that there are internal strategic actuators, this is the case of 
certain particular geometries. 

(2) Similarly, the exact controllability border of the heat equation in 
1D by strategic actuators area by the SCD method (surjectivity by 
compactness and density) was done, see Seck et al. [1, 2]. 

3. Internal Temporally Strategic Actuator 

Definition 3.1. An integrable square function 

( ) ( )














µ

→Ω×
µ

∗
+

xtxt ,,
:

RR
 

is called temporally strategic if for all ( )Ω∈φ 2
0 L  such that 

] [ ( ) ( ) ,0,,,,0 =φµ∞+∈∀ +

Ω∫ dxxtxtt  (3.1) 

then .00 =φ  

Remark 3.2. If the application 

( ) ( )dxxtxtt ,, +

Ω
φµ∫  (3.2) 

is analytic, it is enough that the relation is true for all ] [Tt ,0∈  so that 

it is true for all .∗+∈ Rt  

An example of a temporally strategic actuator is given: 

Theorem 3.3. If ( )Ω∈φ 2
0 L  and verify: 0, 0 ≠φ∈∀ ∗

kk N  for all 

open non-empty O  content in Ω  then ( ) ( )xtxt ,, +φχ=µ O  is a 

temporarily strategic actuator. 
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Proof 3.4. We have: 

( ) ( ) ( )dxxwxtt kk ,+

Ω
φχ=µ ∫ O  

( ) ( )dxxwxt k,+φ= ∫O  

.0
1

dxwwe h
t

h
h

h
k∫∑ λ−

+∞

=

φ=
O

 

Assume ,dxwwhh kk ∫=α
O

 we obtain 

( ) .0
1

t
hh

h

het λ−
+∞

=

αφ=µ ∑ kk  

Let ( )Ω∈ζ 2
0 L  such that: 

( ) ( ) ( ) ,0then0,,,0 0
1

=µζ=ζµ>∀ λ−
+∞

=

+

Ω ∑∫ t

h
etdxxtxtt k

kk  (3.3) 

let 
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so ( ) .,000 kkk ht hh ∀=αφζ  

As ,00 ≠φ h  then .0, 0 =αζ∀∀ hh kkk  

Suppose it exists ∗∈ N0k  such that .00 =α∈∀ ∗
khh N  

Also 

( ) ( ) ,0, 0 =χ∈∀ ∫Ω
∗ dxxwxwh hkON  (3.5) 

so 0kwOχ  is identically null. 

Or kw  is a non-zero eigenfunction, this is impossible   
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Corollary 3.5. For any open non-empty contained in ,Ω  there is a 

temporarily strategic µ  actuator whose support contained in .O×∗
+R  

Proof 3.6. Just take ( )Ω∈φ⊆ω 2
0, LO  such that 0, 0 ≠φ∈∀ kk N  

and, to pose ( ) ( ) ( ).,, xtxxt +φωχ=µ O    

4. Exact Internal Controllability of the Heat Equation 

It is recalled that the exact controllability is reflected here by this 
definition: 

Definition 4.1 (Reminder). The L operator defined under (4.3). The 
system defined by (4.1) will be say exactly controllable on time T if and 
only if L is surjective. 

Theorem 4.2. If µ  is a temporally strategic actuator, for all ,1,0
0

−∈ TFy  

there exists ] [( )TL ,02∈β  such that the solution y of the equation 

( ) ( ) ( ) ( ) ] [

] [
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verify ( ) .0=Ty  

Proof 4.3. First step: 

Formal construction of the L operator? 

We first give a notation: If ] [( )Ω×∞+∈ ,02Lf  and for t fixed, we write 

( )xtsf ,,+  the solution of the direct homogeneous heat equation of the 
initial data ( )., xtf  So we have 

( ) ( ) ( ),,,
1

xwetfxtsf s
kk

k

kλ−
+∞

=

+ ∑=   (4.2) 

where ( ) 1≥xfk  is given by ( ) ( ) ., 1 kkk
wtfxtf ∑+∞

=
=  
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In the following, we will also use the functional notation ( )., tsf +  Let  

,1,0
0 TFv ∈/  multiply the Equation (4.1) by +/v  and integrating by parts: 

( ) ( ) ( ) ( ) ,,,,
0,00 1,01,0 dxdtxtvxtvydxTvTy
T

FF TT

−

ΩΩ
/µ=>/<−/ ∫∫∫ −  

let 

( ) ( ) dtvtttvy
TTTT FF

T

FF 1,01,01,01,0 ,0
0,00 ,,, −− >/µ<β−=>/< −∫  

( ) ( ) ,,, 1,01,0 ,0
0 TT FF

T
vdtttt −>/µβ<−= −∫  

from where 

( ) ( ) ,,
0

0 dtttty
T

−µβ−= ∫  

so 

( ) ( ) ( ) .,
0

1 dttttL
T

−µβ−=β ∫  

We are posing now: ( ) ( ( )) ( )TLL +β−=β 1  so 

( ) ( ) ( ) .,
0

dtttTtL
T

−µβ−=β +∫   (4.3) 

Second step: 

( ] [( ) ( ) ?,,0 22 Ω∈ LTLL L  
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Let ] [( ),,02 TL∈β  we have 
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Third step: 

( ] [( ))TLL ,02  is dense in ( ) .?2 ΩL  

Let TFv ∈/0  such that ( )Tv−/  is orthogonal to ( ] [( ));,02 TLL  let 

] [( ),,02 TL∈β  we have 
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from where 

] [ ( ) ( ) ,0,,,0 =/µ∈∀ −

Ω∫ dxtvdtxtTt  

so 00 ≡/v  from where ( ) .00 =/ Tv  

Fourth step: 

LL∗  is compact of ] [( )TL ,02  in ] [( ) ?,02 TL  

( ) ( )( ) ( ) ( ) ( ) ( ) ( )dsdxsTsdtttTtLL
TT

L −µγ−µβ=γβ ++
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( ) ( ) ( ) ( ) ( ),,
1

tTsT

j
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=

µµ= ∑ kk
kk  

K is continuous on [ ] [ ],,0,0 TT ×  just take ( )tµ  regular and the choice of 

0φ  regulates the problem. 
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Fifth step: Conclusion 

Let 1,0
0

−∈ TFy  then it exists ] [( )TL ,02∈β  such that 

( ) ( ) ( ) .,
0
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T
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Let ,1,0
0 TFv ∈/  we have 
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On the other hand, there is the solution of 
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then 

( ) ( ) ( ) ( ) ,,
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βµ=/−/ ∫∫∫ −  

so 
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from where ( ) .0=Ty    

 

 



CHEIKH SECK 54

Remark 4.4. We can choose the control as regular as we want. 

Theorem 4.5. Let O  an open part of Ω  not empty, for all 

,1,0
0

−∈ TFy  it exists ] [( )Ω×∈µ TL ,02  to support contained in 

] [ O×T,0  such that if y is solution 

( ) ( ) ] [

] [
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then ( ) .0=Ty  

Proof 4.6. Take η  functions to support contained in ,O  belonging to 

( )ΩD  non-zero on an open content in .O  

Let ( )ADv ∈/0  such that 0, 0 ≠φ∈∀ ∗
kk N  then ( ) ( )tt +ηφ=µ  is 

temporally strategic and we apply the Theorem 4.3.  
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