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Abstract 

A well-known theorem by Cohn ([3]) from 1968 characterizes the principal ideal 
domains (PIDs) as atomic Bézout domains, while a theorem by Chinh and Nam 
([1]) from 2008 characterizes them as unique factorization domains all of whose 
maximal ideals are principal. We give a simple new characterization which implies 
each of these characterizations. For that purpose we introduce a new type of 
integral domains (we call them PC domains) and using this notion we characterize 
the PIDs as atomic PC domains. We discuss the importance of PC domains and 
find their position in a large implication diagram containing various types of 
integral domains. 
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1. Introduction 

A well-known theorem by Cohn ([3], Proposition 1.2) from 1968 
characterizes the principal ideal domains (PIDs) as atomic Bézout 
domains, while a theorem by Chinh and Nam ([1], Corollary 1.2) from 
2008 characterizes them as unique factorization domains (UFDs) all of 
whose maximal ideals are principal. In this paper, we give a simple new 
characterization which implies each of these characterizations. For that 
purpose we introduce a new type of integral domains (we call them PC 
domains). They are integral domains whose proper two-generated ideals 
are contained in proper principal ideals. Using this notion we characterize 
the PIDs as atomic PC domains. Apart from showing that our new 
characterization implies the two mentioned characterizations, we discuss 
the importance of the PC condition, finding its precise position in a large 
implication diagram (Diagram 2) containing various types of integral 
domains and comparing its role with respect to the PIDs with the role of 
the so-called AP condition with respect to the UFDs, namely, AP is the 
weakest condition on the diagram which, together with atomicity, implies 
the UFD-ness, while PC is the weakest condition on the diagram which, 
together with atomicity, implies the PID-ness. 

We begin by recalling some definitions and statements. All the notions 
that we use but not define in this paper can be found in the classical 
reference books [2] by Cohn, [5] by Gilmer, [6] by Kaplansky, and [7] by  
Northcott. 

In this paper all rings are integral domains, i.e., commutative rings 
with identity in which 0=xy  implies 0=x  or .0=y  A non-zero non-
unit element x of an integral domain R is said to be irreducible (and called 
an atom) if yzx =  with Rzy ∈,  implies that y or z is a unit. A non-zero 

non-unit element x of an integral domain R is said to be prime if yzx  

with Rzy ∈,  implies yx  or .zx  Every prime element is an atom, but 

not necessarily vice-versa. Two elements Ryx ∈,  are said to be 

associates if ,uyx =  where u is a unit. We then write .~ yx  
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An integral domain R is said to be atomic if every non-zero non-unit 
element of R can be written as a (finite) product of atoms. An integral 
domain R is called a principal ideal domain (PID) if every ideal of R is 
principal. The condition for integral domains that every ideal is principal 
is called the PID condition. An integral domain R is called a unique 
factorization domain (UFD) if it is atomic and for every non-zero, non-unit 

,Rx ∈  every two factorizations of x into atoms are equal up to order and 

associates. An integral domain R is called an ACCP domain if every 
increasing sequence of principal ideals of R stabilizes. It is well-known 
that every PID is a UFD, every UFD is an ACCP domain, and every ACCP 
domain is atomic. 

An integral domain R is called a Bézout domain if every two-generated 
ideal of R is principal. (An ideal I of R is said to be two-generated if 

( )baI ,=  for some ., Rba ∈ ) The condition for integral domains that 

every two-generated ideal is principal is called the Bézout condition. 
Obviously, every PID is a Bézout domain. The converse is not true. 

Proposition 1.1 ([4], pages 306-307). Bézout condition for integral 
domains is strictly weaker than the PID condition. More concretely, 

[ ]XXR QZ +=  is a Bézout domain which is not a PID. 

Note that the notation [ ]XXR QZ +=  means that R consists of all 

the polynomials from [ ]XQ  whose constant term is from .Z  

We call the PIP condition the condition for integral domains that 
every prime ideal is principal. We call the MIP condition the condition for 
integral domains that every maximal ideal is principal. The MIP domains 
are the domains which satisfy the MIP condition. Clearly, the PID 
condition implies the PIP condition and the PIP condition implies the MIP 
condition. More precise relations between these conditions are given in the 
next proposition and Corollary 3.5. 
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Proposition 1.2 ([4], page 283). The PID condition for integral 
domains is equivalent to the PIP condition. In other words, if every prime 
ideal of an integral domain R is principal, then R is a PID. 

The final item that we cover in this introduction is the notion of a 
monoid ring for a commutative monoid M, written additively. The 
elements of the monoid ring [ ],; MXF  where F is a field and X is a 

variable, are the polynomial expressions, also called polynomials, 

( ) ,11 nXaXaXf n
αα ++= "   (1) 

where .,,,,,,0 11 MFaan nn ∈αα∈≥ ……  The polynomials ( ) ,aXf =  

,Fa ∈  are called the constant polynomials. The addition and the 

multiplication of the polynomials are naturally defined. We say that M is 
cancellative if for any elements cabaMcba +=+∈ ,,,  implies .cb =  

The monoid M is torsion-free if for any N∈n  and nbnaMba =∈ ,,  

implies .ba =  All the monoids that we use in this paper are cancellative 
and torsion-free, hence the monoid rings [ ]MXF ;  are integral domains. 

2. A New Condition for Integral Domains 

We introduce a new condition for integral domains, that we haven’t 
met in the literature. 

Definition 2.1. We call the principal containment condition (PC) the 
condition for integral domains that every proper two-generated ideal is 
contained in a proper principal ideal. We say that an integral domain is a 
PC domain if it satisfies the PC condition. 

Clearly, Bézout condition implies the PC condition, and the MIP 
condition implies the PC condition. 

Proposition 2.2. There exists a Bézout domain which is not a MIP 
domain. 
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Proof. Consider the monoid ring [ ]+= Q;XFR  (F a field), consisting 

of all the polynomials of the form 

( ) ,110 nXaXaaXf n
αα +++= "  

with Faaa n ∈,,, 10 …  and nα<<α< "10  from .+Q  Let m  be the 

maximal ideal of R consisting of all the polynomials in R whose constant 
term is 0. Consider the localization .mRD =  The units of D have the form 

,
1

1

10

10
n

m

XbXbb
XaXaa

n

m
ββ

αα

+++

+++

"
"  

where the ia  and jb  are from F with 00 , ba  non-zero. Hence every non-

zero element of D has the form ,αuX  where u is a unit in D and .+∈α Q  

The maximal ideal mmR  of D consists of all αuX  with 0>α  and is not 

finitely generated. So D does not satisfy the MIP condition. However, for 

any two elements βα vXuX ,  of D with β≤α  we have βα vXuX  and so D 

is Bézout.   

We will show later (see Proposition 3.4) that there also exists an MIP 
domain which is not a Bézout domain. Thus the notion of a PC domain is 
strictly weaker than each of the notions MIP and Bézout. Finally in 
Proposition 3.3, we show that the notion of a PC domain is not “just a 
union” of the notions of Bézout and MIP domains, i.e., that there is a PC 
domain which is neither Bézout, nor MIP. 
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Consider now the following two-part diagram: 

 

Diagram 1. 

There is one equivalence in the diagram, the rest are implications (and 
all of them are strict) and non-implications. The higher the condition is   
(in each of the two parts of the diagram), the weaker it is. One can try to 
characterize PIDs by combining one condition from the left part of the 
diagram with one condition from the right part of the diagram. 

The next two theorems are characterizations of PIDs of that type. The 
first one (Cohn’s Theorem) is Theorem 2.3 that was first stated in ([3], 
Proposition 1.2). (Cohn remarks in [3] that it is easy to prove that Bézout’s 
domains which satisfy ACCP are PIDs, however, ACCP is not equivalent 
to atomicity, as it was later shown.) The proof can be seen in Cohn’s book 
([2], 10.5, Theorem 3). The second one is Theorem 2.4, proved in 2008 by 
Chinh and Nam in [1]. 

Theorem 2.3 (Cohn’s Theorem). If R is an atomic Bézout domain, then 
R is a PID. 

Theorem 2.4 ([1], Corollary 1.2). If R is a UFD in which every 
maximal ideal is principal, then R is a PID. 
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Our next theorem improves both of the above theorems. It weakens 
one of the conditions in Cohn’s theorem and both conditions in the Chinh 
and Nam’s theorem. 

Theorem 2.5. Let R be an atomic domain which satisfies the PC 
condition. Then R is a PID. 

Proof. By Proposition 1.2, it is enough to show that every prime ideal 
is principal. Let P be a nonzero prime ideal of R. Let 0≠x  be an element 
of P. Since R is atomic, we can write ,21 npppx "=  where the s,

ip  are 

atoms. As Pppp n ∈"21  and P is prime, at least one of the ,s,
ip  say ,1p  

is in P. We claim that ( ).1pP =  Let y be an element of P. Since R satisfies 

( ) ( )cypPC ⊂,, 1  for some proper principal ideal (c). From ctp =1  for 

some ,Rt ∈  we have 1~t  (as 1p  is an atom and 1~/c ). Now from 

cry =  for some ,Rr ∈  we get ,1
1 rtpy −=  hence ( ).1py ∈  Thus 

( ).1pP =    

3. Merging the Diagrams and Making  
Them More Detailed 

In this section, we will merge the diagrams from the previous section 
and make them more detailed. That will illustrate the importance of the 
notion of a PC domain that we introduced in the previous section. We first 
need to give some definitions. 

An integral domain is called a GCD domain if every two elements of it 
have a greatest common divisor (see [6], page 32). An element c of an 
integral domain D is called primal if for any Dba ∈,  we have: ⇒abc  

,21ccc =  where ac1  and .2 bc  This notion was introduced in [3], where 

a new version of the definition of Schreier domains is also given: an 
integral domain D is Schreier if it is integrally closed and each of its 
elements is primal. The notion of pre-Schreier domains is introduced in 
[8]: an integral domain is pre-Schreier if each of its elements is primal. 
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Clearly every Schreier domains is pre-Schreier, but not conversely. A new 
proof of the well-known result that every GCD domain is Schreier was 
given in [3]. The converse is not true. Also, every Bézout domain is GCD, 
but not conversely (see [3]). An integral domain is called an AP domain if 
each of its atoms is prime, i.e., if the notions of an atom and of a prime 
element in it coincide. Every pre-Schreier domain is an AP domain, but 
not vice-versa (see [8]). It is well-known that an integral domain is a UFD 
if and only if it is atomic and AP. 

Let us say a few words about the importance of the notion of PC 
domains. An old result of Skolem from 1939 states that an integral 
domain is a UFD if and only if it is atomic and GCD. However, weaker 
conditions were found which, together with atomicity, imply the UFD 
condition, namely, an integral domain is UFD if and only if it is atomic 
and AP (or pre-Schreier, or Schreier, or GCD). An analogous situation is 
with the conditions which, together with atomicity, imply the PID 
condition (see Diagram 2). Cohn’s 1968 theorem ([3]) states an integral 
domain is PID if and only if it is atomic and Bézout. The result of Chinh 
and Nam ([1]) states that an integral domain is a PID if and only if it is 
UFD and MIP, which is, as a consequence of our Theorem 2.5, equivalent 
with atomic and MIP. Our notion of PC domains provides a condition 
which is weaker than each of the conditions Bézout and MIP, however, it is 
still strong enough to be, together with atomicity, equivalent with the PID 
condition. That is the main value of this notion. 

We will now start justifying Diagram 2. 

Proposition 3.1. Every PC domain is an AP domain. 

Proof. Let R be a PC domain and let a be an atom of R. Suppose 
xya  for some ,, Ryx ∈  but xa  and .ya  Then yx,  are not units. 

The ideal ( )xa,  is proper, otherwise 1=+ sxra  for some ,, Rsr ∈  hence 

,ysxyrya =+  hence ystarya =+  for some ,Rt ∈  hence ,ya  a 

contradiction. Since R is PC, there is a proper ideal (b) containing ( )., xa  

But then ( ),ba ∈  so ,ab  hence (since a is an atom and b is a non-unit) 

.~ ab  Also ( ),bx ∈  so ,xb  hence ( ),~as abxa  a contradiction.   
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Diagram 2. 

Proposition 3.2. There exists an AP domain which is not a PC 
domain. 

Proof. Consider the additive monoid 00 NN ×=M  and the associated 

monoid domain [ ],; MXFR =  where F is a field. The polynomials Rf ∈  

whose constant term is 0 form a maximal ideal, say ,m  of R. Let mRD =  

be the localization of R at .m  The elements of D have the form 

( ) ( ( ) ( ) )
( ) ( ) ,

1 ,,
1

,,
10

,

11

11

ll qp
l

qp

nmnmsr

XbXb
XaXaaXx

+++

++⋅
=

"
" kk

k   (2) 
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where ( ) ,0,1,0,,0, 0 ≠≤≤≤≤∈≥ aljiFbal ji kk  and ( ),, 11 nm  

( )kk nm ,,…  (pairwise distinct), ( ) ( )ll qpqp ,,,, 11 …  (pairwise distinct), 

( )sr,  are elements of .00 NN ×  Hence ( )srXx ,~  and so the only atoms of 

D are ( )1,0X  and ( ),0,1X  and they are both prime. Thus D is an AP 

domain. The ideal ( ( ) ( ) )0,11,0 , XX  is proper, but it is not contained in a 

proper principal ideal as no ( )srX ,  can divide both ( )0,1X  and ( )1,0X  
unless it is a unit. Thus D is not a PC domain.   

Proposition 3.3. There exists a PC domain which is neither pre- 
Schreier (hence not Bézout), nor MIP. 

Proof. Let i be an irrational number such that .10 << i  Let q be a 
rational number such that .2019 << q  Consider the additive submonoid 

([ ] ) ( )∞++= ,2525,0 iiM ∪∩ Q  

of .+R  Since ,5.5255 <+< i  we have 

,10108 <−−< iq  

so that .10 Miq ∈−−  Let r be a rational number from (10, 10 + i). Then 

.108 <−< rq  We claim that it is impossible to find four numbers ,, βα  

M∈β′α′,  such that the following relations hold (at the same time): 

,10 i+=β+α   (3) 

,r=α′+α   (4) 

.rq −=β′+β   (5) 

Suppose to the contrary. Then by (4) at least one of the elements α′α,  is 

,2
r≤  hence ,25 i+<  hence rational. Since α′+α  is rational, the other 
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element is rational too. Thus α  is rational. In the same way β  is rational. 

However, by the Equation (3) β+α  is irrational, a contradiction. 

Let now [ ],; MXFR =  where F is a field. Then the polynomials 

Rf ∈  whose constant term is 0 form a maximal ideal, say ,m  of R. Let 

,mRD =  the localization of R at .m  The elements of D have the form 

( ) ,
1 1

1

1

10
m

m

XbXb
XaXaaXx

m

m
δδ

γγγ

+++

+++
=

"
"  

where ( ),0,0,,0, njmiFbanm ji ≤≤≤≤∈≥  and ,,,, 1 mγγγ …  

nδδ ,,1 …  are elements of M with .0,0 11 nm δ<<δ<γ<<γ< ""  

We can write ,uXx γ=  where u is a unit in ., MD ∈γ  The element x is a 

unit if and only if .0=γ  Since ,10 Miq ∈−−  we have 

.10 rqrqi XXXX −+ =   (6) 

We show that it is not possible to find two elements Dzy ∈,  such that 

,, rqr XzXy −  and .10 iXyz +=  Suppose to the contrary. Then we can 

assume α= Xy  and β= Xz  for some ,, M∈βα  such that there are 

M∈β′α′,  satisfying the relations (3), (4), and (5). However, we showed 

above that that is not possible. Hence D is not pre-Schreier. In particular, 
D is not Bézout. 

Note that the maximal ideal mmR  of D is not finitely generated since 

for any ,,,1 tXX γγ …  with ( )tii ,,10 …=>γ  elements of M, there is a 

M∈γ  such that { },,,min0 1 tγγ<γ< …  so that ( ).,,1 tXXX γγγ ∈/ …  

Thus D is not MIP. 
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However, D is a PC domain since for any DXX ∈γγ 21 ,  (with 0, 21 >γγ  

elements of M) there is a sufficiently small positive rational number 

M∈γ  such that 1γγ XX  and .2γγ XX  Hence ( ) ⊇⊃ γXD  ( )., 21 γγ XX   

 

Proposition 3.4. There exists an MIP domain which is not pre-
Schreier (hence not Bézout). 

Proof. Let the numbers ,,, rqi  and the monoid M be like in 

Proposition 3.3. Consider the submonoid 

{ }( )( ) ,0\ 0NZ ∪MN ×=  

of the additive monoid .+× RZ  Let [ ],; NXFR =  where F is a field. The 

polynomials Rf ∈  whose constant term is 0 form a maximal ideal, say 

,m  of R. Let mRD =  be the localization of R at .m  The elements of D 

have the form 

( ) ( )

( ) ( ) ,
1 ,,

1

,,
0

11

00

nn

mm

l
n

l
m

XbXb
XaXax

ββ

αα

+++

++
=

"
" kk

 (7) 

where ( ),1,0,,0, njmiFbanm ji ≤≤≤≤∈≥  and ( ) ( ),,,,, 00 mm αα kk …  

( ) ( )nnll ββ ,,,, 11 …  are elements of N. We assume that mα≤≤α "0   

and the ( )ii α,k  are pairwise distinct, as well as that nβ≤≤β< "10   

and the ( )jjl β,  are pairwise distinct. Let ν  be the largest element of 

{ }m,,1,0 …  such that .0 να==α "  Then we denote 

( ) ( ).000 ,,
0

αα∗ ++= ν
ν

kk XaXax "  

Note that for any ,, Dyx ∈  we have 

( ) .∗∗∗ = yxxy   (8) 

Suppose also that .10 νkkk <<< "  We consider two cases. 
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Case 1: .00 =α  Then we factor out ( )0,0kX  from the numerator in (7) 
and have 

( ( ) )
( ) ( ) ( )

( ) ( ) ,
1 ,,

1

,,0,
100,1

11

0001
0

nn

mm

l
n

l
m

XbXb
XaXaXaaXx

ββ

αα−−

+++

+++++
⋅=

"
"" kkkkk

k ν
ν  

so that either 

( ),0if 0 == kux   (9) 

or 

( ( ) ) ( ),1if 0
0,1 0 ≥= kk uXx   (10) 

where u is a unit in D. 

Case 2: .00 >α  Then we factor out any ( )( )0
0, N∈kkX  from the 

numerator in (7) and we have 

( ( ) )
( ) ( )

( ) ( ) .
1 ,,

1

,,
00,1

11

00

nn

mm

l
n

l
m

XbXb
XaXaXx

ββ

α−α−

+++

++
⋅=

"
" kkkk

k   (11) 

Denote ( ( ) ),0,1X=n  the ideal of D generated by ( ).0,1X  It follows from 

(9), (10), and (11) that ,mmn R=  the maximal ideal of D, and that in the  

Case 1, x is an element of ( ),0\ 0
100 ≥+ kkk nn  and in the Case 2, x is an 

element of .1
k

k nn ∞
=

ω = ∩  Since the maximal ideal is principal, D is an 
MIP domain. 

We now show that D is not pre-Schreier. By (6) from Proposition 3.3, 

( ) ( ) ( ) ( ).,0,0,010,0 rqrqi XXXX −+ =   (12) 

We show that it is not possible to find two elements Dzy ∈,  such that 

( ),,0 rXy  

( ),,0 rqXz −  

( ).10,0 iXyz +=   (13) 
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Suppose to the contrary. Then 

( ),,0 rXyy =′  (14) 

( ),,0 rqXzz −=′  (15) 

for some ., Dzy ∈′′  Let β′α′βα ,,,  be the second coordinate of the 

exponents that appear in ,,, ∗∗∗ ′yzy  and ,∗′z  respectively. Then from 

(13), (14), and (15), using (8), we get 

,10 i+=β+α  

,r=α′+α  

.rq −=β′+β  

However, this is not possible as we have seen in the proof of Proposition 
3.3.  

Corollary 3.5. The MIP condition is strictly weaker than the PIP 
condition. 

Proof. Otherwise every MIP domain would be a PID, hence pre-
Schreier, contradicting the previous proposition.  
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