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Abstract 

We investigate the global dynamics of the equation 
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where the parameters ,, βα  and γ  are nonnegative numbers with 

0>γ+β+α  and the initial conditions 1−x  and 0x  are arbitrary positive real 

numbers. The equilibrium points of the considered equation are obtained and 
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classified whether stable or unstable. The boundedness, the global stability and 
the periodicity of the solutions are investigated. Some numerical examples are 
given to illustrate the obtained results. 

1. Introduction 

We investigate the global behaviour of the equation 
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where the parameters ,, βα  and γ  are nonnegative numbers with 

0>γ+β+α  and the initial conditions 1−x  and 0x  are arbitrary positive 

real numbers. 

Many authors and researchers are interesting in studying the global 
attractivity, the boundedness character and the periodic nature of 
nonlinear difference equations. 

Hrustić et al. [13] studied the global dynamics and the bifurcations of 
a certain second-order rational difference equation with quadratic terms 
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Kulenović et al. [17] investigate the global asymptotic stability and 
Naimark-Sacker bifurcation of the difference equation 
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Kulenović et al. [16] investigated the solutions of the difference equation 
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Other related results on rational difference equations can be found in 
(([4]-[9]), [11], [14, 15], [18, 19], [21]). 
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Let I be some interval of real numbers and let  

,: 1 IIf K →+  

be a continuously differentiable function. Then for every set of initial 
conditions Ixx ∈− 01,  the difference equation 

( ) ,,1,0,,,, 11 …… == −−+ nxxxfx nnnn k   (1.2) 

has a unique solution { } .1
∞

−=nnx  A solution of Equation (1.2) that is 

constant for all k−≥n  is called an equilibrium solution of Equation 
(1.2). If 

,allfor, k−≥= nxxn  

is an equilibrium solution of Equation (1.2) then x  is called an 
equilibrium point or simply an equilibrium of Equation (1.2). 

Definition 1 (Permanence). Equation (1.2) is said to be permanent 
and bounded if there exist number m and M with ∞<<< Mm0  such 
that for any initial condition ( )∞∈− ,0, 01 xx  there exists a positive 

integer N which depends on these initial conditions such that 
Mxm n <<  for all .Nn ≥  

Definition 2 [16] (Semicycles).  

(i) A positive semicycle of a solution { }nx  of Equation (1.2) consists of 

a “string” of terms { },,,, 1 µ+ xxx ll …  all greater than or equal to the 

equilibrium x  with 1−≥l  and ∞≤µ  and such that 

,and1or,1either 1 xxll l <−>−= −  

and 

.andor,either 1 xx <∞<µ∞=µ +µ  
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(ii) A negative semicycle of a solution { }nx  of Equation (1.2) consists 

of a “string” of terms { }µ+ xxx jj ,,, 1 …  all less than to the equilibrium x  

with 1−≥j  and ∞≤µ  and such that 

,and1or,1either 1 xxjj j ≥−>−= −  

and 

.andor,either 1 xx ≥∞<µ∞=µ +µ  

Theorem A [1] (Linearized stability).  

Suppose that the function F is continuously differentiable in some 
open neighbourhood of an equilibrium point .x  Let 

( ) ,,,1,0,,,, k…… =
∂
∂= iforxxxv
fp
i

i  

denote the partial derivative of ( )kvvvf ,,, 10 …  with respect to iv  

evaluated at the equilibrium point x  of Equation (1.1). Then the equation 

,,1,0,1101 …… =γ++γ+γ=γ +−+ nppp nnnn kk   (1.3) 

is called the linearized equation of Equation (1.1) about the equilibrium 
point x  and the equation 

,0101 =−λ−−λ−λ −+ kkkk ppp …   (1.4) 

is called the characteristic equation of Equation (1.4) about .x  

Then the following statements are true: 

(a) When all the roots of Equation (1.4) have absolute value less than 
one, then the equilibrium point x  of Equation (1.2) is locally 
asymptotically stable. 

(b) If at least one root of Equation (1.4) has absolute value greater 
than one, then the equilibrium point x  of Equation (1.2) is unstable. 
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The equilibrium point x  of Equation (1.2) is called hyperbolic if no 
root of Equation (1.4) has absolute value equal to one. If there exists a root 
of Equation (1.4) with absolute value equal to one then the equilibrium x  
is called nonhyperbolic. 

An equilibrium point x  of Equation (1.2) is called a saddle point if it 
is hyperbolic and if there exists a root of Equation (1.4) with absolute 
value less than one and another root of Equation (1.4) with absolute value 
greater than one. 

An equilibrium point x  of Equation (1.2) is called a repeller if all 
roots of Equation (1.4) have absolute value greater than one. 

Theorem B ([16]). Let [ ]ba,  be an interval of real numbers and 

assume that 

[ ] [ ],,,: 2 babaf →  

is a continuous function satisfying the following properties: 

(a) ( )yxf ,  is non-increasing in [ ]bax ,∈  for each [ ]bay ,∈  and is 

non-decreasing in [ ]bay ,∈  for each [ ]., bax ∈  

(b) The difference equation Equation (1.1) has no solutions of prime 
period two in [ ]., ba  

Then Equation (1.1) has a unique equilibrium [ ]bax ,∈  and every 

solution of Equation (1.1) converges to .x  

Theorem C ([22]). Assume that ( ) ( ) ( )[ ]∞∞×∞∈ ,0,,0,0Cf  is such 

that ( )vuf ,  is decreasing in u for each fixed v and ( )vuf ,  is increasing in 

y for each fixed u. Let x  be a positive equilibrium of Equation (1.2). Then 
except possibly for the first semicycle every solution of Equation (1.2) has 
semicycles of length one. 
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Theorem D ([12]). Let J be some interval of real numbers [ ],,1 JJ +∈ vCf  

and let { }∞ −= vnnx  be a bounded solution of the difference equation 

( ) ,,1,0,,,, 11 …… == −−+ nxxxfx vnnnn   (1.5) 

with 

.,suplim,inflim JSISI ∈==
∞→∞→

withandxx nnnn
 

Then there exist two solutions { }∞ −∞=nnI  and { }∞ −∞=nnS  of Equation (1.5) 

with 

[ ] .,,,, 00 Z∈∈== nallfornn SISISSII  

and such that for every NN I,Z∈  and NS  are limit points of { } .∞
−= vnnx  

Furthermore for every ,vm −≤  there exist two subsequences { }nrx  and 

{ }nlx  of the solution { }∞ −= vnnx  such that the following are true: 

.limlim mNeveryforxandx NNlnNNrn nn ≥== +∞→+∞→
SI  

The solutions { }∞ −∞=nnI  and { }∞ −∞=nnS  are called Full Limiting sequences 

of Equation (1.5). 

Consider the scalar k-th order linear difference equation 

( ) ( ) ( ) ( ) ( ) .011 =++−+++ nxnpnxnpnx kkk …   (1.6) 

where k  is a positive integer and CZ →+:ip  for .,,1 k…=i  Equation 

(1.6) is said to be of Poincarè type if the limits 

( ) ,,,1,lim k
k

…==
∞→

inpq ii   (1.7) 

exist in .C  Under this hypothesis, Equation (1.6) can be regarded as a 
perturbation of the equation with constant coefficients 

( ) ( ) ( ) .011 =++−+++ nxqnxqnx kkk …   (1.8) 
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Theorem E [23] (Poincarè’s Theorem). Suppose condition (1.7) 
holds. Let kλλ ,,1 …  be the roots of the characteristic equation 

,01
1 =++λ+λ −

k
kk qq …   (1.9) 

of Equation (1.8), and suppose that 

.jiforji ≠λ≠λ   (1.10) 

If ( )nx  is a solution of (1.6) then either ( ) 0=nx  for all large n or there 

exists an index { }k,,1 …∈j  such that 

( )
( ) .1lim jn nx

nx λ=+
∞→

  (1.11) 

Set nn ux =−1  and nn vx =  in Equation (1.1) to obtain the equivalent 

system 

nn vu =+1  

( ) .,1,0,,1 …==+ nuvfv nnn  

Let 

( ) ( )( ).,,, uvfvvu =T  

The second iterate 2T  is given by 

( ) ( ) ( )( )( ) ( ) ( )( ).,,,,,,,,2 vuHvuGvuvffuvfvu ==T  

Theorem G ([21]). (1) An equilibrium point ( )ΨΦ,  of the map 

( )HG,2 =T  is locally asymptotically stable if and only if every solution 

of the characteristic equation 

( ) ( ) ,0,det,tr 22
2 =ΨΦ+λΨΦ−λ TT JJ   (1.12) 

lies inside the unit circle, that is, if and only if 

( ) ( ) .2,det1,tr 22 <ΨΦ+<ΨΦ TT JJ  
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(2) An equilibrium point ( )ΨΦ,  of the map ( )HG,2 =T  is locally a 

repeller if and only if every solution of the characteristic equation (1.12) 
lies outside the unit circle, that is, if and only if 

( ) ( ) ( ) .1,det,det1,tr 222 >ΨΦΨΦ+<ΨΦ TTT JandJJ  

(3) An equilibrium point ( )ΨΦ,  of the map ( )HG,2 =T  is locally a 

saddle point if the characteristic equation (1.12) has one root that lies 
inside the unit circle and one root that lies outside the unit circle if and 
only if 

( ) ( ) ,,det1,tr 22 ΨΦ+>ΨΦ TT JJ  

and 

( ) ( ) .0,det4,tr 22
2 >ΨΦ−ΨΦ TT JJ  

(4) An equilibrium point ( )ΨΦ,  of the map ( )HG,2 =T  is 

nonhyperbolic if and only if the characteristic equation (1.12) has at least 
one root that lies on the unit circle, that is, if and only if 

( ) ( ) ,,det1,tr 22 ΨΦ+=ΨΦ TT JJ  

or 

( ) ( ) .2,tr1,det 22 ≤ΨΦ=ΨΦ TT JandJ  

2. Local Stability of the Equilibrium Points of Equation (1.1) 

In this section, we investigate the local stability character of the 
solutions of Equation (1.1). 

The equilibrium points of Equation (1.1) are given by the relation 

.22 xxx
xx

γ+β+α
=   (2.1) 



GLOBAL DYNAMICS OF SOME FRACTIONAL … 33

Consequently, there are two equilibrium points of Equation (1.1): the 
zero equilibrium point 00 =x  and the positive equilibrium point  

( ( )
( ) ).2

42

β+α
β+α+γ+γ−=+x   

If we denote  

( ) ., 2 vuvu
vvuf

γ+β+α
=  

Therefore, it follows that 

( ) ( )
( )

( )
( )

.,and2, 22

2

22 vuvu
uvuf

vuvu
vuvvuf vu

γ+β+α

α=
γ+β+α

β+α−=  

Then Equation (1.1) has the linearized equation 

,11 −+ += nnn qypyy   (2.2) 

whose characteristic equation is 

,02 =−λ−λ qp   (2.3) 

where 

( ) ( )
( )

( )
( )

.,and2, 222

2

222

2

xxx
xxxfq

xxx
xxxfp vu

γ+β+α

α==
γ+β+α

α+β−==  

Proposition 1. (a) If ,3
4 2

2
α+β

α>γ  then the equilibrium point +x  is 

locally asymptotically stable. 

(b) If ,3
4 2

2
α+β

α=γ  then the equilibrium point +x  is nonhyperbolic. 

(c) If ,3
4 2

2
α+β

α<γ  then the equilibrium point +x  is a saddle point. 
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Proof. (I) We will prove that .21 <−< qp  

(i) qp −< 1  

( ) ( ) 2222 1212 xxxx α−<α+β⇔α−<α+β−⇔  

( ) ( ) ( )2
22 443 β+α<




 β+α+γ+γ−α+β⇔  

( ) ( ) ( ) ( )2222 44423 β+α<



 β+α+γ+β+α+γγ−γα+β⇔  

( ) ( ) ( ) ( )222 444223 β+α<



 β+α+β+α+γγ−γα+β⇔  

( ) ( ) ( ) ( ) ( )α+ββ+α−β+α<



 β+α+γγ−γα+β⇔ 32243 222  

( ) ( ) ( )β+αα−<



 β+α+γγ−γα+β⇔ 443 22  

( ) ( ) [ ( ) ( )]α+βγ+β+αα−<β+α+γα+βγ−⇔ 3443 22  

( ) ( )( )β+α+γα+βγ⇔ 43 222  

( ) ( ) ( ) ( )β+αα+βαγ+α+βγ+β+αα> 38316 22422  

( ) ( ) ( ) ( ) ( )β+αα+βαγ+β+αα>β+αα+βγ⇔ 381634 22222  

( ) ( ) ( )α+βαγ+β+αα>α+βγ⇔ 3243 2222  

( ) [ ] ( )β+αα>α−α+βα+βγ⇔ 22 4233  

( ) ( ) ( )β+αα>β+αα+βγ⇔ 22 43  

,3
4 2

2
α+β

α>γ⇔  

which is true by (a). 
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(ii) 

,121 2 <α−⇔<− xq  

which is always true. Then it follows by Theorem A that +x  is locally 

asymptotically stable. 

(II) Observe that 

qp −= 1  

( ) 22 12 xx α−=α+β⇔  

( ) ( ) 12or12 2222 −α=α+βα−=α+β⇔ xxxx  (rejected). 

Now 

( ) 22 12 xx α−=α+β  

( ) ( ) ( ) 03324 2222 =β+αγ−β+ααγ+α+βα⇔  

,3
4 2

2
α+β

α=γ⇔  

which is true by (b). Then it follows by Theorem A that +x  is non-

hyperbolic stable. 

(III) Now 

qp −> 1  

( ) 22 12 xx α−>α+β−⇔  

( ) 22 12 xx α−>α+β⇔  

( ) ( ) .212 222 xxx α+β<α−<α+β−⇔  
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First 

( ) 22 21 xx α+β<α−  

,3
413

2
222

α+β
α<γ⇔>α+β⇔ xx  

which is true by (c). 

Second 

( ) ( ) ,112 222 −>β+α⇔−α>α+β xxx  

which is always true. Thus the result follows by Theorem A.   

3. Permanence and Semicycles of Equation (1.1) 

In this section, we study the boundedness and semicycles of the 
solutions of Equation (1.1). 

Theorem 1. Every solution of Equation (1.1) is bounded and persists. 

Proof. Let { }∞ −= 1nnx  be a solution of Equation (1.1). It follows from 

Equation (1.1) that 

,:1

11
2

1
1 σ=

γ
<

γ+β+α
=

−−

−
+

nnnn

n
n

xxxx
xx  (3.1) 

then 

.1allfor ≥σ< nxn  

By the change of variables 
n

n zx 1=  for all ,1≥n  Equation (1.1) can be 

rewritten in the form 

.2

2
1

1
n

nnn
n

z
zzzz γ+β+α

= −
+  
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Since 

.11 γ≥⇒
γ

≤= n
n

n zzx  

Then 

.22
1

22
1

1
γ

β
+

γ

α
+γ≤

β
+

α
+γ= −−

+
nn

n

n

n

n
n

zz
z
z

z
zz  

Therefore 

( )
,

1
suplim 2

3

22
β+α−γ

γ=










γ

β+
γ

α−

γ≤
∞→ nn

z  

and so 

( ) .:1
3

2
ρ=

γ

β+α−γ>=
n

n zx  

Thus we get for some positive integer N that 

,allfor Nnxn ≥σ<<ρ  

so Equation (1.1) is permanent.   

Theorem 2. Every solution of Equation (1.1) consists of semicycles of 
length one. 

Proof. Assume that { }∞ −= 1nnx  be a solution of Equation (1.1) with 

1−>≥ NN xxx  for some integer .10 ≥≥ nN  As a sake of contradiction 

assume that ,1 xxN ≥+  then it follows from Equation (1.1) that 

( )
,00 2

11
2

1
1 =−

γ+β+α
<−

γ+β+α
=−≤

−−

−
+ x

xx
xx

xxxx
xxx

NNNN

N
N  

which is a contradiction. The proof is so completed.   
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4. Global Attractor of the Equilibrium Points of Equation (1.1) 

In this section, we study the global attractor of the equilibrium point 
of Equation (1.1). 

Theorem 3. The equilibrium point x  of Equation (1.1) is global 
asymptotically stable if 

.3
4 2

2
α+β

α≥γβ≥α and   (4.1) 

Proof. Let P, Q be real numbers and assume that [ ] [ ]QPQP ,,: 2 →f  

is a function defined by ( ) ,, 2 vuvu
vvuf

γ+β+α
=  then we can easily see 

that the function ( )vuf ,  is non-increasing in u and is non-decreasing in v 

and it has an invariant interval [ ] ( ) .1,, 3

2








γγ

β+α−γ=QP  

Moreover [ ]QP,  is an attracting interval, that is, [ ],, QP∈nx  

,1≥n  for every solution { }∞ −= 1nnx  of Equation (1.1). 

Now suppose that ( )Mm,  is a solution of the system 

( ) ( ).,and, mMfmMmfM ==   (4.2) 

Then from Equation (1.1) we see that 

.and 22 mMmM
mm

MMmm
MM

γ+β+α
=

γ+β+α
=  (4.3) 

Then 

.1,1 22 =γ+β+α=γ+β+α mMmMMMmm   (4.4) 

Subtracting these two equations we obtain 

( ) ( )[ ] .0=γ−+α− mMmM   (4.5) 
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Now if ( ) ,γ≠+α mM   then .Mm =  If ,
α
γ=+ mM  then it follows from 

(4.4) that 

( ) ( ) ( ) .022 =α−γ+α−βγ+β−αα mm   (4.6) 

Equation (4.6) has no two real roots if its discriminant [ ( ) α−α−βγ 422  

( ) ( )]β−αα−γ2  is non-positive, which is true if (4.1) holds. The proof 

follows by Theorem B.  

Theorem 4. The positive equilibrium point x  of Equation (1.1) is 
global attractor if 

.22 α>γ   (4.7) 

Proof. It follows by the method of full limiting sequences [12] that 

there exist solutions { }∞ −∞=nnI  and { }∞ −∞=nnS  of Equation (1.1) with 

,supliminflim 00 σ≤==≤==≤ρ
∞→∞→

SSxxII nnnn
 

where 

[ ] .,1,0,,, …−=∈ nSISI nn  

It suffices to show that .SI =  Now it follows from Equation (1.1) that 

( ) ,, 2
221

2
1

2
IISS

IISf
IIII

II
γ+β+α

=≥
γ+β+α

=
−−−−

−  

and so 

.12222 ≥γ+β+α⇔≥γ+β+α ISISIISIIS   (4.8) 

Similarly, it is easy to see from Equation (1.1) that 

( )., SIfS ≤  
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Then 

,12 ≤γ+β+α SSII   (4.9) 

then from Equations (4.8) and (4.9) that 

( ) ( ) ,022 ≤−γ+−α ISSI  

or 

( ) ( )[ ] ,0≤γ−+α− ISSI  

and so SI ≥  if 

( ) ,0≤γ−+α IS  

which is holding by (4.7). Thus the proof is complete.   

5. Rate of Convergence of Equation (1.1) 

In this section, we will recognize the rate of convergence of a solution 
that converges to the unique positive equilibrium point of Equation (1.1). 

Theorem 5. Assume that .22 α>γ  Then all solutions of Equation 

(1.1) which are eventually different from the equilibrium satisfy the following: 

( ) ( ) ( ( ) )

( ( ) )22

222

1

4

4222
lim

α+β+γ+γ







 α+β+γ+γα−α+β+α+β−

=
−
−+

∞→ xx
xx

n
n

n
 

or 

( ) ( ) ( ( ) )

( ( ) )
.

4

4222
lim

22

222

1

α+β+γ+γ







 α+β+γ+γα−α+β−α+β−

=
−
−+

∞→ xx
xx

n
n

n
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Proof. It follows from Equation (1.1) that 

x
xxxx

xxx
nnnn

n
n −

γ+β+α
=−

−−

−
+

11
2

1
1  

11
2

11
2

1

−−

−−−

γ+β+α

γ+β+α−
=

nnnn

nnnnn
xxxx

xxxxxxxx  

11
2

2322
1

3
1

22
1

−−

−−−

γ+β+α

α−α+α+α−β−α−α+β
=

nnnn

nnnnnnn
xxxx

xxxxxxxxxxxxxxx  

( ) ( ) ( ) ( )

11
2

1
2

1
2

−−

−−

γ+β+α

−α−−β−−α−−α
=

nnnn

nnnnnn
xxxx

xxxxxxxxxxxxxx  

( ) ( ) ( ).1
11

2

2

11
2

2
1 xx

xxxx
xxx

xxxx
xxxxx

n
nnnn

n
nnnn

nn −
γ+β+α

α+−
γ+β+α

α+α+β−
= −

−−−−

−  

Put .xxnn −=θ  Then we obtain 

,011 =θη−θµ+θ −+ nnnnn  

where 

( ) ,
11

2

2
1

−−

−

γ+β+α

α+α+β−
=µ

nnnn

nn
n

xxxx
xxxxx  

and 

.
11

2

2

−− γ+β+α

α=η
nnnn

n
xxxx

x  

As the positive equilibrium is a global attractor by Theorem E, we get 

( )
(( ) ) ( ),22lim 2 α+β−=

γ+β+α
α+β−=µ

∞→
xx

x
nn

 

and 

(( ) ) .lim 2xx
x

nn
α=

γ+β+α
α=η

∞→
 

Thus the limiting equation of (1.1) is the linearized equation (2.2).   
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6. Periodic Solutions 

In this section, we present results for the existence of minimal period-
two solutions of Equation (1.1). 

Theorem 6. (a) Equation (1.1) has minimal period-two solutions of 

the form .,0,1,0,1,








γγ
……   

(b) Equation (1.1) has positive periodic solutions of prime period-two 
if and only if 

.3
4 2

2
α+β

α<γα<β and   (6.1) 

Proof. (a) Assume that { }∞ −= 1nnx  be a solution of Equation (1.1) with 

,0,1or1,0 0101 





 =

γ
=

γ
== −− xxxx  it follows by directed substitutions 

from Equation (1.1) that 

,1,0
001

2
1

0
21 γ

=
γ+β+α

==
xxxx

xxx  

,0
112

2
2

1
3 =

γ+β+α
=

xxxx
xx  

.1

223
2
3

2
4 γ

=
γ+β+α

=
xxxx

xx  

By continuing in this way, similarly it is easy to obtain that 

.1and0 212 γ
==+ nn xx  

Then 








γγ
…,1,0,1,0  be a two cycle solution of Equation (1.1). 
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(b) First suppose that there exists a minimal period-two solution 
{ }…… ,,,,, vv /φ/φ  of Equation (1.1), where φ  and v/  are distinct positive 

real numbers. Then v/φ,  satisfy the following: 

,2 γφ+/α+φ/β

φ=φ
vv

 

and 

,2 vv
vv

/γ+αφ+φ/β
/=/  

which is equivalent to 

,012 =−γφ+/α+φ/β vv   (6.2) 

and 

.012 =−/γ+αφ+φ/β vv   (6.3) 

Subtracting (6.3) from (6.2) we have 

( ) ( ) .022 =/−φγ+φ−/α vv  

Since ,v/=/φ  we have that 

.αγ=/+φ v   (6.4) 

Substituting (6.4) in (6.3) we obtain 

( ) ,
2

α−βα
γ−α=/φv   (6.5) 

from which 

( )
( ) .4

2
1 2

2














α−β
γ−αα

−γ±γ
α

=φ±  
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Equation (6.4) implies that 

.∓φ=φ−
α
γ=/ ±±v   (6.6) 

Since ∓φ=/±v  are distinct real numbers, ( ) ( ) ( ) ,04 222 >α−βγ−αα−α−βγ  

which implies that 2
2

3
4 γ>

α+β
α  and .β>α  Thus Equation (6.1) holds. 

Second suppose that the condition (6.1) is true. We will show that 
Equation (1.1) has positive prime period two solutions. 

Now choose 

( ) ( ) ,42
1 22

1 



 α−βγ−αα−γ+γ

α
=/=− vx  

and 

( ) ( ) .42
1 22

0 



 α−βγ−αα−γ−γ

α
=φ=x  

It is easy to prove that 

.and 0211 xxxx == −  

Then it follows by induction that 

.1allforand 122 −≥/=φ= + nvxx nn  

Thus Equation (1.1) has the positive prime period two solution 

,,,,,, …… vv /φ/φ  

where φ  and v/  are the distinct roots of the quadratic equation (6.6 ) and 
the proof is completed.   

7. Local Stability Analysis of the Period two Solutions 

Theorem 7. The minimal period-two solutions is as follows: 

(i) The minimal period-two solution 








γγ
…… ,0,1,0,1,  is locally 

asymptotically stable if .2γ<α  
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(ii) The minimal period-two solution 








γγ
…… ,0,1,0,1,  is a non-

hyperbolic if .2γ=α  

(iii) The minimal period-two solution 








γγ
…… ,0,1,0,1,  is a saddle 

point if .2γ>α  

(iv) If α<β  and ,3
4 2

2
γ>

α+β
α  then the minimal period-two solution 

{ }…… ,,,,, vv /φ/φ  is a saddle point. 

Proof. By substitution nnnn vxux ==− ,1  Equation (1.1) becomes 

the system of equations 









γ+α+β
=

=

+

+

.

,

21

1

nnnn

n
n

nn

uvuv
uv

vu
 (7.1) 

The map T corresponding to (7.1) is of the form 

( )
,

,













=














vuh

v

u

v
T  

where 

( ) ., 2 uvvu
uvuh

γ+α+β
=  

Now the second iteration of the map T is 

( )

( )

( )( )

( )

( )
,

,

,

,,

,

,
2














=













=













=














vuH

vuG

vuhvh

vuh

vuh

v
T

u

v
T  

where 

( )
( ) ( )

,
,,

, 2 uvuhvuvh
vvuH

γ+α+β
=  
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and 

( ) ., 2 uvvu
uvuG

γ+α+β
=  

Let ( )φ/v  be the fixed point to .2T  Then the Jacobian matrix 2TJ  is given 

by 

( )
( ) ( )

( ) ( )
,

,,

,,
,2

















∂
/φ∂

∂
/φ∂

∂
/φ∂

∂
/φ∂

=/φ

v
vH

u
vH

v
vG

u
vG

vJT  

where 

( ) ( ) ( )
( )

,, 2
22

2
v

vv
vvv

u
vG

/α=
γφ+/α+/βφ

γ+/βφ−γφ+/α+/βφ
=

∂
/φ∂  (7.2) 

( ) ( )
( )

( ),22, 2
22 v

vv
v

v
vG

/αφ+βφ−=
γφ+/α+/βφ
/α+βφφ−

=
∂

/φ∂  (7.3) 

( ) ( ( ) ( ( ) ( )))

( ) ( )( )
,

,,

,,2,,
22 vvhvvh

vu
hvhvhv

u
vH

/γ+/φα+//φβ

/φ
∂
∂

/φα+/φβ/−
=

∂
/φ∂  

( ),2 324 vv /φα+/αβ−=  (7.4) 

and 

( ) ( ) ( )( )
( ) ( )( )22

2

,,

,,,

vvhvvh

vvhvvh
v

vH

/γ+/φα+//φβ

/γ+/φα+//φβ
=

∂
/φ∂  

( ( ) ( ) ( ( ) ( )) )

( ) ( )( )22,,

,,2,,

vvhvvh

vv
hvhvv

hvvhv

/γ+/φα+//φβ

γ+/φ
∂
∂

/φα+/φ
∂
∂

/β+/φβ/
−  

.422 222332222 vvvv /φα+/αβφ+/αβφ+φ/β+αφ=  (7.5) 
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(i) The Jacobian matrix of the map 2T  at the points xp  and yp  is of 

the form 

( ) ( )


















γ

βα−
γ

α

=


















γ

α
γ

β−

=
0

0
,

0

0

2

2

2

2
22 yTxT pJpJ  

with the eigenvalues 01 =λ  and 22
γ

α=λ  which means by Theorem G 

that the periodic solution 








γγ
…… ,0,1,0,1,  is locally asymptotically 

stable if ,2γ<α  

(ii) If ,2γ=α  then the minimal period-two solution 








γγ
…… ,0,1,0,1,  

is a non-hyperbolic point. 

(iii) If ,2γ>α  then the minimal period-two solution 








γγ
…… ,0,1,0,1,  

is a saddle point. 

(iv) The Jacobian matrix of the map 2T  at the point { }…… ,,,,, vv /φ/φ  

using (7.2)-(7.5) is of the form 

( )
( )

( ) ( ) ( )
.

242

2
,

2222222324

22

2














/+φ/αβφ+φ/β+α+αφ/φα+/αβ−

/αφ+βφ−/α
=/φ

vvvvv

vv
vJT

 

Now by (6.4) and (6.5), we have 

( ) ( ) ( ) ( ),24,tr 22222222
2 vvvvvJp T /+φ/αβφ+φ/β+α+/+φα=/φ=  

and 

( ) ( ) .,Det 2
2 vvJq T /αφ=/φ=  
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We have that ( )v/φ,  is a saddle point if 

qp +> 1  

( ) ( ) ( ) 123 22222222 >/+φ/αβφ+φ/β+α+/+φα⇔ vvvv  

( ) (( ) ( ) ( ) ( ) ( ))2222222 4223 γ−ααβ−α−ββγ+α−βα−γ−αβ+αγ−α⇔  

( ) ( )22 γ−αα−βα>  

( ) (( ) ( ) ( )) .0223 222 >α−βα−βγ+α−γ−αα−βα−β⇔  

This completes the proof.   

8. Numerical Examples 

To confirm the results of this paper, we consider numerical examples 
which rep-resent different types of solutions to Equation (1.1). 

Example 1. We assume 5.0,5,4.0,3.0,4.0 01 =γ=β=α==− xx  

(see Figure 1). 

Example 2. (See Figure 2), since ,30,5.0,003.0 01 =α==− xx  

.18,5.0 =γ=β  

Example 3. We assume 04.0,5.1,5,3,2 01 =γ=β=α==− xx  

(see Figure 3). 

Example 4. (See Figure 4), since ,025.0,3,9.0 01 =α==− xx  

.125.0,10 =γ=β  

Example 5. We consider 5.3,9,13,2.0,3.0 01 =γ=β=α==− xx  

(see Figure 5). 

Example 6. (See Figure 6), since ,6,4,3,2 01 =β=α==− xx  

.5.1=γ  
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Figure 1. 

 

 

Figure 2. 
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Figure 3. 

 

 

Figure 4. 
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Figure 5. 

 

 

Figure 6. 
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