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Abstract

We investigate the global dynamics of the equation

Xp_
Xpal =~ n-l , n=01,..,
axy + Brpxy 1 +¥¥n1

where the parameters o,fB, and y are nonnegative numbers with
o+ B +7y >0 and the initial conditions x_; and x( are arbitrary positive real

numbers. The equilibrium points of the considered equation are obtained and
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classified whether stable or unstable. The boundedness, the global stability and
the periodicity of the solutions are investigated. Some numerical examples are
given to illustrate the obtained results.

1. Introduction
We investigate the global behaviour of the equation

X = Yn-1 . n=0,1, .., 1.1)

2
axy, + Bxpx,_1 + X,

where the parameters o, B, and y are nonnegative numbers with
o + B + vy > 0 and the initial conditions x_; and x, are arbitrary positive
real numbers.

Many authors and researchers are interesting in studying the global

attractivity, the boundedness character and the periodic nature of

nonlinear difference equations.

Hrustié et al. [13] studied the global dynamics and the bifurcations of

a certain second-order rational difference equation with quadratic terms

Xn-1

ax,% +ex, 1+f

Xn+l =

Kulenovi¢ et al. [17] investigate the global asymptotic stability and

Naimark-Sacker bifurcation of the difference equation

F

bx, 1%, + cx,%_l +f

Xn+l =

Kulenovié et al. [16] investigated the solutions of the difference equation

x _ Y¥n-1
1" A4 Bx, + Cxpyq

Other related results on rational difference equations can be found in
(([4]-[9D), [11], [14, 15], [18, 19], [21]).
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Let I be some interval of real numbers and let
RN LNy §

be a continuously differentiable function. Then for every set of initial

conditions x_j, oy € I the difference equation
Xpi1 = f(%n, Xpgs eoos Xp_p), n=0,1,..., (1.2)

has a unique solution {x,},_ ;. A solution of Equation (1.2) that is

constant for all n > -k is called an equilibrium solution of Equation

1.2). If

x, =x, forall n>-k,
1s an equilibrium solution of Equation (1.2) then x 1is called an
equilibrium point or simply an equilibrium of Equation (1.2).

Definition 1 (Permanence). Equation (1.2) is said to be permanent
and bounded if there exist number m and M with 0 < m < M < « such

that for any initial condition x_;, xy € (0, ©) there exists a positive

integer N which depends on these initial conditions such that

m<x, <M forall n > N.

Definition 2 [16] (Semicycles).

(1) A positive semicycle of a solution {x,} of Equation (1.2) consists of

a “string” of terms {x;, x;,1, ..., ¥, |, all greater than or equal to the

equilibrium x with [ > -1 and p £ © and such that
either /=-1, or [>-1 and x;_; <X,
and

either p =, or p<owo and x4, <X
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(i) A negative semicycle of a solution {x,} of Equation (1.2) consists
of a “string” of terms {x;, xj,1, ..., x, } all less than to the equilibrium x

with j > -1 and p < o and such that

[\
tall

either j =-1, or j>-1 and Xjq

and

[\
ol

either p =, or p<wo and x4

Theorem A [1] (Linearized stability).

Suppose that the function F is continuously differentiable in some

open neighbourhood of an equilibrium point x. Let

i = aa_li(x, E .. E), fori=0,1,..,k

denote the partial derivative of f(vgy, vy, ..., v;) with respect to v;

evaluated at the equilibrium point x of Equation (1.1). Then the equation
Yn+l = PoYn + P1¥n-1 * -+ Pi¥ner, n=0,1,..., (1.3)

is called the linearized equation of Equation (1.1) about the equilibrium

point x and the equation
Mg+1 = Pory = ... = Pp1h — pp = 0, (1.4)
is called the characteristic equation of Equation (1.4) about x.
Then the following statements are true:

(a) When all the roots of Equation (1.4) have absolute value less than
one, then the equilibrium point x of Equation (1.2) is locally
asymptotically stable.

(b) If at least one root of Equation (1.4) has absolute value greater

than one, then the equilibrium point x of Equation (1.2) is unstable.
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The equilibrium point x of Equation (1.2) is called hyperbolic if no
root of Equation (1.4) has absolute value equal to one. If there exists a root
of Equation (1.4) with absolute value equal to one then the equilibrium x
is called nonhyperbolic.

An equilibrium point x of Equation (1.2) is called a saddle point if it
is hyperbolic and if there exists a root of Equation (1.4) with absolute

value less than one and another root of Equation (1.4) with absolute value

greater than one.

An equilibrium point x of Equation (1.2) is called a repeller if all
roots of Equation (1.4) have absolute value greater than one.
Theorem B ([16]). Let [a, b] be an interval of real numbers and

assume that
f:la, b > [a, 0],
is a continuous function satisfying the following properties:
(@) f(x, y) is non-increasing in x € [a, b] for each y € [a, b] and is
non-decreasing in y € [a, b] for each x € [a, b].

(b) The difference equation Equation (1.1) has no solutions of prime

period two in [a, b].

Then Equation (1.1) has a unique equilibrium X < [a, b] and every

solution of Equation (1.1) converges to x.

Theorem C ([22]). Assume that f e C[(0, ©)x (0, ©), (0, ©)] is such
that f(u, v) is decreasing in u for each fixed v and f(u, v) is increasing in
y for each fixed u. Let X be a positive equilibrium of Equation (1.2). Then

except possibly for the first semicycle every solution of Equation (1.2) has

semicycles of length one.
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Theorem D ([12]). Let J be some interval of real numbers f e C[J°*!, J],

and let {x, }:,Lo}v be a bounded solution of the difference equation

Xpi1 = f(%n, Xp_1s coos Xpyp), n=0,1,..., (1.5)
with
I = lim infx,, S =limsupx, andwith I,S¢ed.
n—o n—
Then there exist two solutions {I,,}___ and {S,} ___ of Equation (1.5)
with

I,=1, S,=S8, I1,,S,¢c[l,S] foral neZ.

©
n=-v’

and such that for every N € Z, Iy and Sy are limit points of {x,,}
Furthermore for every m < —v, there exist two subsequences {x,n} and

{27, } of the solution {x,}__ such that the following are true:

Y

limx, .y =Iny and limx; . ny =8y forevery N 2=m.
n—yo M n—w M

The solutions {I,,}__ and {S,},_ . are called Full Limiting sequences

of Equation (1.5).
Consider the scalar k-th order linear difference equation
x(n+k)+ p(n)x(n+k-1)+...+ pp(n)x(n) = 0. (1.6)
where k is a positive integer and p; : Z© — C for i =1, ..., k. Equation
(1.6) is said to be of Poincaré type if the limits
q; = lim p;(n), i=1,..,k 1.7
k—o

exist in C. Under this hypothesis, Equation (1.6) can be regarded as a

perturbation of the equation with constant coefficients

x(n+k)+qx(n+k-1)+...+qx(n) = 0. (1.8)
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Theorem E [23] (Poincaré’s Theorem). Suppose condition (1.7)

holds. Let \q, ..., L, be the roots of the characteristic equation

W g 4 q =0, (1.9)
of Equation (1.8), and suppose that
P"ll F |}\.J| fO}" S _] (110)

If x(n) is a solution of (1.6) then either x(n) = 0 for all large n or there

exists an index j € {1, ..., k} such that

lim x(n+1):7v

Jim = j- (1.11)

Set x,_1 =u, and x, =v, in Equation (1.1) to obtain the equivalent
system

Upyl = Up

Ups1 = fop, ), n=0,1,...
Let

T(u, v) = (v, f(v, u).
The second iterate T? is given by
T%(u, v) = (f(v, w), f(f(v, w), v)) = (G(u, v), H(y, v)).
Theorem G ([21]). (1) An equilibrium point (®, ¥) of the map

T? = (G, H) is locally asymptotically stable if and only if every solution

of the characteristic equation
- tref o (®, WA + det o o (D, W) = 0, (1.12)

lies inside the unit circle, that is, if and only if

|trJT2 (@, ¥)| <1+ det J 2 (D, ¥) < 2.
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(2) An equilibrium point (®, ¥) of the map T? = (G, H) is locally a
repeller if and only if every solution of the characteristic equation (1.12)

lies outside the unit circle, that is, if and only if

[t 2 (@, W)| < |1+ det I o (®, ¥)|  and | det J o (®, ¥)| > 1.

(3) An equilibrium point (®, W) of the map T? = (G, H) is locally a
saddle point if the characteristic equation (1.12) has one root that lies
inside the unit circle and one root that lies outside the unit circle if and

only if

|trJT2 (©, ¥)| > 1+ det JT2 (@, )|,
and

trd o (0, ¥)? - 4 det J o (@, W) > 0.

(4) An equilibrium point (®,¥) of the map T? =(G, H) is
nonhyperbolic if and only if the characteristic equation (1.12) has at least

one root that lies on the unit circle, that is, if and only if

|tre 2 (@, P)| = [1+ det J 5 (@, ),

or

det J,o(@, ¥) =1 and [t 0@, ¥) < 2.

2. Local Stability of the Equilibrium Points of Equation (1.1)

In this section, we investigate the local stability character of the

solutions of Equation (1.1).

The equilibrium points of Equation (1.1) are given by the relation

X

X = (2.1

ax? + Bx2 +yx
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Consequently, there are two equilibrium points of Equation (1.1): the
zero equilibrium point X3 =0 and the positive equilibrium point

%, =(—y+\ly2+4(oc+B) )

2(a + B)

If we denote

flu, v) = 0

oau’ + Buv + yv .
Therefore, it follows that

- v(2au + Bo) ou?

(au? + Buv + y)?

fu(u7 U) =

and f,(u, v) =

(au? + Buv + yv)?
Then Equation (1.1) has the linearized equation
Yn+1 = PYn +QVn-1, (2.2)

whose characteristic equation is

32— pr—q =0, (2.3)
where
=2 —2
pefulEE) = — B2 g g p(rE) s —
(ax® +Bx“ +vXx) (ax® + Bx* + yX)
‘s 2 402 iy C .
Proposition 1. (a) If y* > B+ 30 then the equilibrium point x, is

locally asymptotically stable.

2

(b) If y2 = B4+a3oc , then the equilibrium point x, is nonhyperbolic.
2

(c) If y2 < 4a , then the equilibrium point x, is a saddle point.

B+ 3a
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Proof. (I) We will prove that |p| <1-¢ < 2.

@ [p|<1-¢q

|- B+ 2082 <1-0xk? o B+20)x8% <1-ax?

& (4 30)(~y + 77+ 4o+ B)) < o+ B

& (B +30) |17 277 + 4o+ B) + 47 + 4o+ B)| < 4(a + PP
= (B +3a) :2y2 — 2y % + 4(0 + B) + 4(a + B)} < 4(a +p)?

& (B+30)[ v = r? +4(a + B)| < 2a + B - 2a + B)(B + 30)
& (B+30)[ v = y? + 4+ B)| < - 4o+ p)

< — ¥+ 3aWy? + 4(a + B) < — [4a(a + B) + y2(B + 3a)]

o 2B+ 3a)2(y2 + 4(a + [3))

> 16a%(o + B)? + y*(B + 30)® + 8ay2(B + 30) (o + B)
& 472 + 30)* (o0 + B) > 166 (o + B)* + 8oy (B + 3ax) (o + B)
< v2B + 3a)® > 402 (a + B) + 2ay2(B + 3a)
< y2(B + 3a)[B + 30 — 20] > 40.%(a + B)
< 2B+ 30) (o + B) > 4a®(a + B)

9 402

=3
Y B+3a’

which is true by (a).
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(i1)
1—q<2<:>—ow?2 <1,

which is always true. Then it follows by Theorem A that x, is locally

asymptotically stable.

(IT) Observe that
Pl =t -4
& B+ 20)x% = |1 - ox?|
o B+20)x2 =1-0x2 or (B+20)x2 = ak? —1 (rejected).

Now

(B +20)x2 =1 - ax>
= 40L2([3 +a)+ 20cy2(3a +B) - y2(3(x + B)2 =0

2 402
B+3a’

<

which is true by (b). Then it follows by Theorem A that x, is non-

hyperbolic stable.

(I1T) Now
Pl > [1 - ql
o | =B+ 20)%32 > |1 - ox?|

o B+ 20)x% > |1 - ox?|

o - B+20)x2 <1-ax? < (B +2a)x>.
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First
1-ax? < (B +20)x?

402
B+ 3o’

o Br?+3ux’>1 o ¢? <
which is true by (c).
Second
B+20)x2 > ax? -1 < (a+pix? > -1,
which is always true. Thus the result follows by Theorem A. O

3. Permanence and Semicycles of Equation (1.1)

In this section, we study the boundedness and semicycles of the

solutions of Equation (1.1).
Theorem 1. Every solution of Equation (1.1) is bounded and persists.

Proof. Let {x,},_ , be a solution of Equation (1.1). It follows from

Equation (1.1) that

Xn+1 = 2 Fn-l < l =G, (31)

Xy, + BayX, 1 + ¥Xn_1 v

then

x, <o for all n>1.

By the change of variables x,, = 1 for all n > 1, Equation (1.1) can be

Zn

rewritten in the form

az,_1 + Bz, + yz,zl
Zn+1 = 2 .
Zn
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Since
X, ziﬁl:zn = .
Zn Y
Then
oz, Bz oz, Bz
Zpel =Y+ ’;1+ 2”£y+ ’;1+ 2”
Zn Zn Y Y
Therefore
3
lim supz, < ! == 1 )
n—w o B| v -(a+p)
1- —2 + —2
Y Y
and so
2
z 3
n Y
Thus we get for some positive integer N that
p<x, <o forall n=x=N,

so Equation (1.1) is permanent. O

Theorem 2. Every solution of Equation (1.1) consists of semicycles of

length one.

Proof. Assume that {x,} _ ; be a solution of Equation (1.1) with
XNy 2 X > xpn_; for some integer N > ng > 1. As a sake of contradiction

assume that xp_; > X, then it follows from Equation (1.1) that

_ XN_ — X _
0<xyy—% = N-l -x < -x =0,

axlzv +PBxNxN_] + VAN (o0 + B)o?2 +7x

which is a contradiction. The proof is so completed. O
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4. Global Attractor of the Equilibrium Points of Equation (1.1)
In this section, we study the global attractor of the equilibrium point
of Equation (1.1).

Theorem 3. The equilibrium point x of Equation (1.1) is global
asymptotically stable if

9 40

a>pB and vy ZB+301. 4.1)

Proof. Let P, @ be real numbers and assume that f : [P, Q] — [P, @]

v

is a function defined by f(u, v) = , then we can easily see

au? + Buv + yv

that the function f(u, v) is non-increasing in u and is non-decreasing in v

v2—(a+l3),1}.

and it has an invariant interval [P, @] = { 3
Y Y

Moreover [P, @] is an attracting interval, that is, x, € [P, @],

n > 1, for every solution {x,}”__; of Equation (1.1).
Now suppose that (m, M) is a solution of the system
M = f(m, M) and m = f(M, m). (4.2)

Then from Equation (1.1) we see that

M = 3 M and m = 3 mn . (4.3)
am® + BMm + yM oM* + BMm + ym
Then
am? + BMm +yM =1, oM? +BMm +ym = 1. (4.4)

Subtracting these two equations we obtain

(M -—m)[o(M +m)-7v] = 0. (4.5)
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Now if o(M +m) =y, then m = M. If M + m = %, then it follows from

(4.4) that

afo — [3)m2 +v(B - o)m + (yz -a)=0. (4.6)

Equation (4.6) has no two real roots if its discriminant [y2(B — a)2 —4a

(y2 = a)(a — B)] is non-positive, which is true if (4.1) holds. The proof
follows by Theorem B. O

Theorem 4. The positive equilibrium point x of Equation (1.1) is

global attractor if
2
e > 20 4.7

Proof. It follows by the method of full limiting sequences [12] that

there exist solutions {I,,}___ and {S,}__ of Equation (1.1) with

00 0

p<I=1Iy=liminfx, < lim supx, =Sy =S <o,
n—oo n—

where
I,,S,¢e[l,Sl,n=0,-1,....

It suffices to show that I = S. Now it follows from Equation (1.1) that

— 5 I_2 > f(S, I) _ : I ’
(X.I_l + BI—II—Z + 'YI_2 aSe + BIS + ’YI
and so
oaS%I +BSIZ +yI? > I < aS? +BSI +yI > 1. (4.8)

Similarly, it is easy to see from Equation (1.1) that

S < f(I, S).
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Then

al? +BSI +vS <1, (4.9)
then from Equations (4.8) and (4.9) that

a(I2 -8%)+y(S-1) <0,
or

(I-8)[a(S+I)-y]<o0,
andso I > S if

a(S+I)-y <0,

which is holding by (4.7). Thus the proof is complete. O
5. Rate of Convergence of Equation (1.1)

In this section, we will recognize the rate of convergence of a solution

that converges to the unique positive equilibrium point of Equation (1.1).
Theorem 5. Assume that y2 > 2a. Then all solutions of Equation
(1.1) which are eventually different from the equilibrium satisfy the following:

¥ 2(— (B +20) + V(B + 20)% — aly + Vo2 + 4B + °‘”2j

lim Yntl ¥

n—w X, -X (Y+ [y2 +4(B+a))2

or

_ z(— B+ 20) V(B + 2)2 — a(y + yy% + 4B + a))QJ

XYnel — X

lim —
now Xy =X (v + 7% + 40 + o))
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Proof. It follows from Equation (1.1) that

— Xn-1 —
Xpel —X = -X

2
oxy + an—lxn +YXp-1

I onx,%f + Bx,_1X,X + VXX,

2
Xy + an—lxn + YXp-1

X, 1 X2+ QX 2%, 1 — OX° — P, X, 1X— XX+ 0X, X2+ aX°— o, X 2

_ n-1 n-—1 n*n-1 n n n
2
Xy, + an—lxn + ¥Xp1
_ ok’ (x,0 — %) - ak*(x, = ¥) = Br,_g%(x, - ¥) - ax,(x, — X)
N 2
Xy + an—lxn + ¥Xp1
. — =2 —2
— (Bx,_1X+ ax,x+ ax”) _ ax _

= 2n 1 (xn_x)+ 2 (xn—l_x)'

Xy + an—lxn+ YXn-1 oX;, + an—lxn+ YXn-1

Put 0,, = x,, — x. Then we obtain

0,41 + R0, —Mp0,1 =0,

where
— - =2
- (Bx,_1X + ox,x + ax?)
lvln = 2 >
axy + Px,_1%, +¥xX,
and
_ 0x?
MNp =

B .
oxy + an—lxn + YXp-1

As the positive equilibrium is a global attractor by Theorem E, we get

. _ -x(B + 2(1) _ =2
Hm b = e pray) - F Pr20)
and
. _ ox )
R N (RN el

Thus the limiting equation of (1.1) is the linearized equation (2.2). O
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6. Periodic Solutions
In this section, we present results for the existence of minimal period-
two solutions of Equation (1.1).

Theorem 6. (a) Equation (1.1) has minimal period-two solutions of

the form {, l, 0, l, 0, }
Y Y

(b) Equation (1.1) has positive periodic solutions of prime period-two
if and only if

9 402

B<a and vy <B+3a. (6.1)

Proof. (a) Assume that {x,},_ ; be a solution of Equation (1.1) with
x_1=0,%9 = l(or X_q = l, Xg = Oj, it follows by directed substitutions
Y Y

from Equation (1.1) that

) )
owci2 + Bxyxg +yx9 Y

x3 = xl =0
ax% + Bxoxy + yx1

X9 1
X4 = B =—.
oxg + Bx3x2 + VX9 Y

By continuing in this way, similarly it is easy to obtain that

X9n41 = 0 and xg, = —

Then {0,

< |

, 0, %, } be a two cycle solution of Equation (1.1).
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(b) First suppose that there exists a minimal period-two solution
{..., 0,9, 6,9, ..} of Equation (1.1), where ¢ and y are distinct positive

real numbers. Then ¢, y satisfy the following:

_ o
By + ow? + ¢

and

_ [
Bud + ad? + yv

which is equivalent to

Buo + ap? +yp —1 = 0, (6.2)
and

By + adp? +yp —1 = 0. (6.3)
Subtracting (6.3) from (6.2) we have

(v ~9) +1(0 ) = 0.
Since ¢ # y, we have that
b+v=7v/0. (6.4)

Substituting (6.4) in (6.3) we obtain

2
_ ey
¢w - (X-(B _ (X.) ’ (65)

from which

2
bs = %[vi\/vz —%J.
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Equation (6.4) implies that
¥y = Y O0r = . (6.6)
E= o E= +

Since p, = ¢ are distinct real numbers, v2B-a) - da(a-v?)B-a)> 0,
OL2
B+ 3a

which implies that > y2 and o > B. Thus Equation (6.1) holds.

Second suppose that the condition (6.1) is true. We will show that
Equation (1.1) has positive prime period two solutions.

Now choose

xa == g | - da(a— 1)/ (- )|

and

xo = b = 5o 1~ V17— dala =) /(B - ) |
It is easy to prove that
X1 =x_; and x9 = xg.
Then it follows by induction that

X9, =¢ and xg9,,1 =y forall n>-1.

Thus Equation (1.1) has the positive prime period two solution
ey (I)’ w7 (I)’ W7 [EXE

where ¢ and y are the distinct roots of the quadratic equation (6.6 ) and

the proof is completed. O
7. Local Stability Analysis of the Period two Solutions
Theorem 7. The minimal period-two solutions is as follows:
(1) The minimal period-two solution {, %, 0, %, 0, } is locally

asymptotically stable if o < y2.
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(1) The minimal period-two solution {, %, 0, %, 0, } IS a non-
hyperbolic if o = y2.

(111) The minimal period-two solution {,

< |

, 0, %, 0, } is a saddle
. 2
point if o > y~.

402
B+ 3a

{.., 0,0, 0, v, ...} isasaddle point.

v) If B < a and > yz, then the minimal period-two solution

Proof. By substitution x, ; = u,, x, = v, Equation (1.1) becomes

the system of equations

Up+1l = Uns

u (7.1)

n

Un+1 = 2 .
Bu,u, +av;, + yu,

The map T corresponding to (7.1) is of the form
v v
T = ,
u h(u, v)

AN P —
Bvu + av® + yu

where

Now the second iteration of the map T is
v v hu, v) G(u, v)
T? |=T = = ,
u h(u, v) h(v, h(u, v)) H(u, v)

H(u, v) = g 5 .
Buh(u, v) + ah(u, v)° + yu

where
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and

G(u, v) = 4 5

Bvu + av” + yu

Let (ﬂ;) be the fixed point to T2. Then the Jacobian matrix «f 72 1s given

by
9G(¢, ») 0G(6, v)
_ ou ov
JT2 (¢7 W) - aH(d), w) aH(q), w) y
ou ov
where
8G(¢, W) _ (Bq)w + (sz + ’Y(I)) — d)(ﬁw + ’Y) _ an, (72)
ou (Bow + av® + 10)2
0G(9, ¥) _ _ — ¢(Bo + 20p) 2.,
= = - ¥), 7.3
o et g 7
oH (9, p) _ ~ V(BR(®, v) + 2a(n(o, W)%(dn w))),
o (Bh(d% VW + ah(h, v)* + vw)z
= — (app? + 20%pp?), (7.4)
and

OH (b, v) _ [Bh(o, vl + o, ) + 1)
v (Bro, v + a6, v)? + )

 B(Bh(b. v)+ Bv 2 (6 ) + 20(h(6. v) 5 (0. )+ 1)

(Br(0. v + a6, ) + )

= ad? + B2w29? + 2aPdp® + 2003 + 40.2¢%p>. (7.5)
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(1) The Jacobian matrix of the map T2 at the points p, and p, 1s of

the form
0 _—'23 % 0
JT2 (px) = ’Ya ’ JT2 (py) = —YBG,
o = — 0

Y Y

with the eigenvalues Ay = 0 and Ay = % which means by Theorem G

that the periodic solution {, l, 0, l, 0, } is locally asymptotically
Y Y

stable if a < y2,

(i) If o = y2, then the minimal period-two solution { % 0, % 0, }

is a non-hyperbolic point.

@) If o > y2, then the minimal period-two solution {, l, 0, l, 0, }
Y Y
is a saddle point.

(iv) The Jacobian matrix of the map T? at the point {..., ¢, ¥, ¢, ¥, ...}
using (7.2)-(7.5) is of the form

ap? ~ (Bo* + 200%)
JTZ (d)’ w) =

~(opy® +20%0%)  ab? + (da? B W% + 200u(e + 7))
Now by (6.4) and (6.5), we have

p = trd (0, v) = a(6” +v?) + (4a® + B2 %% + 20800(67 +0?),
and

q = Det ;5 (6, ) = (adv)’.
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We have that (¢, p) is a saddle point if

|p| >1+4q

& a9 +v?) + (30 + B2 2% + 2apov(9® +v?) > 1

& (a=77)((3a® +B*)(a - v*) - 20* (B - o) + 28y (B - &) - 4ap(at — 77))
> (B - 0)*(a - v?)

& (B-a)((p-30) (o~ v*) - 20% + 2py* ~ ap - ) > 0.
This completes the proof. O
8. Numerical Examples
To confirm the results of this paper, we consider numerical examples

which rep-resent different types of solutions to Equation (1.1).

Example 1. We assume x_; =04, x5 =0.3,a =04, =5,7y=0.5
(see Figure 1).

Example 2. (See Figure 2), since x_; = 0.003, x5 = 0.5, a = 30,
B=0.5y=18.

Example 3. We assume x_; =2,x5 =3, a=5,p=1.5v=0.04
(see Figure 3).

Example 4. (See Figure 4), since x_; = 0.9, x5 = 3, a = 0.025,
B =10, y = 0.125.

Example 5. We consider x_; = 0.3, xg = 0.2, a =13, =9,y =35
(see Figure 5).

Example 6. (See Figure 6), since x_; =2,x9 =3, 0 =4, =6,
y =1.5.
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x(n+1)=x(n-1)/(b*x(n-1)*x(n)+a*x(n)*+e*x(n-1))
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0.44H
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036
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— — Equilibrium point ]
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——X(n+1)
------- Equilibrium point

10 15 20

Figure 2.
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x(n+1)=x(n-1)/(b*x(n-1 )*x(n)+a*x(n}2+e*x(n-1 )
25 +
i ! i
——X(n+1)
— — Equilibrium point

3

X(n)

P — . ————

14 16 18 20

Figure 3.

x(n+1)=x(n-1)/(b*x(n-1 )*x(n)+a*x(n)2+e*x(n-1 ))

25 . ' ' ' '
——X(n+1)
1 Equilibrium point
1
15 |
€
>
1 ]
0.5H ]
0 : ' Y ' ‘
10 20 @0 “ %0 %0

Figure 4.
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x(n+1)=x(n-1)/(b*x(n-1 )*x(n}+a*(x{n)}2+e*x{n-1 )

0.35 .
——X(n+1)
0.3+ ------- Equilibrium point ]
0.25¢

X(n)

0.05r
¢ 10 20 30 40 50 60 70 80 90 100
n
Figure 5.
x(n+1)=x(n-1)/(b*x(n-1 )*x(n)+a*x(n)2+e*x(n-1 )
0.7 ' r . :
LY
—— X(n+1
0.5f n+t)

------- Equilibrium point
i
0.3

10 20 30 40 50
n

X(n)

Figure 6.
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