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Abstract 

For square contingency tables with ordered categories, this paper proposes a 
generalized diagonal exponent conditional symmetry model which indicates that 
in addition to the structure of conditional symmetry of the probabilities with 
respect to the main diagonal of the table, the log-odds of adjacent two 
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probabilities along subdiagonal of the table is the sum of polynomial of row 
value and polynomial of column value with same coefficients. This paper also 
gives the decomposition using the proposed model. 

1. Introduction 

Consider an RR ×  square contingency table with the same row and 
column classifications. Let ijp  denote the probability that an observation 

will fall in the i-th row and j-th column of the table ( ;,,1 Ri …=  

).,,1 Rj …=  The symmetry (S) model is defined by 

( ),,,1;,,1 RjRivp ijij …… ==/=  

where ;jiij vv /=/  see Bowker [3]. This describes a structure of symmetry 

of the probabilities { }ijp  with respect to the main diagonal of the table. 

McCullagh [11] considered the conditional symmetry (CS) model, defined 
by 
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where .jiij vv /=/  The CS model states that ( )jipij <  is γ  times higher 

than .jip  A special case of the CS model obtained by putting 1=γ  is the 

S model. The global symmetry (GS) model is defined by 
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see Read [12]. The GS model states that the probability that an 
observation will fall in one of the upper-right triangle cells above the 
main diagonal of the table is equal to the probability that it falls in one of 
the lower-left triangle cells below the main diagonal. Read [12] gave the 
theorem that the S model holds if and only if both the CS and GS models 
hold. 
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Caussinus [4] considered the quasi-symmetry (QS) model, defined by 

( ),,,1;,,1 RjRivp ijjiij …… ==/βα=  

where .jiij vv /=/  A special case of the QS model with { }ii β=α  is the S 

model. Iki et al. [8] considered the k-th diagonal exponent symmetry 

( )( )kDES  model, for a fixed ( ),1,,1 −= R…kk  defined by 
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Note that (1) with 1=k  is the diagonal exponent symmetry (DES) model 
in Tomizawa [13]. The ( )kDES  model states that, in addition to the 

structure of the S model, for fixed distance from the main diagonal of the 
table, the log-odds of 1,1 ++ jip  to ijp  is the sum of polynomial of row 

value i and polynomial of column value j with same coefficients along 
every subdiagonal of the table (especially, when ,2=k  the log-odds of 

them is a linear function of ji + ). Note that the ( )kDES  model implies 

the S model. Iki et al. [8] also considered the k-th quasi-diagonal 

exponent symmetry ( )( )kQDES  model, for a fixed ( ),1,,1 −= R…kk  

defined by 
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Note that (2) with ( )k,,1 …=β=α ttt  is the ( )kDES  model, and (2) 

with 1=k  is the quasi-diagonal exponent symmetry (QDES) model in Iki 
et al. [10]. Note that the ( )kQDES  model implies the QS model. Let X 

and Y denote the row and column variables, respectively. For a fixed 

( ),1,,1 −= R…kk  consider a model defined by ( ) ( ) ( ,1== tYEXE tt  
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)., k…  We shall refer to this model as the k-th marginal moment 

equality ( )( )kMME  model. For a fixed ( ),1,,1 −= R…kk  Iki et al. [8] 

gave the theorem that the ( )kDES  model holds if and only if both 

( )kQDES  and ( )kMME  models hold. 

Iki et al. [9] considered the diagonal exponent conditional symmetry 
(DECS) model, defined by 
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where ( ).jidd jiij <γ= −−  Note that (3) with 1=γ  is the DES model. 

This model states that in addition to the structure of the CS model, 

( )jip ji ≠++ 1,1  is 2δ  times higher than .ijp  Under the DECS model, we 

see the structure of ( ).jipp jiij <γ=  Iki et al. [9] also considered the 

quasi-diagonal exponent conditional symmetry (QDECS) model, defined 
by 
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where ( ).jidd jiij <γ= −−  Note that (4) with β=α  is the DECS model, 

and (4) with 1=γ  is the QDES model. Under the QDECS model, we see 

the structure of ( ) ( ).jipp ij
jiij <αβγ= −  Iki et al. [9] gave the 

theorems as follows: 

Theorem 1. The DES model holds if and only if both the DECS and 
GS models hold. 

Theorem 2. The DES model holds if and only if all the QDECS, GS, 
and MME(1) models hold. 
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Theorem 3. The DES model holds if and only if both the DECS and 
MME(1) models hold. 

We are now interested in considering the generalization of the DECS 
and QDECS models and Theorems 1, 2, and 3. The present paper 
proposes a generalized DECS and QDECS models, and gives the 
decomposition of the ( )kDES  model. It also shows the orthogonality of the 

test statistics for decomposed models. 

2. New Models 

We consider a generalized DECS model, for a fixed ( ),1,,1 −= R…kk  

defined by 
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where ( ).jidd jiij <γ= −−  We shall refer to this model as the k-th 

diagonal exponent conditional symmetry ( )( )kDECS  model. Under the 

( )kDECS  model, we see the structure of ( ).jipp jiij <γ=  Note that 

the ( )kDECS  model implies the CS model. The DECS(1) model is 

equivalent to the DECS model. A special case of the ( )kDECS  model with 

1=γ  is the ( )kDES  model. 

Moreover, consider a generalized QDECS model, for a fixed  
( ),1,,1 −= R…kk  defined by 
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where ( ).jidd jiij <γ= −−  We shall refer to this model as the k-th quasi-

diagonal exponent conditional symmetry ( )( )kQDECS  model. Under the 
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( )kQDECS  model, we see the structure of ( )
tt ij

tttjiij pp −
=

αβγ= ∏k
1  

( ).ji <  The QDECS(1) model is equivalent to the QDECS model. A 

special case of the ( )kQDECS  model with ( )k,,1 …=β=α ttt  is the 

( )kDECS  model. A special case with 1=γ  is the ( )kQDES  model. Also, a 

special case with ( )k,,1 …=β=α ttt  and 1=γ  is the ( )kDES  model. 

In Figure 1, we show the relationships among models. In Figure 1, 
BA →  indicates that model A implies model B. 

 

Figure 1. Relationships among models. 

3. Decomposition and Orthogonality of Test Statistics 

We obtain the decompositions of the ( )kDES  model as follows: 

Theorem 4. For a fixed ( ),1,,1 −= R…kk  the ( )kDES  model holds 

if and only if both the ( )kDECS  and GS, models hold. 

Theorem 5. For a fixed ( ),1,,1 −= R…kk  the ( )kDES  model holds 

if and only if all the ( ),kQDECS  GS, and ( )kMME  models hold. 

Theorem 6. For a fixed ( ),1,,1 −= R…kk  the ( )kDES  model holds 

if and only if both the ( )kDECS  and MME(1) models hold. 
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Proof of Theorem 4. For a fixed ( ),1,,1 −= R…kk  if the ( )kDES  

model holds, then the ( )kDECS  and GS models hold. Assuming that both 

the ( )kDECS  and GS models hold, then we shall show that the ( )kDES  

model holds. Since the ( )kDECS  and GS models hold, we see 
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Thus, we obtain .1=γ  Namely, the ( )kDES  model holds. The proof is 

complicated. 

Proof of Theorem 5. For a fixed ( ),1,,1 −= R…kk  if the ( )kDES  

model holds, then the ( ),QDECS k  GS, and ( )kMME  models hold. 

Assuming that all the ( ),QDECS k  GS, and ( )kMME  models hold, then 

we shall show that the ( )kDES  model holds. Let { }ijp~  denote the cell 

probabilities which satisfy all the ( ),QDECS k  GS, and ( )kMME  models. 

Since the ( )kQDECS  model holds, we see 
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Let 
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We note that 111 =π∑∑ == ij
R
j

R
i  with .10 <π< ij  Then, since { }ijp~  satisfy 

the ( ),QDECS k  GS, and ( )kMME  models, we see 
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Then, we denote ( )LU δ=δ ~~  and ( )l
Y

l
X µ=µ ~~  by 0δ  and ,0

lµ  respectively. 

Namely, 

( ).,,1~~and~~
00 k…=µ=µ=µδ=δ=δ lll

Y
l
XLU  (7) 
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Consider the arbitrary cell probabilities { }ijp  satisfying 

( ) ( ) ( ),,,1and 00 k…=µ=µ=µδ=δ=δ lll
Y

l
XLU  (8) 

where { },,, l
XLU µδδ  and { }l

Yµ  denote { },~,~,~ l
XLU µδδ  and { }l

Yµ~  with 

{ }ijp~  replaced by { },ijp  respectively. From the Equations (6), (7), and (8), 

we see 
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Using the Equation (9), we obtain 

({ } { }) ({ } { }) ({ } { }),~,,~, ijijijijijij ppKpKpK +π=π  

where 
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and ({ } { })ijijpK π,  is the Kullback-Leibler information between { }ijp  

and { }.ijπ  Since { }ijπ  being a function of { }ijp~  is fixed, we see 

{ }
({ } { }) ({ } { }),,~,min ijijijijp

pKpK
ij

π=π  

and then { }ijp~  uniquely minimizes ({ } { })ijijpK π,  (see Bhapkar and 

Darroch [2]). 

Let ( ).,,1;,,1~~ RjRipp jiij …… ===∗  Then 
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Noting that { },jiij π=π  we see 

( ) ( )

( ) ( )

( )












=

>β+α+γ+

<β+α+

=














π ∑
∑

=

=
∗

.log

,loglogloglog

,logloglog
~

log
1

1

jic

jiijc

jiijc
p

l
l

l
l

l

l
l

l
l

l

ij

ij k

k

 (11) 

From Equations (7), (8), and (11), we see 
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Using the Equation (12), we obtain 

({ } { }) ({ } { }) ({ } { }).~,,~, ∗∗ +π=π ijijijijijij ppKpKpK  

Since { }ijπ  being a function of { }∗ijp~  is fixed, we see 
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and then { }∗ijp~  uniquely minimizes ({ } { })., ijijpK π  Therefore, we see 
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From Equations (5) and (10), for ,ji <  we see 
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Thus 
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From Equation (14), we obtain ( ),,,1 k…=β=α lll  and from Equation 
(13), we obtain .1=γ  Namely, the ( )kDES  model holds. The proof is 
completed. 

Proof of Theorem 6. For a fixed ( ),1,,1 −= R…kk  if the ( )kDES  
model holds, then the ( )kDECS  and MME(1) models hold. Assuming that 
both the ( )kDECS  and MME(1) models hold, then we shall show that the 

( )kDES  model holds. The MME(1) model is also expressed as 
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Thus, we obtain .1=γ  Namely, the ( )kDES  model holds. The proof is 

complicated. 
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Consider the model that has the structure of both the GS and 
( )kMME  models. We shall refer to this model as the ( )kGSMME  model. 

From Theorem 5, we can obtain the following the corollary: 

Corollary 1. For a fixed ( ),1,,1 −= R…kk  the ( )kDES  model 

holds if and only if both the ( )kQDECS  and ( )kGSMME  models hold. 

Let ijn  denote the observed frequency in the ( )ji, -th cell of the table 

( )RjRi ,,1;,,1 …… ==  with ,ijnn ∑∑=  and let ijm  denote the 

corresponding expected frequency. Assume that { }ijn  have a multinomial 

distribution. The maximum likelihood estimates (MLEs) of { }ijm  under 

the ( )kDECS  and ( )kQDECS  models could be obtained by using iterative 

procedures; for example, see Darroch and Ratcliff [5] and Agresti ([1], p. 242). 
The MLEs of { }ijm  under the ( )kMME  and ( )kGSMME  models could be 

obtained by using Newton-Raphson method to the log-likelihood 

equations. Let ( )MG2  denote the likelihood ratio chi-squared statistic   

for testing goodness-of-fit of model M. The numbers of degrees of  
freedom for the ( ) ( ) ( ),MME,QDECS,DECS kkk  and ( )kGSMME  models 

are ,,22,2 22 kkk −−−− RRRR  and ,1+k  respectively. 

The orthogonality (asymptotic separability or independence) of the 
test statistics for goodness-of-fit of two models is discussed by, e.g., 
Darroch and Silvey [6] and Read [12]. We obtain the theorems as follows: 

Theorem 7. For a fixed ( ),1,,1 −= R…kk  the test statistic 

( )( )kDESG2  is asymptotically equivalent to the sum of ( )( )kDECSG2  and 

( ).2 GSG  

Theorem 8. For a fixed ( ),1,,1 −= R…kk  the test statistic 

( )( )kDESG2  is asymptotically equivalent to the sum of ( )( )kQDECSG2  

and ( )( ).2 kGSMMEG  
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Proof of Theorem 7. For a fixed ( ),1,,1 −= R…kk  the ( )kDECS  

model is expressed as 

( ) ( ) ( ) ( )
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( ) ,,,,,, 21
tφβββγ=β ∗∗∗∗

k…  

where ”“t  denotes the transpose, and 

( ( ) )∗∗∗∗
−−

∗
−

∗
− ///=φ RRR vvvddd ,,,,,,, 2211121 ……  

is the ( )121 −× R  vector. The ( )kDECS  model is expressed as 

( ) ,,,,,,log 1210 β=β= +kk XXXXXXp …  

where X is the LR ×2  matrix with ( ) ,,,,2 10
t

RvvXRL …=+= k  

( ),,,111 k…=⊗+⊗= lJJX l
RRR

l
Rl  and 1+kX  is the ( )122 −× RR  

matrix of 1 or 0 elements determined from (15); and where pv  is the 

R×1  vector of 0 for the first p elements or 1 for the others, s1  is the 

1×s  vector of 1 elements, ( )tlll
R RJ ,,1 …=  and ⊗  denotes the 

Kronecker product. The matrix X has full column rank. The rank of X is 
L. In a similar manner to Haber [7], we denote the linear space spanned 
by the columns of the matrix X by ( )XS  with the dimension L. 
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Let U be an ,1
2 lR ×  where ,222

1 k−−=−= RRLRl  full column 

rank matrix such that ( )US  is the orthogonal complement of ( ).XS  

Thus, ,,1 Ll
t OXU =  where tsO ,  is the ts ×  zero matrix. Therefore, the 

( )kDECS  model is expressed as 

( ) ,0 11 lpH =  

where s0  is the 1×s  zero vector, and ( ) .log1 pUpH t=  The GS model is 

expressed as 

( ) ,0 22 lpH =  

where ,12 =l  and ( ) ,2 WppH =  with 

( ( )) ,1
1

00 2
t

R

R wXXW k
k
∑
=

−−−=  

being the 21 R×  matrix; and where ( )Riwi ,,1 …=  is the 12 ×R  vector, 

being the corresponding column vectors in 1+kX  shouldering .∗/iiv  Note 

that .11 2121 RRX =−+k  Thus tW  belongs to ( ).XS  Hence =WU  .12, llO  

From Theorem 1, the ( )kDES  model is expressed as 

( ) ,0 33 lpH =  

where ,122
213 +−−=+= kRRlll  and ( ) ., 213

tt HHH =  

Let ( ) ( )3,2,1=sphs  denote the 2Rls ×  matrix of partial derivative 

of ( )pHs  with respect to p, i.e., ( ) ( ) .t
ss ppHph ∂∂=  Let ( ) =∑ p  

( ) ,diag tppp −  where ( )pdiag  denotes a diagonal matrix with i-th 

component of p as i-th diagonal component. Let p  denote p with { }ijp  

replaced by { }.ijijp n n=  Then ( )n p p−  has asymptotically a 
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normal distribution with mean 20R  and covariance matrix ( ).p∑  Using 

the delta method, ( ( ) ( ) )3 3n H p H p−  has asymptotically a normal 

distribution with mean 30l  and covariance matrix 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
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Since ( ) ( ) ( ) t
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t UpphUpph === diag,01 11 12  and ( ) ,2 Wph =  we see 

( ) ( ) ( ) .21,21 ll
ttt OWUphpph ==∑  

Thus, we obtain ( ) ( ) ( ),213 ppp ∆+∆=∆  where 

( ) ( ) [ ( ) ( ) ( ) ] ( ).1 pHphpphpHp s
t

ss
t

ss
−∑=∆   (16) 

Under each ( ) ( ),3,2,10 == spH sls  the Wald statistic ( )s sW n p= ∆  

has asymptotically a chi-squared distribution with sl  degrees of freedom. 

From Equation (16), we see that .213 WWW +=  From the asymptotic 

equivalence of the Wald statistic and likelihood ratio statistic, we obtain 
Theorem 7. 

We shall omit the proof of Theorem 8 because it is obtained in a 
similar way to the proof of Theorem 7. 

4. Concluding Remarks 

We have proposed the ( )kDECS  and ( )kQDECS  models, and given 

the three kinds of decompositions of the ( )kDES  model. These 

decompositions may be useful for seeing the reason for the poor fit of the 
( )kDES  model when the ( )kDES  model fits the data poorly. 
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We point out that ( )( )kDESG2  is not asymptotically equivalent to the 

sum of ( )( ) ( )GSGQDECSG 22 ,k  and ( )( )kMMEG2  because the sum of 

( )GSG2  and ( )( )kMMEG2  is not asymptotically equivalent to 

( )( ),2 kGSMMEG  however, the ( )( )kDESG2  is asymptotically equivalent 

to the sum of ( )( )kQDECSG2  and ( )( )kGSMMEG2  (see Theorem 8). 

We note that the ( )1DECS −R  model implies the CS model, and the 

difference between the numbers of degrees of freedom for the 
( )1DECS −R  and the CS model is ( ) ( ) .241 −− RR  The ( )1DECS −R  

model is equivalent to the CS model when .4=R  
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