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Abstract

For square contingency tables with ordered categories, this paper proposes a
generalized diagonal exponent conditional symmetry model which indicates that
in addition to the structure of conditional symmetry of the probabilities with
respect to the main diagonal of the table, the log-odds of adjacent two
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probabilities along subdiagonal of the table is the sum of polynomial of row
value and polynomial of column value with same coefficients. This paper also

gives the decomposition using the proposed model.
1. Introduction

Consider an R x R square contingency table with the same row and
column classifications. Let p;; denote the probability that an observation
will fall in the i-th row and j-th column of the table (i =1, ..., R;
j =1,..., R). The symmetry (S) model is defined by

pjj = WL](L =1,.., R; ] =1,..., R),

where y;; = v;;; see Bowker [3]. This describes a structure of symmetry
of the probabilities {p;;} with respect to the main diagonal of the table.

McCullagh [11] considered the conditional symmetry (CS) model, defined
by

Wi @< J)s

Pij = L

vij @i >)),
where y;; = v;;. The CS model states that p;;(i < j) is y times higher
than pj;. A special case of the CS model obtained by putting y =1 is the
S model. The global symmetry (GS) model is defined by

ZZ b = ZZ DPji;

i<j i<j

see Read [12]. The GS model states that the probability that an
observation will fall in one of the upper-right triangle cells above the
main diagonal of the table is equal to the probability that it falls in one of
the lower-left triangle cells below the main diagonal. Read [12] gave the
theorem that the S model holds if and only if both the CS and GS models
hold.
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Caussinus [4] considered the quasi-symmetry (QS) model, defined by

where y;; = p;;. A special case of the QS model with {a; = f;} is the S
model. Iki et al. [8] considered the k-th diagonal exponent symmetry
(DES(k)) model, for a fixed k (k =1, ..., R —1), defined by

k
¢t
8 dy._ . i+ j),
pjj = g R (=) @
Vii @ =J).
Note that (1) with & = 1 is the diagonal exponent symmetry (DES) model
in Tomizawa [13]. The DES(k) model states that, in addition to the

structure of the S model, for fixed distance from the main diagonal of the

table, the log-odds of p;,; j,1 to p;; is the sum of polynomial of row

value i and polynomial of column value j with same coefficients along

every subdiagonal of the table (especially, when £k = 2, the log-odds of
them is a linear function of i + j). Note that the DES(k) model implies
the S model. Tki et al. [8] also considered the k-th quasi-diagonal
exponent symmetry (QDES(k)) model, for a fixed k£ (k=1,..., R-1),
defined by

k
it gt o . .
pij = ga; B d\]—t\ @ = Jj)s 2
Vii @ =
Note that (2) with o; =B; (¢ =1, ..., k) is the DES(k) model, and (2)

with k£ =1 is the quasi-diagonal exponent symmetry (QDES) model in Iki
et al. [10]. Note that the QDES(k) model implies the QS model. Let X

and Y denote the row and column variables, respectively. For a fixed

k(k=1,.., R-1), consider a model defined by E(X")=E(Y') (¢t =1,
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..., k). We shall refer to this model as the k-th marginal moment
equality (MME(k)) model. For a fixed k (k =1, ..., R—1), Iki et al. [8]
gave the theorem that the DES(k) model holds if and only if both
QDES(k) and MME(k) models hold.

Iki et al. [9] considered the diagonal exponent conditional symmetry
(DECS) model, defined by

5*d;_; @@= J),
pij = 3)

Vii @@=,
where d;_; = vd;_j (i < j). Note that (3) with y =1 is the DES model.
This model states that in addition to the structure of the CS model,
Pis1,ju (@ #j)is % times higher than pjj- Under the DECS model, we
see the structure of p;; / p;; =y (i < j). Iki et al. [9] also considered the
quasi-diagonal exponent conditional symmetry (QDECS) model, defined

by

a'pld; @ = J),
Dij = 4)
Vii @ =),
where d;_; = yd;_; (i < j). Note that (4) with o = B is the DECS model,
and (4) with y =1 is the QDES model. Under the QDECS model, we see
the structure of p;;/pj; = yB /oY G <j). Iki et al. [9] gave the
theorems as follows:

Theorem 1. The DES model holds if and only if both the DECS and
GS models hold.

Theorem 2. The DES model holds if and only if all the QDECS, GS,
and MME(1) models hold.
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Theorem 3. The DES model holds if and only if both the DECS and
MME(Q) models hold.

We are now interested in considering the generalization of the DECS
and QDECS models and Theorems 1, 2, and 3. The present paper
proposes a generalized DECS and QDECS models, and gives the
decomposition of the DES(k) model. It also shows the orthogonality of the

test statistics for decomposed models.
2. New Models

We consider a generalized DECS model, for a fixed k¥ (k =1,..., R-1),
defined by

k
L, st . 3
] I AR )}
Y t=1 o
Vi @ =),
where d;_; =yd;_j (i < j). We shall refer to this model as the kth

diagonal exponent conditional symmetry (DECS(k)) model. Under the
DECS(k) model, we see the structure of p;; / pj = v (i < j). Note that
the DECS(k) model implies the CS model. The DECS(1) model is
equivalent to the DECS model. A special case of the DECS(k) model with
y =1 is the DES(k) model.

Moreover, consider a generalized QDECS model, for a fixed
k(k=1,.., R-1), defined by

k
.t 't . .
o Hai B/ dj_ @ = J),
Pij =143
Vii @ =J),
where d;_; = yd;_; (i < j). We shall refer to this model as the k-th quasi-

diagonal exponent conditional symmetry (QDECS(k)) model. Under the
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QDECS(k) model, we see the structure of p; /Pji = “/Hle (B /at)jt_it
(Z < j). The QDECS(1) model is equivalent to the QDECS model. A
special case of the QDECS(k) model with o, =B, (¢t =1, ..., k) is the
DECS(k) model. A special case with y =1 is the QDES(k) model. Also, a
special case with o, =B, (¢ =1, ..., k) and y = 1 is the DES(k) model.

In Figure 1, we show the relationships among models. In Figure 1,

A — B indicates that model A implies model B.

DES(1) DES(2)—— - DES(R— 1)
\E) ES(1) \b DES(2) —— «eve. \Q} DES(R — 1)
Qi\‘),’;‘(‘S(I) %Eu;c*sm) e \— c};;c 'S(R—1)
DECS(1) chs{); ------ DEC’S{_R{;)

Figure 1. Relationships among models.

3. Decomposition and Orthogonality of Test Statistics

We obtain the decompositions of the DES(k) model as follows:

Theorem 4. For a fixed k (k =1, ..., R —1), the DES(k) model holds
if and only if both the DECS(k) and GS, models hold.

Theorem 5. For a fixed k (k =1, ..., R —1), the DES(k) model holds
if and only if all the QDECS(k), GS, and MME(k) models hold.

Theorem 6. For a fixed k (k =1, ..., R -1), the DES(k) model holds
if and only if both the DECS(k) and MME(1) models hold.
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Proof of Theorem 4. For a fixed k (k =1, ..., R —1), if the DES(k)
model holds, then the DECS(k) and GS models hold. Assuming that both
the DECS(k) and GS models hold, then we shall show that the DES(k)
model holds. Since the DECS(k) and GS models hold, we see

k k
ZZ DPst — Zz Dy = ZZ(H6?1+tl )dt—s - ZZ(HS?ZHZ )ds—t

s<t s<t s<t =1 s<t =1

k

k
DN FCRRTEE )T LA
1

s<t =1 s<t I=

k
SRR § R

s<t =1
= 0.
Thus, we obtain y = 1. Namely, the DES(k) model holds. The proof is
complicated.
Proof of Theorem 5. For a fixed k (k =1, ..., R —1), if the DES(k)
model holds, then the QDECS(k), GS, and MME(k) models hold.

Assuming that all the QDECS(k), GS, and MME(k) models hold, then
we shall show that the DES(k) model holds. Let {p;;} denote the cell

probabilities which satisfy all the QDECS(k), GS, and MME(k) models.
Since the QDECS(k) model holds, we see

k. ) ..
10gy+zz:1(Ll log o + jl log B;)+logd;_; @ <)),

ogBy = 3, ('] ' log B;) +log ;. @>J), ©
g Djj = ,, (0 logay +j" logBy) + log d;; 1> ),

log v;; =)
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Let

d_j;_ ..
—lj=1 /. . /) . .
ij :%(liﬂ and  m; ==+ (0 =),

T

with

I M:U

[y

=

R
Ly Y
i =1

=1 J
(i#]

~

We note that Zil Zle mij =1 with 0 < m;; < 1. Then, since {p;; } satisfy

the QDECS(k), GS, and MME(k) models, we see

logc +logy + E l:l(Ll log oy + ' log B;) (@ <)),
Dij koo . .
log(f} = log ¢ + E lzl(zl log o; + j log B;) (@>17), (®

log ¢ @ =7),

where

R-1 R R-1 R

oy = Z 511’ L — 5]’;‘,
i=1 j=i+1 =1 j=i+1
R R R R

~l I~ ~l I~

bx = ! pijj, MKy = J Dij
1=1 j=1 1=1 j=1

Then, we denote d;( = 8;,) and

Namely,

Sy =03, =8 and fk =0 =pH (=1, k). (1)
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Consider the arbitrary cell probabilities {p;;} satisfying

Sy =8r(=8) and pk =uf (=uph) =1, ... k), ®)

where 87, 8, {uk}, and {u}} denote 3y, 5y, (i}, and {fi}} with
{Djj} replaced by {p;; }, respectively. From the Equations (6), (7), and (8),

we see
R R 5.
ZZ(pij - 5;']')10%(“—7) = 0. )
=1 =1 ij
Using the Equation (9), we obtain
K({pij}, imij}) = K({Dyj }» Amii }) + K({pij §» {Dij 1)

where

K({pj}, {mj}) = Zzpi]‘ 10g(p—7j,

and K({pj}, {m;}) is the Kullback-Leibler information between {p;;}

and {r;; }. Since {m;;} being a function of {p;;} is fixed, we see

g@n K({pjj}, imij}) = K({Dj §5 Amij })s

and then {p;i} uniquely minimizes K({p;j}, {n;j}) (see Bhapkar and
Darroch [2]).

Let p; = pj; (=1,..., R j=1,..., R). Then

Zl:l(]l loga; + il 1og B;)+logd;_; @<y,
~ ~ ko, . ..
log p;; =log pj; = 1logy + Zz=1(fl log o + i’ log ;) +log d;_; @i >j),

log ;; (i=j).

(10)
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Noting that {r;; = nj; }, we see

logc + lel(]l log o + it log B;)
kal k
log[ﬂJ =qlogc +logy + lel(jl log o + il log B;)

log c

From Equations (7), (8), and (11), we see

Z(pij ~ bjj )10g(n—7} = 0.

i=1 j=1 Y

Using the Equation (12), we obtain

@ <),
@>j), 11

(i = J).

(12)

K({pij}, {m}) = KD}, {my }) + K(pyj s {Bij ).

Since {m;; } being a function of {p};} is fixed, we see

?;;ri K({pj}, {mj}) = K({Dj; ), {mij ),

and then {p;;} uniquely minimizes K({p;}, {m;j}). Therefore, we see

{Pij = Pyj}. Thus {p;; = Dji}.

From Equations (5) and (10), for ¢ < j, we see

~ k
b ) YA )
1og(?j = log v+ ) (" - /")10g ey + (' - iy 1og By)

J =1

k

=logy + Z((jl - il)logg—llj

=1

= 0.

(13)
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Thus

~ k
Pi, j+1 Pij ( ! Blj

log| = 1 log —~

Og(pjﬂ,ij ( le ; Gy - } o8 ay

= 0. (14)

From Equation (14), we obtain o; = B;(I =1, ..., k), and from Equation
(13), we obtain y = 1. Namely, the DES(k) model holds. The proof is

completed.

Proof of Theorem 6. For a fixed k (k =1, ..., R —1), if the DES(k)
model holds, then the DECS(k) and MME(1) models hold. Assuming that
both the DECS(k) and MME(1) models hold, then we shall show that the
DES(k) model holds. The MME(1) model is also expressed as

R-1R-u R-1

UDs s+u = UDs 1y, s+
=1s

w

—U

=1 s=1

<

<
Il

—

Since the DECS(k) and MME(1) models hold, we see

R-1R-u R-1R-u

UPs, s+u — Z Z UDstu,s
u=1 s=1 u=1 s=1
-1R-u k ! . R-1R-u k I
= Z u’(]i[&lg Hovu) )d(s+u)—s - z Z U(H8§S+u) e )ds—(s+u)
u=1 s=1 =1 u=1 s=1 =1
R-1R-u R-1R-u k '
u HSS +(s+u) Yd_, Z u(HSEsﬂL) +8 )d_,
u=1 s=1 u=1 s=1 =1
R-1R-u
— ( ) u(HSS + S+u) )d
u=1 s=1
= 0.

Thus, we obtain y = 1. Namely, the DES(k) model holds. The proof is

complicated.
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Consider the model that has the structure of both the GS and
MME(k) models. We shall refer to this model as the GSMME(k) model.

From Theorem 5, we can obtain the following the corollary:

Corollary 1. For a fixed k (k=1,..., R—1), the DES(k) model
holds if and only if both the QDECS(k) and GSMME(k) models hold.

Let n;; denote the observed frequency in the (¢, j)-th cell of the table

@i=1,..,R j=1,.., R) with n= ZZnij, and let m; denote the
corresponding expected frequency. Assume that {n;; } have a multinomial
distribution. The maximum likelihood estimates (MLEs) of {m;;} under

the DECS(k) and QDECS(k) models could be obtained by using iterative

procedures; for example, see Darroch and Ratcliff [5] and Agresti ([1], p. 242).
The MLEs of {m;;} under the MME(k) and GSMME(k) models could be

obtained by using Newton-Raphson method to the log-likelihood
equations. Let GZ(M ) denote the likelihood ratio chi-squared statistic

for testing goodness-of-fit of model M. The numbers of degrees of
freedom for the DECS(k), QDECS(k), MME(k), and GSMME(k) models

are R? - 2R - k, R? - 2R - 2k, k, and k + 1, respectively.

The orthogonality (asymptotic separability or independence) of the
test statistics for goodness-of-fit of two models is discussed by, e.g.,
Darroch and Silvey [6] and Read [12]. We obtain the theorems as follows:

Theorem 7. For a fixed k (k=1,..., R-1), the test statistic
G%(DES(k)) is asymptotically equivalent to the sum of G*(DECS(k)) and
G%(GS).

Theorem 8. For a fixed k (k=1,..., R-1), the test statistic
G%(DES(k)) is asymptotically equivalent to the sum of GZ(QDECS(k))

and G*(GSMME(k)).
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Proof of Theorem 7. For a fixed £ (k =1, ..., R—1), the DECS(k)

model is expressed as

YOG DB+ By e @ B+ (<),
log pyj =1 (i+7B7 + (i + 2 B5 +-++ (" + )P} + dj; (i > j),
Vi (=),

(15)

Let

(4
P = (p]_l’ ey le; p21a ey pZRa ey pR]_; ey pRR) )

B=(y",BL, B3, ..\ Brs &),

where “t” denotes the transpose, and

0 = (d%y, dZg, ..., dX(p1), V11> V225 > VRR)
is the 1x (2R —1) vector. The DECS(k) model is expressed as

log p = XB = (Xo, Xy, Xg, ..., Xi, Xpi1 B,

where X is the R? x L matrix with L = 2R + k, Xy = (vg, ..., vR)t,

X, =Jdh®1p+1p®JL (I=1,..., k), and X,,; is the R%Z x (2R -1)

matrix of 1 or 0 elements determined from (15); and where v, is the

p
1x R vector of O for the first p elements or 1 for the others, 1, is the

sx1 vector of 1 elements, Jllq :(ll,...,Rl)t and ® denotes the

Kronecker product. The matrix X has full column rank. The rank of X is
L. In a similar manner to Haber [7], we denote the linear space spanned

by the columns of the matrix X by S(X) with the dimension L.



152 KIYOTAKA IKI et al.

Let Ube an R% x 1, where l; = R> - L = R -~ 2R — k, full column
rank matrix such that S(U) is the orthogonal complement of S(X).

Thus, U'X = Oy,1, where Og; is the sx¢ zero matrix. Therefore, the

DECS(k) model is expressed as

Hy(p) = 0y,

where 0, is the s x 1 zero vector, and H;(p) = U’ log p. The GS model is

expressed as
Hy(p) = 0y,

where Iy =1, and Hy(p) = Wp, with
R
W= (Xo-(1 -Xp _Zwk))t’
k=1

being the 1 x R? matrix; and where w;(i =1, ..., R) is the R? x1 vector,
being the corresponding column vectors in X;,; shouldering y;;. Note
that X, 1pp 1 =1,,. Thus W' belongs to S(X). Hence WU = Oy, 1, -

From Theorem 1, the DES(k) model is expressed as
Hs(p) = 0y,
where Iy = I; + 1l = R2 ~2R -k +1, and Hy = (H!, Hy ).
Let hy(p)(s = 1, 2, 3) denote the I, x R? matrix of partial derivative

of Hy(p) with respect to p, i.e. hy(p)=0H(p)/op'. Let X(p)=

diag(p) — pp’, where diag(p) denotes a diagonal matrix with i-th

component of p as i-th diagonal component. Let p denote p with { pij}

replaced by {Z)ij =nyj /n}. Then Jn (p—p) has asymptotically a
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normal distribution with mean 0 R and covariance matrix X (p). Using

the delta method, ~n (H3(p)-Hs(p)) has asymptotically a normal

distribution with mean 0;, and covariance matrix

1 (p) Z(p)h () h1(p) Z(p)hy(p)

hs(p) 2 (p)hs(p) = .
ha(@)Z (P (p)  ha(p)Z(P)ha(p)

Since h(p)p = UthZ = 0y, h(p)diag(p) = U' and hy(p) = W, we see

h(p)Z(p)ho(p) = UW' =0y 4.

Thus, we obtain A3(p) = A;(p) + Ay(p), where

As(p) = Hs(p)t[hs(p)Z(p)hs(p)t ]71Hs(p)‘ (16)

Under each H(p)=0;(s =1, 2, 3), the Wald statistic W; =nA;(p)
has asymptotically a chi-squared distribution with /; degrees of freedom.
From Equation (16), we see that W3 = W, + W,. From the asymptotic
equivalence of the Wald statistic and likelihood ratio statistic, we obtain

Theorem 7.

We shall omit the proof of Theorem 8 because it is obtained in a

similar way to the proof of Theorem 7.
4. Concluding Remarks

We have proposed the DECS(k) and QDECS(k) models, and given
the three kinds of decompositions of the DES(k) model. These

decompositions may be useful for seeing the reason for the poor fit of the
DES(k) model when the DES(k) model fits the data poorly.
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We point out that G2(DES(k)) is not asymptotically equivalent to the
sum of G2(QDECS(k)), G*(GS) and G?(MME(k)) because the sum of
G%(GS) and G%*(MME(k)) is not asymptotically equivalent to
G%(GSMME(k)), however, the GZ(DES(k)) is asymptotically equivalent

to the sum of GZ(QDECS(k)) and G%(GSMME(k)) (see Theorem 8).

We note that the DECS(R - 1) model implies the CS model, and the

difference between the numbers of degrees of freedom for the
DECS(R -1) and the CS model is (R -1)(R —4)/2. The DECS(R -1)

model is equivalent to the CS model when R = 4.
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