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Abstract 

For square contingency tables, Saigusa et al. [7] considered the partial 
symmetry model which indicates symmetry of cell probabilities for at least one 
of pairs of symmetric cells with respect to the main diagonal of the table. The 
present paper proposes (1) another partial symmetry model for symmetric pairs 
of cumulative probabilities for the square table, and (2) a measure to represent 
the degree of departure from the model. The measure has a form of weighted 
geometric mean of the diversity index including Shannon entropy in a special 
case. Examples are given. 

1. Introduction 

Consider an rr ×  square contingency table with same row and 
column classifications. Let ijp  denote the probability that an observation 

will fall in i-th row and j-th column of the table ( ).,,1;,,1 rjri …… ==  
Bowker [3] considered the symmetry (S) model defined by 

( ),,,1;,,1 rjrivp ijij …… ==/=  

where  .jiij vv /=/  This model indicates complete symmetry of cell 

probabilities { }ijp  (also see Bishop et al. [2], p. 282). 

Saigusa et al. [7] proposed the partial symmetry (PS) model defined 
by 

( ),,,1;,,1 rjrivp ijij …… ==/=  

where tsst vv /=/  for at least one ( )ts,  with .ts ≠  This model states that 
the cell probability that an observation will fall in row category s and 
column category ( )st >  is equal to the probability that the observation 
falls in row category t and column category s for at least one ( ) .,, tsts ≠  

Let X and Y denote the row and column variables, respectively. Let 
ijG  denote the cumulative probability from upper-right or lower-left 

corner of the rr ×  table, i.e., 
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and 
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The S model can be expressed by 

( ),;,,1;,,1 jirjriG ijij ≠==Ψ= ……  

where .jiij Ψ=Ψ  Therefore, the S model also indicates complete 

symmetry of cumulative probabilities { }.ijG  

We are now interested in the PS model with the cell probabilities 
{ }ijp  replaced by the cumulative probabilities { }.ijG  

When we analyze data, if a model fits the data poorly, we may be 
interested in seeing the degree of departure from the model. Tomizawa et 
al. [9] and Tomizawa et al. [8] proposed measures to express the degree of 
departure from the S model. Saigusa et al. [7] proposed the measure for 
the PS model. Assuming { },0≠+ jiij pp  the measure in Saigusa et al. 

[7] is defined by 
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and the value at 0=λ  is taken to be the limit as .0→λ  This measure 
is formed by the weighted geometric mean of Patil and Taillie’s [6] 

diversity indices { ( )}.λ
ijH  

We are also interested in measuring the degree of departure from PS 
of cumulative probabilities { }ijG  instead of cell probabilities { }.ijp  

This paper proposes (1) the PS model for cumulative probabilities and 
(2) the measure to represent the degree of departure from the model in 
Section 2. 

2. Model and Measure 

2.1. Model 

For an rr ×  contingency table with ordered categories, we propose 
the model defined by 

( ),;,,1;,,1 jirjriG ijij ≠==Ψ= ……  

where tsst Ψ=Ψ  for at least one ( )ts,  with .ts ≠  We shall refer to this 

model as the cumulative partial symmetry (CPS) model. This model 
states that the probability that an observation will fall in row category s 
or below and column category ( )st >  or above is equal to the probability 

that the observation falls in row category t or above and column category 
s or below for at least one ( ) .,, tsts ≠  The CPS model indicates 

incomplete symmetry of cumulative probabilities for part of the 
symmetric pairs { }., jiij GG  Note that the CPS model has a different 

structure from the PS model. 

Consider the artificial probability tables in Table 1. We can see that 
there is a structure of the PS model in Table 1(a), while there is not that 
of the PS model in Table 1(b). Tables 1(c) and 1(d) are the cumulative 
probability tables calculated from Tables 1(a) and 1(b), respectively. We 
can also see that there is not structure of the CPS model in Table 1(c) 
(and Table 1(a)), while there is that of the CPS model in Table 1(d) (and 
Table 1(b)). Therefore, the CPS model is not equivalent to the PS model. 
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Table 1. Artificial cell probability tables and cumulative probability 
tables: the cumulative probabilities in Tables 1(c)-(d) are calculated from 
Tables 1(a)-(b), respectively 

(a) 

0.140 0.017 0.033 0.018 

0.017 0.141 0.004 0.018 

0.066 0.016 0.140 0.015 

0.054 0.090 0.090 0.141 

(b) 

0.155 0.019 0.005 0.001 

0.001 0.150 0.050 0.004 

0.020 0.200 0.150 0.015 

0.004 0.016 0.060 0.150 

(c) Cumulative probabilities for Table 1(a) 

 0.068 0.051 0.018 

0.137  0.073 0.036 

0.120 0.226  0.051 

0.054 0.144 0.234  

(d) Cumulative probabilities for Table 1(b) 

 0.025 0.006 0.001 

0.025  0.060 0.005 

0.024 0.240  0.020 

0.004 0.020 0.080  
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2.2. Measure 

For an rr ×  contingency table with ordered categories, assume that 
{ } ( ).0,namely0 11 ≠+≠+ rrjiij ppGG  We propose the measure as 
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The value at 0=λ  is taken to be the limit as .0→λ  Namely, it is 
defined by 
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The measure ( )λγ  can be seen as the weighted geometric mean of 

diversity index ( ),λ
ijI  which includes the Shannon entropy ( ).0

ijI  This 
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measure satisfies the following properties for any ( ) :1−>λ  (i) ( )λγ  must 

lie between 0 and 1, (ii) ( )λγ  takes the minimum value 0 if and only if the 

CPS model holds, (iii) ( )λγ  takes the maximum value 1 if and only if the 

degree of departure from the CPS model is largest in the sense that 

{ } ( { })0then1 == c
ji

c
ij GG  or { } ( { })0then1 == c

ij
c
ji GG  for all .ji <  

The largest departure indicates complete asymmetry such that the 
cumulative probabilities in one side of upper-right or lower-left triangle 
of the table are all 0s (then those in the reverse side are not all 0s from 
assumption). 

The measure ( )λγ  is not invariant under arbitrary same 

permutations of row and column categories except for the reverse order, 

while the measure ( )λΦ  is invariant under arbitrary same permutations 

of the categories. Therefore, the measure ( )λγ  is appropriate for a square 

contingency table with ordered categories because it depends on the order 
of categories in the table. 

3. Approximate Confidence Interval of Measure 

Let ijn  denote the observed frequency in the i-th row and j-th column 

of the table ( ),,,1;,,1 rjri …… ==  and let n denote the total number 

of observations, i.e., .ijnn ∑∑=  Assuming that a multinomial 

distribution applies to the rr ×  table, we shall consider an approximate 
standard error and large-sample confidence interval for the measure 
( ).λγ  The estimate of measure, denoted by ( ),ˆ λγ  is given by ( )λγ  with 

{ }ijp  replaced by { },ˆ ijp  where .ˆ nnp ijij =  Using the delta method 

(Agresti [1], p. 587), ( ( ) ( ) )λλ γ−γ̂n  asymptotically ( )∞→n  has a 

normal distribution with mean 0 and variance [ ( ) ],2 λγσ  where 
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This asymptotic distribution is applicable only when ( ) 10 <γ< λ  because 

[ ( ) ] 02 =γσ λ  when ( ) 0=γ λ  and 1. Let [ ( ) ]λγσ2ˆ  denote [ ( ) ]λγσ2  with 

{ }ijp  replaced by { }.ˆ ijp  Then [ ( ) ] nλγσ̂  is the estimated approximate 

standard error for ( ),ˆ λγ  and ( ) [ ( ) ] nz λ
α

λ γσ±γ ˆˆ 2  is the approximate 

( )α−1100  percent confidence interval for ( ),λγ  where 2αz  is the upper 

( )2α -th quantile of standard normal distribution. 

The values in the confidence interval may be not bounded by ( ).1,0  

Thus we also give another one for measure ( )λγ  using ( )loglog −  

transformation. Let ( ) [ ( ( ) )],loglog λλ γ−=θ  and let ( )λθ̂  denote the 
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sample version of ( )λθ  which is given by ( )λθ  with { }ijp  replaced by 

{ }.ˆ ijp  Using the delta method, ( ( ) ( ) )λλ θ−θ̂n  asymptotically ( )∞→n  

has a normal distribution with mean 0 and variance [ ( ) ],2 λθσ  where 

[ ( ) ] [ ( ) ]
( ) ( ) ( ).1

log

2
2 −>λ









γγ
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λλ

λ
λ  

Therefore another version of approximate confidence interval using the 

( )loglog −  transformation is then given by ( ( ( ) ∓λθ− ˆexpexp  

[ ( ) ] )),ˆ2 nz λ
α θσ  where [ ( ) ]λθσ̂  is given by [ ( ) ]λθσ  with { }ijp  replaced 

by { }.ˆ ijp  We note that the asymptotic confidence limits are bounded by 

( )1,0  (Lachin [5], p.17). 

4. Examples 

Consider the data in Table 2 taken from Hashimoto [4]. These data 
describe the cross-classifications of father’s and his son’s occupational 
status categories in Japan which were examined in 1955, 1965 and 1975. 
The smaller category number means a higher status. 

Table 3 gives the estimated values of measure ( )λγ  applied to each of 

the data in Tables 2(a)-(c). It also gives the estimated approximate 
standard errors and the two kinds of approximate 95% confidence 
intervals of the measure. We shall compare the degrees of departure from 
a structure of the CPS model toward complete asymmetry for cumulative 
probabilities among the data in Tables 2(a)-(c) using the proposed 

measure ( ).λγ  For any one of the two confidence intervals and any 

( ),1−>λ  we can see that the values in a confidence interval for each of 

the data in Tables 2(b)-(c) are greater than those for the data in Table 
2(a). Thus it is inferred that the degrees of departure from the CPS model 
for Japanese father’s and his son’s occupational status are larger in 1965 
and in 1975 than in 1955. 
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Table 2. Occupational status for Japanese father-son pairs (Hashimoto 
[4], p. 151) 

(a) Estimated in 1955 
 Son’s status 

Father’s status (1) (2) (3) (4) (5) Total 

(1) 39 39 39 57 23 197 

(2) 12 78 23 23 37 173 

(3) 6 16 78 23 20 143 

(4) 18 80 79 126 31 334 

(5) 28 106 136 122 628 1020 

Total 103 319 355 351 739 1867 

(b) Estimated in 1965 
 Son’s status 

Father’s status (1) (2) (3) (4) (5) Total 

(1) 64 51 26 30 6 177 

(2) 18 102 51 18 6 195 

(3) 6 48 138 24 11 227 

(4) 35 82 107 112 13 349 

(5) 30 140 279 106 306 861 

Total 153 423 601 290 342 1809 

(c) Estimated in 1975 
 Son’s status 

Father’s status (1) (2) (3) (4) (5) Total 

(1) 29 43 25 31 4 132 

(2) 23 159 89 38 14 323 

(3) 11 69 184 34 10 308 

(4) 42 147 148 184 17 538 

(5) 42 176 377 114 298 1007 

Total 147 594 823 401 343 2308 

Note: Status (1) is Capitalist; (2) New middle; (3) Working; (4) Self-
employed; and (5) Farming. 
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Table 3. The estimates of ( ) ( ),ˆ, λλ γγ  estimated approximate standard 

errors (SE) of ( ),ˆ λγ  approximate 95% confidence intervals (CI) of ( )λγ  and 

CIs using the ( )loglog −  transformation ( )( ),loglogCI −  applied to each of 

the data in Tables 2(a)-(c) 

(a) For Table 2(a) 

λ  ( )λγ̂  SE CI ( )loglogCI −  

– 0.5 0.050 0.012 (0.027, 0.073) (0.030, 0.076) 

0.0 0.082 0.019 (0.045, 0.119) (0.050, 0.124) 

0.5 0.101 0.023 (0.056, 0.147) (0.062, 0.152) 

1.0 0.111 0.025 (0.061, 0.160) (0.067, 0.166) 

1.5 0.113 0.026 (0.063, 0.163) (0.069, 0.169) 

2.0 0.111 0.025 (0.061, 0.160) (0.067, 0.166) 

(b) For Table 2(b) 

λ  ( )λγ̂  SE CI ( )loglogCI −  

– 0.5 0.175 0.025 (0.126, 0.224) (0.129, 0.227) 

0.0 0.264 0.036 (0.194, 0.334) (0.197, 0.336) 

0.5 0.308 0.040 (0.229, 0.387) (0.231, 0.387) 

1.0 0.326 0.042 (0.244, 0.409) (0.246, 0.409) 

1.5 0.331 0.042 (0.248, 0.414) (0.250, 0.414) 

2.0 0.326 0.042 (0.244, 0.409) (0.246, 0.409) 

(c) For Table 2(c) 

λ  ( )λγ̂  SE CI ( )loglogCI −  

– 0.5 0.193 0.033 (0.128, 0.259) (0.133, 0.263) 

0.0 0.291 0.049 (0.196, 0.386) (0.200, 0.388) 

0.5 0.339 0.056 (0.230, 0.447) (0.233, 0.447) 

1.0 0.359 0.058 (0.245, 0.473) (0.247, 0.472) 

1.5 0.364 0.059 (0.248, 0.479) (0.251, 0.478) 

2.0 0.359 0.058 (0.245, 0.473) (0.247, 0.472) 
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5. Discussion 

Consider the 44 ×  artificial cell and cumulative probability tables 
given in Tables 4 and 5. The cumulative probabilities given in Table 5 
can arise with the cell probabilities given in Table 4. Table 5(a) has a 
structure of CPS with .025.02112 == GG  For each of Tables 5(b)-(e), the 

value of lGk  for any l≠k  with ( ) ( )2,1, ≠lk  equals the value of lGk  in 

Table 5(a). The ratio 2112 GG  varies for Tables 5(a)-(e): 1.0 for Table 

5(a), 2.0 for Table 5(b), 3.0 for Table 5(c), 4.0 for Table 5(d), and 5.0 for 
Table 5(e). Thus, it is natural to consider that the degree of departure 
from the CPS model increases in the order of Tables 5(a)-(e). The 
cumulative probabilities given in Table 5(f) shows complete asymmetry in 
the sense that cumulative probabilities in upper-right triangle cells are 
all 0s. 

Table 4. Artificial cell probability tables 

(a) 

0.155 0.019 0.005 0.001 

0.001 0.150 0.050 0.004 

0.020 0.200 0.150 0.015 

0.004 0.016 0.060 0.150 

(b) 

0.145 0.044 0.005 0.001 

0.001 0.145 0.050 0.004 

0.020 0.200 0.145 0.015 

0.004 0.016 0.060 0.145 

(c) 

0.138 0.069 0.005 0.001 

0.001 0.139 0.050 0.004 

0.020 0.200 0.139 0.015 

0.004 0.016 0.060 0.139 



MEASURE FOR DEPARTURE FROM CUMULATIVE … 65

Table 4. (Continued) 

(d) 

0.135 0.094 0.005 0.001 

0.001 0.135 0.050 0.004 

0.020 0.200 0.135 0.015 

0.004 0.016 0.060 0.125 

(e) 

0.126 0.119 0.005 0.001 

0.001 0.126 0.050 0.004 

0.020 0.200 0.127 0.015 

0.004 0.016 0.060 0.126 

(f) 

0.175 0 0 0 

0.001 0.174 0 0 

0.020 0.200 0.175 0 

0.004 0.016 0.060 0.175 
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Table 5. Artificial cumulative probability tables: the cumulative probabilities 
in Tables 5(a)-(f) are calculated from Tables 4(a)-(f), respectively 

(a) 
 0.025 0.006 0.001 

0.025  0.060 0.005 

0.024 0.240  0.020 

0.004 0.020 0.080  

(b) 
 0.050 0.006 0.001 

0.025  0.060 0.005 

0.024 0.240  0.020 

0.004 0.020 0.080  

(c) 
 0.075 0.006 0.001 

0.025  0.060 0.005 

0.024 0.240  0.020 

0.004 0.020 0.080  

(d) 
 0.100 0.006 0.001 

0.025  0.060 0.005 

0.024 0.240  0.020 

0.004 0.020 0.080  

(e) 
 0.125 0.006 0.001 

0.025  0.060 0.005 

0.024 0.240  0.020 

0.004 0.020 0.080  
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Table 5. (Continued) 

(f) 
 0 0 0 

0.025  0 0 

0.024 0.240  0 

0.004 0.020 0.080  

Table 6 gives the values of measure ( )λγ  applied to each of Tables 

5(a)-(f). As seen in Table 6, we see that (1) the value of ( )λγ  for Table 5(a) 

equals 0, (2) for any fixed ,λ  the value of ( )λγ  increases as the ratio 

2112 GG  increases, and (3) the value of ( )λγ  for Table 5(f) equals 1. 

Therefore, the measure ( )λγ  would be appropriate to represent the degree 
of departure from the CPS model. 

Table 6. Values of ( )λγ  applied to each of Tables 5(a)-(f) 

λ  Applied 
tables 

0 0.5 1.0 

Table 5(a) 0.000 0.000 0.000 

Table 5(b) 0.234 0.283 0.305 

Table 5(c) 0.259 0.313 0.337 

Table 5(d) 0.278 0.334 0.360 

Table 5(e) 0.294 0.353 0.379 

Table 5(f) 1.000 1.000 1.000 

Consider the artificial cell probability table in Table 7(a), and the 
modified table which is obtained by interchanging categories 2 and 3 in 
Table 7(b). Tables 7(c)-(d) give the value of measures ( )λΦ  and ( )λγ  
applied to each of Tables 7(a)-(b), respectively. From Tables 7(c)-(d), we 
can see that the value of ( )λγ  for Table 7(a) is different from that for 

Table 7(b), while the value of ( )λΦ  for Table 7(a) is the same as that for 
Table 7(b). It is because that the measure ( )λγ  depends on the order of 

categories of the table unlike the measure ( ).λΦ  
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Table 7. (a) Artificial cell probability table and (b) the modified table 

interchanging categories 2 and 3, and (c)-(d) values of ( )λΦ  and ( )λγ  

applied to each of Tables 7(a)-(b) 

(a) 

0.090 0.027 0.060 0.010 

0.055 0.160 0.072 0.090 

0.049 0.062 0.140 0.035 

0.015 0.066 0.029 0.040 

(b) 

0.090 0.060 0.027 0.010 

0.049 0.140 0.062 0.035 

0.055 0.072 0.160 0.090 

0.015 0.029 0.066 0.040 

(c) For Table 7(a) 

λ  ( )λΦ  ( )λγ  

0.0 0.012 0.006 

0.5 0.015 0.008 

1.0 0.017 0.009 

(d) For Table 7(b) 

λ  ( )λΦ  ( )λγ  

0.0 0.012 0.007 

0.5 0.015 0.009 

1.0 0.017 0.010 
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6. Concluding Remarks 

For a square contingency table with ordered categories, we have 
considered the CPS model which indicates partial symmetry of 
cumulative probabilities for part of the symmetric pairs of cumulative 
probabilities. 

We have proposed the measure to express the degree of departure 

from the CPS model. The proposed measure ( )λγ  enables us to see how 

far cumulative probabilities are distant from those with the CPS model 
toward complete asymmetry because the measure has property that it 
increases as the degree of departure from the CPS model increases. The 

measure ( )λγ  is also useful for comparing the degrees of departure from 

the CPS model between different tables (see examples). Also, the 

measure ( )λγ  is appropriate for the square table with ordered categories. 
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